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Abstract.When disasters occur, people use social media to post in real time, which
includes rich text and visual images. Relevant authorities can use this information to
make emergency decisions and public opinion analysis quickly. However, the high
complexity of multimodal deep learning models cannot meet the high timeliness
requirements of disaster analysis. In addition, social media multimodal datasets for
disaster detection are often scarce, and simple features are not sufficient to adequately
provide usable information for analysis models. To mitigate these concerns, this paper
introduces a model for low-level fusion called the Multilayer Feature Low-Level Fusion
Model (MLLMF). The model uses transfer learning pre-trained models to extract text
features from different hidden layers instead of traditional single-layer text features, and
introduces gate attention units (GAUSs) to enhance each modal feature to fully extract the
intrinsic information of each single modality so that the information of small sample data
can be utilized to the maximum. Moreover, to tackle the challenge posed by the high
complexity of multimodal models, this paper uses low-rank tensor for multimodal fusion
of text and images. With low model complexity, not only the unique information of a
single modality is retained, but also the correlation between different modal elements is
exploited to achieve a balance between low model complexity and high accuracy.
Experiments show that the method not only improves processing efficiency but also
achieves higher accuracy compared to unimodal and strong multimodal baseline methods,
making it more suitable for crisis-related tasks.
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1 Introduction

Natural disasters that occur annually worldwide often have the characteristics of suddenness,
complexity, and dynamism[1]. The occurrence of natural disasters can cause significant
human casualties and serious economic losses[2], so timely and effective disaster emergency
management is of great significance in reducing disaster losses[3].
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Social media, as a type of spatiotemporal big data, with its real-time and location service
characteristics, has become one of the main research objects of disaster management[4,5].
Leveraging social media data analysis technology in disaster emergency plans and crisis
management can significantly enhance the efficiency of emergency response coordination[6].

Previously, the disaster response research community employed traditional machine learning
techniques to automate response activities [7], but reliance on manual features delayed model
application, making the research time-consuming [8]. Recently, deep learning, which relies
less on manual features, has gained popularity for acquiring advanced representations directly
from input data, prompting exploration of its potential in disaster recovery activities.

Currently, there is little research on the automatic detection of crisis events using a
combination of visual and textual modality information. On the one hand, only certain few-
sample datasets (CrisisMMD)[9] are available due to the expensive acquisition of multimodal
labeled datasets, and on the other hand, although the multimodal feature fusion approach can
increase the model detection accuracy, the different modal data structures are different and
may suppress each other or even be inferior to unimodal deep learning models without
considering the asymmetry of their data structures. In addition, many powerful pre-trained
models and high-complexity fusion algorithms lead to models with surprisingly large sizes,
which further leads to a significant rise in runtime. Therefore, The objective of this study is to
take into account three aspects related to the size of the model, detection accuracy, and the
utilization of limited sample data to obtain an efficient multi-modal disaster monitoring model
that balances accuracy and speed.

This article proposes a framework that combines image and text information to detect crisis
events. In particular, this study suggests an automated labeling method for image-text pairs,
focusing on the following criteria/tasks: 1) Informativeness, determining whether social media
posts serve as informative tweets that contribute to facilitating humanitarian aid during
disasters; 2) Event Classification, identifying the type of emergency situation conveyed by the
post. This framework includes several steps, in which a fine-tuned image pre-training model
and a text pre-training model are used as single-modal feature extractors given an image-text
pair. Finally an improved low-rank fusion framework is proposed. Ultimately, the model
obtains faster operational efficiency with the same accuracy.

In brief, this paper introduces a novel multi-modal framework designed for the classification
of multi-modal data within the crisis domain. The contributions of this study include:

1. Proposes a multilevel feature representation of text using a pre-trained model, which can
achieve higher accuracy than using the final output layer of the model with less sample fine-
tuning.

2. A lightweight low-rank fusion method is presented in this work, considering both the
unimodal specificity information and the symmetric intrinsic information association within
the multi-modal structure. The optimization of this method aims to achieve a balance between
accuracy and speed.



2 Related Work

Social media has been widely recognized as one of the most relevant and diverse resources,
with numerous applications in identifying emergency health hazards[10], screening and
detecting natural disasters[11-13], or depicting instances of violence and aggression in social
media[ 14]. Previous studies of social media for detecting crisis events have focused on mostly
text-based messages. For example, Shekhar et al.[15] formulated a crisis analysis system
aimed at evaluating the extent of damage to assets and the degree of suffering experienced by
victims. Sitaula et al.[16] proposed an end-to-end model integrating three feature extraction
methods to analyse people’s emotions during the COVID-19 epidemic.

