
A comprehensive system for the management of e-
commerce file and data export information based on

domain-driven design

Ke Yanga, Rihuan Zuob, Qiweng Dongc, Ye Wang*

akyang@stu.ecnu.edu.cn, bzuorihuan1999@163.com, cqwdong@dase.ecnu.edu.cn,
*ywang@dase.ecnu.edu.cn

School of Data Science and Engineering, East China Normal University, Shanghai 200062, China

Abstract. With the rapid development of Internet technology, e-commerce has thoroughly
infiltrated every aspect of commercial activities. It has not only altered traditional business
models but also redefined market structures and consumer behaviors. However, existing
e-commerce systems exhibit shortcomings in data file management and data export tasks,
manifesting as functional gaps and redundant constructions. In response to this challenge,
this study designs and implements an e-commerce file task system based on Domain-
Driven Design theory and a microservices architecture. This system aims to provide a
universal, efficient, and flexible solution for managing the complex and chaotic file and
data export tasks inherent in the e-commerce domain. It contributes to enhancing the
overall operational efficiency of e-commerce systems and optimizing the end-user
experience. Finally, this study validated the effectiveness of the system through well-
designed experiments.

Keywords: E-commerce System; Domain-driven design; Microservice

1 Introduction

With the continuous development of computer technology, e-commerce has become an
indispensable part of modern business activities. In 2022, 75% of internet users in the European
Union had engaged in online purchases or service reservations, marking a 20% increase over
the span of a decade [1]. In 2023, China's e-commerce transaction volume reached 46.8273
trillion yuan, with the online retail sales of physical goods amounting to 13.0174 trillion yuan,
accounting for 27.6% of the total retail sales of consumer goods [2]. Therefore, constructing an
e-commerce system with superior performance and expandability, aimed at providing users with
a favorable experience, constitutes a significant goal in the development of e-commerce systems.
E-commerce systems frequently face extensive file management demands and intricate, varied
data export business scenarios, such as the exportation of bills and product detail lists. How to
effectively manage these files and data export tasks is a significant issue in the construction of
e-commerce systems. This article, integrating the concepts of Domain-Driven Design (DDD)
with the microservices architecture, designs and implements a file task management system for
the e-commerce domain. It aims to provide a universal, efficient, and flexible solution for the
management of file and data export tasks.

ECIT 2024, March 15-17, Changsha, People's Republic of China
Copyright © 2024 EAI
DOI 10.4108/eai.15-3-2024.2346186

2 Related work

Microservices is a software architecture style wherein the software composed of microservices
possesses characteristics such as independent deployability and scalability, fulfilling the single
responsibility principle of software design [3]. During the implementation of microservices, an
event-driven model can be utilized to achieve service decoupling. Producer services and
consumer services communicate asynchronously through message pipelines, resulting in
reduced dependencies between services, thereby enhancing system performance [4].

Domain-Driven Design (DDD) is a software development methodology that focuses on the core
business domain [5]. DDD is commonly employed to guide the construction of microservices
architecture systems [6]. Application software developed under the guidance of Domain-Driven
Design (DDD) often exhibits functionalities that align with business requirements [7].

3 System design

3.1 Domain model

The system primarily offers two main functionalities: file management and data export task
management. The file management component encompasses file upload & download, data
access control, and scheduling tasks related to file archiving. On the other hand, data export
management is responsible for data exportation, the storage/download of exported files, and the
implementation of fallback scheduled tasks to handle failed data export scenarios.