The use of images for disaster detection has been an active frontier, both for user contributed
content and satellite imagery (for a survey, see Said et al.[11]). For example, Li et al.[17]
applied visualization methods and convolutional neural networks to identify and assess
damage in images related to disasters. Nalluru et al.[18] integrated textual semantics and
image features to classify social media tweets.

A deep multi-modal learning framework can be employed to consolidate complementary
information derived from various modalities of the same phenomenon. Nevertheless, there is a
relatively limited availability of multi-modal learning frameworks in the crisis domain.
Currently, there are relatively few crisis datasets available, and one of the only multimodal
crisis datasets, CrisisMMDJ[9], also exhibits a small sample size. This problem leads to a
simple early[19] or late fusion[20] approach that may inhibit inter-modal interactions and thus
lose the unique context and time dependence of each modality, making it difficult to train
multi-modal models with strong and efficient generalization capabilities. For example, [22]
introduced a tensor fusion network that calculates the outer product between single-peaked
representations of three distinct modalities to derive a tensor representation. These methods
use tensor representation to model multi-modal interactions and have achieved significant
results. However, the computational complexity of this approach grows exponentially. [23]
suggested a generalized low-rank multimodal approach based on the low-rank tensor
approximation method, which incorporates significantly fewer model parameters and
computational complexity compared to the tensor fusion method.

Based on the current crisis dataset and research status, the multilevel feature low-rank fusion
framework introduced in this research optimizes the problems of poor generalization ability
and high computational complexity of efficient models for small datasets. The specifics of the
model are elaborated in the subsequent section.



3  Methodology
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Figure 1: Overall framework of MLLMF.

The architecture proposed in this study is tailored for classification problems that involve
inputting image-text pairs, such as user-generated tweets on social media, as illustrated in
Figure 1, Here, the DenseNet and BERT graphs are sourced from [24] and [25], respectively.
The method comprises four components: the initial two parts extract feature mappings from
images and multilevel embedding representations from text, respectively; the third part
reinforces text and image features through GAU[26] gated attention units, respectively; the
fourth part includes a low-rank fusion of image features and text embedding. Each module
will be described in later subsections.

3.1 Image Model for Feature Map Extraction

For images, they are data augmented and used as input, and feature mapping is extracted from
the images using convolutional neural networks (CNNs). DenseNet[24] was chosen for this
model, as it diminishes the size of the modules and amplifies the connections between layers.
This choice is made to tackle parameter redundancy and enhance accuracy.

Thus, for each image v; :

f, = DenseNet(v,), (1)

D/
Here, Vi represents the i-th input image, f R is the vectorized form of the depth feature
map in DenseNet, and the dimension p ,=WxHxC, where W, H, and C represent the

height, width, and number of channels of the feature map, respectively.
3.2 Embedding Extracted Text Model

Considering the few-sample feature of the crisis dataset, the full utilization of features can
make the model have a stronger discriminative basis to improve the generalization ability and
robustness of the model.. Several studies[16] have shown that multiple embeddings can
improve the characterization of text data and achieve higher accuracy. Inspired by this idea,



the multiple hidden layers of BERT model becomes a breakthrough point. The BERT model
consists of a 12-layer coding network with a hidden state (hidden) size of 768 for each layer.
Where different hidden layers encode different linguistic hierarchical information[27]: the
bottom layer network produces surface information features, the middle layer network
generates syntactic information features, and the higher layer network yields semantic
information features. For this purpose, the classification effects of different levels of features
and the joint discriminations of multi-level features are experimented separately.

This paper uses monolingual models (BERT-BASE) as the core model for extracting
embeddings from text. And the BERT model is used to pre-train the crisis-related tweet data

from Wiki and Books. For each text input ‘

1
e, = BERT(t,), )
Here, f; represents the i-th sequence of word-piece tokens and , _ p 7s5¢ is the sentence

embedding. Following the approach outlined in the BERT paper [8], this study utilizes the
embedding associated with[CLS] represent the entire sentence.

Detailed descriptions of the additional improvements made to the features extracted from
DenseNet and BERT are provided in the subsequent section.

3.3 Gated Attention Unit (GAU) Intra-modal Feature Enhancement

Different modalities have different feature forms, and the feature fusion process is prone to the
loss of single-peak information. Transformer[28] is a powerful sequence model that has
achieved great success in feature extraction and enhancement - whether text, image or sound.
However, its time and memory requirements grow second order with sequence length. For this
reason, the Gated Attention Unit (GAU) introduces a gating mechanism to reduce the burden
of self-attentiveness in the transformer. It combines the Gated Linear Unit (GLU) and the
attention mechanism. The relevant layers are first introduced:

Vanilla MLP. Let X e R™“ be the representation on the T marker. The output of the
transformer MLP can be expressed as () _ HXW W ,where jy _ paxe and py o R xe.

In this context, d represents the model size, ¢ denotes the extended intermediate size, and ¢ is
the element activation function.

Gated Linear Unit (GLU) is an enhanced Multi-Layer Perceptron (MLP) incorporating gating
mechanisms [29]. The effectiveness of GLU has been demonstrated in various scenarios, and
it is widely employed in state-of-the-art Transformer language models.

U=p,(XW,), V=p,(XW,)eR"™, 3)
O=UoOVW, eR™, @)

In GLU, the original input vector X is assigned different weight matrices Wu and Wv as
shown in Equation 3. In Equation 4, ® denotes element multiplication.

The Gated Attention Unit (GAU) is conceptualized to merge attention and GLU into a unified
layer, aiming to maximize the sharing of computations between them. This approach not only



enhances parameter and computational efficiency but also inherently incorporates a potent
attention-gating mechanism. Specifically, GAU generalizes Equation 4 in GLU as follows:

oO=UooVW,: ®)
where ' 4 and 4 e R™’ contains token-token attention weights. In contrast to GLU,
which consistently employs v; to select the pass u;, GAU substitutes v; with a potentially
linked attentional representation v;:z/ 4, this representation is retrieved from all available

tokens to obtain a more relevant and contextually informed representation.

The presence of gating allows the use of simpler/weaker attention mechanisms than MHSA
without loss of quality.

Z=p.(XW,)eR™, ©)
A=ReLU*(Q(2)K(Z)" +b) e R™, 7

In this expression, Z represents the shared representation, Q and K are two inexpensive
transformations that apply to each dim scalar and the offset of Z, and b is the relative position
deviation. The attention weights A are obtained by activating the transformed matrix.

GAU not only has the parallel computational features of GLU to speed up the model
efficiency but also preserves the interaction between different features within the modality,
capturing the importance of different locations in the text and features of different regions in
the image. Each GAU layer has fewer parameters compared to the Transformer layer. More
importantly, its quality is less dependent on attentional accuracy and is comparable to
Transformer's performance.

3.4 Low-rank Fusion multi-modal Features

LMF is a tensor fusion method that models single-peak and two-peak interactions without
using expensive Cartesian products[22]. Instead, the method uses single-peak features and
weights to directly approximate the complete multi-tensor outer product operation. Tensor
fusion takes into account the problem of structural asymmetry and semantic irrelevance
between heterogeneous data. The elements of different modal feature representations are
multiplied two by two to eliminate the unbalanced distribution of different modalities and
obtain symmetric fusion features. This low-rank matrix decomposition operation can easily be
extended to problems with very large interaction spaces (feature spaces or number of modes).
In this paper, we use the approach described in[23]. Unlike its work, the model uses 3-layer
GAU to augment individual mode-specific information and use it for mode-specific fusion,
achieving model efficiency gains at a much smaller scale. Figure 1 depicts the improved LMF
method, similar to the illustration in[23].

zZ, z, z, 2,0z
Z = ® = , (8)
1 1 1 z,
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Equation 8 shows how to add 1s to the single-peak tensor sequence before taking the outer
product to equivalently capture the tensor representation of single-peak and multi-peak
interactions, and the compressed representation (h) in Equation 9 is calculated using a low-
rank mode-specific factor Wm and a batch Zm matrix multiplication of the additional modal
representations. The product of all low-rank products is further multiplied to obtain the fusion
vector.

4 Experimental Setup

4.1 Dateset

Crisis datasets are notably scarce, with the CrisisMMD [9] standing as the sole multi-modal
crisis dataset currently available. This dataset comprises annotated image-text pairs extracted
from tweets, where images and texts are labeled independently. The dataset was collected
using event-specific keywords and hashtags during seven natural disasters in 2017, namely,
hurricane Irma, hurricane Harvey, hurricane Maria, Mexico earthquake, California wildfires,
Irag-Iran earthquake, and Sri Lanka floods. The annotations in the corpus encompass two

types:

Task 1: Informational or Non-informational: Given a tweet text or image, whether it contains
information useful for humanitarian assistance.