Fig. 1. Overlap of functionlities

Figure 1 illustrates the overlap of functionalities between file management and data export task,
as identified through a meticulous process of business workflow analysis and scrutiny. Data
export tasks can be regarded as files endowed with a more substantial business context.
Consequently, by merging the business functionalities of both domains, the design of the file
task domain model is completed. Table 1 presents the details of the domain object consolidation
following this analysis.

data
export

Data export
configuration

Field
mapping

data
storage &
download

data access
control

scheduled
task

operation log
management

Data Export Task

File Management

Overlap of Functionalities

Table 1. Composition of file task domain model

Aggregation Domain objects Domain type
File task aggregation File task Aggregation root

Scheduled task aggregation
Scheduled task Aggregation root

Scheduled task rule Value object

Permission aggregation
Permission type
Permission rule
Permission list

Aggregation root
Entity
Entity

Metadata aggregation
File task type

Export mapping
Export rule

Aggregation root
Entity
Entity

Log aggregation Operation log Aggregation root

Fig. 2. File task model

Figure 2 illustrates the system's core domain model. FileTask represents the file task, which
achieves unified management of file and data export tasks by documenting three types of
business fields. Specifically:

(1) Basic Information: User identification, business domain, creation time, etc.

(2) File Attributes: File storage location, etc.

(3) Data Export Task Attributes: Export status, failure reasons, etc.

FileTask distinguishes between file and data export tasks by enumerating FileTaskType and
FileTaskStatus.

FileTask

+ id: long

+ fileTaskId: string

+ fileTaskType: FileTaskType

+ status: FileTaskStatus

+ bizType: int

+ accountId: long

+ msg: string

+ condition: string

+ path: string

+ extra: string

<<enumeration>>
FileTaskType

FILE

EXPORT

EXPORT_TIME

<<enumeration>>
FileTaskStatus

DEFAULT

DOING

SUCCESS

FAIL

3.2 System architecture

Fig. 3. System architecture

Figure 3 elucidates the system's architectural blueprint, elucidating the symbiotic relationships
and interactive modalities among its diverse components. Within this framework, external e-
commerce entities engage with the file task management system predominantly through domain
events and RPC (Remote Procedure Call) interfaces, facilitating a dynamic and efficient
exchange of information. System proffers an array of pivotal functionalities, encompassing file
management, data access control, and the orchestration of scheduled tasks. Specifically, the file
management module enables robust support for file uploads and downloads. Concurrently, the
data access control mechanism plays a critical role in safeguarding sensitive information,
underpinning the system's security infrastructure. Moreover, the incorporation of scheduled task
management empowers the system to autonomously execute pre-defined operations, thereby
amplifying the system's automation quotient. From a technological standpoint, the system
leverages MySQL for robust data storage solutions, while Redis serves as the caching
middleware, optimizing data retrieval processes and system responsiveness. The Quartz
framework undergirds the scheduled task functionality, offering reliable and precise scheduling
capabilities. In the realm of inter-component communication, the system's messaging conduit is
architected atop RabbitMQ, which ensures efficient and reliable message handling. For file data
storage, the system avails itself of Alibaba Cloud's object storage services (OSS), ensuring
scalable, secure, and accessible data storage solutions.

4 Functional implementation

4.1 Data access control

The data access control module implements access control management of file task records from
three levels: business permission management, permission data query, and authentication
components. Among them, business permission management provides the ability to configure
permissions for a certain type of business data. Permission data query implementation allows
users to only query their authorized access Record the data asked. The authentication component

Service

E-commerce system

Event Channel

Service

.......

FileTaskSystem

RPC
Alibaba Cloud

Object Storage Service

File Management

Data Export
Management

Acess Contorl
Cron Job

......

provides permission filtering for attribute columns and authentication during file downloading
for data export scenarios.

(1) Business permission management. Administrators can configure data permissions in
multiple dimensions according to business types for different business scenarios. When the
permission type is set to role (ROLE), the system displays a list of roles for the administrator to
choose from. If the permission type is set to specific organizational authorization (UNIT), the
system will display the current organizational structure in a tree diagram for the administrator
to select. If the file task type is a data export task, the administrator can configure data
permissions, setting the visibility of different fields to adhere to the principle of least privilege.

(2) Permission data query. To ensure secure data queries, permissions are assigned to file
tasks based on their business type. When users perform queries via the API, the type of
authorization along with the user's personal information is incorporated as criteria within the
query SQL statement. This approach facilitates data queries that are contingent upon
permissions. This process is implemented using JPA technology.

(3) Authentication components. The authentication component chiefly provides capabilities
for permission verification during file data downloads and permission filtering for attribute
columns in data export scenarios. As file tasks and metadata attributes utilize a unified set of
authorization types, a common algorithmic interface has been developed. This algorithm takes
as input parameters the user entity field user, the resource type field type, and the resource
identifier field id. The output is a Boolean value isPassed. If the resource type is a file task and
isPassed is true, the file will proceed to download normally. Otherwise, the download process
is terminated, and an error message is displayed. If the resource is a metadata column and
isPassed is true, it indicates that the column is eligible for export, and the data export component
will include this attribute column in the exportable fields list. If not, this attribute column will
be disregarded.

4.2 File management

System files encompass two distinct attributes: business and physical. The business attributes
include the creator of the file, creation time, business domain, and business type, which facilitate
file retrieval, browsing, and editing. On the other hand, physical attributes pertain to the file data
itself. When designing a file data storage solution, it is imperative to consider the optimization
and management of server storage space as well as the future scalability of service instances in
terms of data sharing. This approach ensures that the system remains adaptable and can
effectively accommodate growth in data volume and evolving access requirements, thereby
guaranteeing the stability and reliability of file data storage. The system incorporates Alibaba
Cloud's object storage service for file data storage, decoupling business records from file data
storage. Compared to on-premises storage solutions (Figure 4(A)), this approach (Figure 4(B))
not only reduces server load but also alleviates the constraints on service instance expansion
caused by file data sharing, thereby enhancing the system's scalability.

Fig. 4. File storage solution

4.3 Data export

Based on the data export component, the data export process is illustrated in the Figure 5. The
data export execution process can be triggered by users via API calls or by system calls.
Specifically:

1. The entry parameter for the data export task executor is the file task identifier task_id. The
export executor initially invokes the findFileTaskById interface of the FileTaskDomainService,
which is a file task domain service, to query the file task record.

2. After retrieving the corresponding file task record, the user identifier on the record is used to
fetch user information through an RPC service call to the user query interface.

3. Based on the user information and file task information obtained from steps 1 and 2, the file
export task context is created using the context factory class, ExportContextFactory.

4. The MetadataDomainService, a metadata domain service, is invoked using the bizType field
to obtain metadata configurations through the findMetadataByBizType interface. Concurrently,
the findBizPermissionRuleByBizType interface is called to acquire the business permission rules
corresponding to the business type of the export task.

5. If the columnPermission flag obtained in step 4 is set to true, indicating that column
permission filtering is enabled, the process proceeds to step 6; otherwise, it moves to step 7.

6. Invoke the columnFilterByPermission method provided by the PermissionProcessor
authentication component, inputting user information and metadata information, to obtain the
exportable attribute columns that have been filtered through permission checks.

7. The data export component uses the dataHandler field from the metadata configuration to
invoke the dataHandlerFactory, which generates a predefined data processor. The primary
function of the data processor is to query the data to be exported and apply data processing based
on the metadata configuration rules. Finally, the exportToInputStream method is called to
complete the generation of the data export file and upload it to the object server. The system
proposes a parallelization improvement to the original sequential data export scheme by
introducing the Java BlockingQueue. This approach replaces the serial process of data querying,
processing, and exporting within the process with parallel thread read/write operations. The
multi-threaded read/write scheme enhances CPU utilization per unit time, optimizing the file
export duration.

Server

Instance Instance

File

Instance Instance Instance

OSS

File File

A. Local Storage B. OSS Storage

Server Server Server

8. After completing the data export and file upload, the corresponding file task's status field,
Status, is updated to indicate success.