Task 2: When presented with an image or tweet, the task is to classify it into one of the
following five categories:

*Damage to infrastructure and utilities

*Vehicle damage

*Rescue, volunteer or donation efforts

*Affected individuals (injured, killed, missing, found, etc.)
*Other relevant information

Task 3: Damage severity: The evaluation involves assessing and categorizing the severity of
damage depicted in the tweeted images as severe, minor, or minor/none.

Note that the annotation of the last task is only on the images. In this paper, we perform task 1
and task 2 (text-only, image-only and combined) on this dataset.



4.2 Settings

The tweet images and texts in the CrisisMMD dataset are independently tagged. Consequently,
there are cases where images and texts in the same pair may correspond to different tags for
Task 1 or Task 2. To ensure a comprehensive evaluation and offer practical insights, three
evaluation settings were conducted, following the approach outlined in [30]:

Setting A: Only image-text pairs with consistent image and text labels are selected. The data
from all seven crisis events were mixed, and the dataset was split into a training set, a
validation set, and a test set.

Setting B: Image-text pairs with different labels are included in the training set, while the test
set remains the same as in Setting A.

Setting C: This setting simulates a realistic crisis tweet classification task, where the model is
trained only on events that occurred before the events in the test set. This approach closely
resembles a practical scenario where a model trained on previously occurring crisis events is
used to analyze a new crisis event.

Table 1 displays the number of samples per group for different settings and tasks.

Table 1: The quantity of samples in each of our settings' splits.

Setting f# of Training # of Dev samples # of Test samples
samples
Setting A
Taskl: 7849 546 2798
Task2: 1346 534 1462
Setting B
Taskl: 12647 546 2898
Task2: 5427 534 1462
Setting C
Experiment 1: 173 - 215
Experiment 2: 4031 - 215
Experiment 3: 4756 - 215

4.3 Baselines

This study contrasts this strategy with a number of cutting-edge techniques for text and/or
picture categorization. Experiments compare it to the most widely used image and text single-
peak classification networks, DenseNet and BERT, respectively, in the first category. In this
research, we fine-tune the pre-trained DenseNet and BERT models from Wikipedia using the
training data.

Several recently suggested multi-modal fusion approaches for classification are included in the
second class of baseline methods:

- Compact Bilinear Pooling[21]: Initially developed for visual quizzing problems, the multi-
modal compact bilinear pool is a fusion approach that may be readily adapted to carry out
common classification tasks.



- Compact Bilinear Gated Pooling[31]: This fusion method represents a modification of the
compact bilinear pooling approach, incorporating additional attention-gates into the compact
bilinear pooling module.

- MMBT([32]: A supervised multi-modal bi-directional converter model for text and picture
classification has been suggested lately.

- TFN[22]: A large multidimensional tensor fusion network based on sentiment analysis
proposed for fusion across different modalities.

- SSE-Cross-BERT-DenseNet[30]: uses a multi-modal graph-based technique to create fresh
matching pairs from various samples in order to deal with a limited amount of training data.

DenseNet and BERT networks for feature fusion, together with score level fusion and late
feature fusion, comprise the third category. Of all the fusion procedures, score-level fusion is
the most often used. It takes the average of separate networks' predictions that were trained on
various modalities. One of the best techniques for combining two modalities is feature
fusion[33]. In order to forecast common outputs, it links the deep layers of modal networks.

The MLLMF model proposed in this paper is compared with the baseline model described
above.

4.4 Training Details

Text and image backbone networks, respectively, are pre-trained DenseNet and BERT, which
are refined with text-only and picture-only training data. Implementation details are available
in [24] and [6], correspondingly. All layers for the two backbone networks are trained by the
framework, which does not freeze the pre-learned weights. For the text, the input layer is

assumed to be hO , the twelve encoder layers are A, h,,h;,..., B, . In this study, we evaluate

the classification effectiveness by choosing different hidden layer features for crosstalk based
on the informativeness task under setting A, as discussed in Section 4.2. The experiments
confirm the effectiveness of our proposed combination of surface information features,
syntactic information features, and semantic information features. The experimental results are
presented in Table 2.

It is experimentally demonstrated that the best Accuracy values are obtained using the joint
features of the bottom, middle and top layers concatenating. Therefore, in this paper, the
output of BERT’s Ist, 5th, 9th and 12th hidden layers are concatenated as the embedded
representation of the text.