Fig. 5. Data export process

4.4 Log management

Operation records are generated asynchronously based on domain events, ensuring that the
asynchronous recording does not affect the main business process and achieving decoupling
between log recording actions and business operations. Administrators can view system
operation logs on the log management page. The operation record module systematically
records and stores activity information related to file tasks, enabling traceable management of
data operations. This functionality allows administrators to scrutinize the utilization of file tasks
through log analysis, thereby enhancing the supervision and protection of sensitive information.

4.5 Cron job

During the operation of a system, there are often two types of unforeseen circumstances: (i) Due
to system anomalies, data query timeouts result in data export tasks that are continuously in an
exporting state or fail to export. (ii) Temporary data needs to be regularly cleaned to avoid
occupying space or the risk of slow queries. The system addresses the aforementioned issues
through two types of scheduled tasks:

(1) Compensation tasks. It scans for data export tasks with a status of unsuccessful under a
certain business type and triggers the data export component to re-execute the task.

(2) Archival Task. It scans for data that meets the archival criteria under a certain business type,
synchronizes it to a cold table, and then executes a batch delete command.

5 System test

To ensure the reliability of the system test results, the configuration of the test environment is
consistent with the production environment, as shown in Table 2.

query file task

fileTask TaskId

ExportExecutor

query user info create data export
context

query attribute column
permission configuration

query metadata
configuration

query business
permission rules

generate file attribute list

(Optional) Enable column permission filtering

attribute column
permission filtering

Permission component

configuration based data
processor queries data

complete data export
and upload to OSSupdate file task status

Based on SQL
data processor

custom data processing A

configurable data processor

custom data processing B

........

Table 2. Interface response time testing

Type Configuration
Operating System CentOS 7.4.1708 64bit

Processor Intel(R) Xeon(R) Gold 6142 CPU @ 2.60GHz, 8core

Hard Drive 256GB
Memory 16GB
Network Operation log

Testing Tool VisualVM, Apache JMeter

The goal of performance testing is to verify the system's responsiveness, stability, and reliability
in a specific environment. This section focuses on testing the interface response time, throughput
of the file task system, and the performance during the file export scenario.

5.1 Interface response time testing

Table 3 shows the response time test results for some key interfaces of the system using Apache
JMeter. The test was configured with 600 threads to simulate a scenario where 600 concurrent
users access the interface under a daily use case. The actual response times in the table use the
95th percentile from the aggregate report as the metric, indicating that during the test, 95% of
the request response times were below this value, thereby representing the actual experience of
the vast majority of users. The test results indicate that the system interface response
performance meets the expected criteria.

Table 3. Interface response time testing

Interface Name Description Expected
Response Time Line 95% Conclusion

getFileTaskById File Task Query Interface 400ms 160ms ✓

getDownloadUrl File Download Link
Retrieval Interface 400ms 243ms ✓

searchLog Operation Log Query
Interface 800ms 743ms ✓

fileTaskList File Task List Retrieval
Interface 800ms 567ms ✓

5.2 Throught testing

Table 4. Interface throughput testing

Interface Name System Original Solution
Data Export Task Creation 103/s 45/min

Throughput is a critical metric for measuring a system's capacity to process requests within a
unit of time. Table 4 presents the throughput test case for the data export task creation process
in the file task system, comparing it with the original solution. The data export task chosen for
creation involves a task with 350 rows of data. Since the file task system processes data export
requests asynchronously based on domain events, the throughput is represented by the
acknowledgment rate (ack rate, or consumption efficiency) in the RabbitMQ console. The

experimental results demonstrate that, compared to the original scheme, the file task system
possesses superior request processing capabilities, making it more capable of handling high-
concurrency scenarios.

5.3 Performance testing of data export scenarios

The implementation of the file task center has unified the file management capabilities of the
information system, centralizing it on the middle platform while also decoupling the data export
function of the business system. This optimization prevents the scenario where a large amount
of data resides in the business system's memory during data export tasks, thereby reducing the
potential impact on the stability of the business system. This experiment aims to evaluate the
performance advantages of the business middle platform solution by comparing the stability of
the business system and the data export duration with the original system solution when
processing data export tasks with different data volumes (100, 500, 1000, 2000, 5000, 10000
rows of data).

Fig. 6. E-commerce system memory usage

Fig. 7. Data export duration

Figure 6 illustrates the impact of the solution and the file task system on the memory usage of
the e-commerce system under different data export volumes. The test results indicate that after
integrating the file task system, the memory usage of the business system is significantly

optimized. Figure 7 shows the comparison between the original solution and the file task system
in terms of data export duration. The test results demonstrate that the business middle platform
solution excels in reducing the time required for data export, thereby enhancing user experience.

6 Conclusion

This paper designs and implements a general file task information system for the e-commerce
domain, aimed at unified management of file and data export tasks generated by different e-
commerce business systems. During the system design phase, the paper identifies system
domain objects and performs business modeling based on DDD (Domain-Driven Design) theory,
completing the design of the system domain model and the planning of the system architecture.
Subsequently, the paper provides a detailed description of the system implementation. Through
the data access control module, administrators can easily grant file task authorizations for
different business types and achieve data permission control to prevent the leakage of
confidential information. The file management module, leveraging object storage services,
enables shared storage of file data, ensuring system scalability. The data export module offers a
flexible configuration and high-performance data export interface. The log management module
facilitates asynchronous recording of file task operations, allowing for traceable management
of data operations. Finally, the implementation of the Cron Job module automates the operation
and maintenance of the system by regularly processing unexpected file tasks. Finally, this paper
devises a comprehensive testing plan to assess the interface response performance, throughput,
and performance in data export scenarios of the file task system. The experimental results
confirm the excellent response performance of the file task center and demonstrate a significant
performance improvement compared to the original solution.

Acknowledgments. These authors are contributed equally to this study. This work is partly
supported by the National Natural Science Foundation of China (62002119,61502236,
61672234, 61877018, 61977025, U1811264), the National Key Research and Development
Program of China(2016YFB1000905), Shanghai Agriculture Applied Technology
Development Program, China(T20170303).

References

[1] Sulova S. A conceptual framework for the technological advancement of e-commerce application
s[J]. Businesses, 2023, 3(1): 220-230.

[2] National Bureau of Statistics. Statistical Bulletin on National Economic and Social Development
of the People's Republic of China in 2023 [EB/OL]. 2023. https://www.stats.gov.cn/sj/zxfb/202402/t2
0240228_1947915.html.

[3] Zimmermann O .Microservices tenets Agile approach to service development and deployment[J].
Computer science, 2017, 32(3-4):301-310.

[4] Singja i A, Zdun U, Zimmermann O. Prac t i t ioner v iews on the in te r re la t ion
of microservice apis and domain-driven design: A grey l i terature s tudy based on
grounded theory[C]//2021 IEEE 18th International Conference on Software Archi-
tecture (ICSA). 2021: 25–35

[5] Evans.Domain-Driven Design: Tacking Complexity In the Heart of Software[M]. 2004.

[6] Chuangxin Ou, Di Deng. Middle platform architecture and implementation based on DDD and m
icroservices[M]. China Machine Press, 2020.

[7] Dr. Faisal Shahzad, Prof. Ricardo Martinez. Domain-driven design: Aligning software with
business needs for improved agi l i ty[J] . INTERNATIONAL JOURNAL OF COM-
PUTER SCIENCE AND TECHNOLOGY, 2023, 7(4): 15–21.

	1 Introduction
	2 Related work
	3 System design
	3.1 Domain model
	3.2 System architecture

	4 Functional implementation
	4.1 Data access control
	4.2 File management
	4.3 Data export
	4.4 Log management
	4.5 Cron job

	5 System test
	5.1 Interface response time testing
	5.2 Throught testing
	5.3 Performance testing of data export scenarios

	6 Conclusion
	References