The standard SGD optimizer is used in this paper. We start with a base learning rate of 2 X
10-3 and reduce it by a factor of 10 when the validation loss saturates. The batch size is 32.

Table 2: Task evaluation of features of different coding layers

Feature Notation F1 score
Embeddings h0 74.62
Second to last hidden hll 78.57
Last hidden h12 80.67
Concat last four hidden h9 to h12 80.83
Skip extraction four hidden h1,h5,h9,h12 81.16

Concat all 12 hidden hl to h12 80.69




In all applicable experiments, We all use the validation set to select the best hyperparameters
using the cross-validation method.

For experiments without validation sets at setting C in section 4.2, the experiments adjust the
hyperparameters on 15% of the training samples.

The subsequent image data expansion is carried out in this paper during the training stage.
After resizing the image to achieve a minimum edge of 228 pixels, 224 x 224 face slices are
randomly used for cropping. Furthermore, by rotating the created pictures horizontally at
random, this study produces additional images.

5 Experimental Results

5.1 Setting A: Leave Out Training Pairs with Contradictory Labels

In this instance, it is examined if annotated inconsistent text and photos are utilized as labeled
data to see if the current model performs better. Keep in mind that compared to the prior
configuration, this requires training with noisier data. Figure 2 shows that the MLLMF
framework suggested in this study performs better than the best results of setting A in the
humanitarian classification test (92.67 to 91.94) and the informative task (89.61 to 89.36
weighted F1). When compared to other multi-modal fusion frameworks, this technique still
produces good results.
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Figure 2: Setting A: Task Evaluations for Humanitarian Categorization and Informativeness.

The MLLMF model uses a lighter GAU module than the transformer to replace the LSTM
module in the original LMF method, improving accuracy while reducing model size. The
module used is faster, has a lower memory footprint, and is more effective than other models
with comparable accuracy. Consistent speedups can be observed using this method of training
with the same infrastructure and resources. The average time (in seconds) per batch measured
at a fixed batch size compared to models such as the compact bilinear pool[21], compact
bilinear gated pool[31], and TFN[22] with comparable accuracy under setup A is shown in
Table 3, while Table 4 shows that the model uses a smaller number of trainable parameters.



An notable finding in both jobs is that, after the GAU module is applied, the macro F1 scores
significantly increase, even while the accuracy percent ages are appropriate for basic feature
fusion approaches.

Table 3: Average Time/Epoch (sec)

Model Informativeness Task ~ Humanitarian Categorization Task
Compact Bilinear Pooling[21] 74.86 75.32
Compact Bilinear Gated
ppoohngB 1 80.64 81.57
TFN[22] 88.46 90.42
SSE-Cross-Bert-DenseNet[30] 64.35 68.74
MLLMF 47.36 47.84

Table 4: Number of Model Parameters

. Humanitarian Categorization
Model Informativeness Task u tart gonz

Task
Compact Bilinear Pooling[21] 6487458 6756485
Compact Blllnear Gated 6842547 6915486
Pooling[31]

TFN[22] 7438687 7635733

SSE-Cross-Bert-DenseNet[30] 5732945 5876542

MLLMF 3565485 3626573

5.2 Setting B: Incorporate Training Pairs with Varying Labels
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Figure 3: Setting B: Task Evaluations for Humanitarian Categorization and Informativeness.

In this case, it is investigated whether the present model performs better if labeled inconsistent
images and text are used as labeled data. In Figure 3, the MLLMF framework proposed in this
paper outperforms the best results of setting A for both the informative task and the
humanitarian classification task. This method still achieves good results compared with other
multi-modal fusion frameworks.



5.3 Setting C: Temporal

The purpose of this arrangement is to replicate a real-world situation, where the data used
have the appearance of being solely historical (training/testing sets are arranged
chronologically according to the real-world occurrence dates). Moreover, the data used for
testing and training are not related to the same problem. As Figure 4 illustrates, the results
show that the model suggested in this study regularly performs better than alternative multi-
modal fusion frameworks.

Despite the fact that there is no assurance that the crises for which data are gathered would be
comparable to other crises in the future, the findings highlight the need of gathering and
classifying more crisis data. Floods, hurricanes, and earthquakes were among the training
crises in the trial; however, the test crisis was limited to recognizing wildfires.
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Figure 4: contrasting the Humanitarian Categorization Task baselines in Setting C with our suggested
approach. We change the training data, which is listed in the columns, and correct the most recent
catastrophe, which is the "California wildfires," as test data.

5.4 Ablation Study

In the ablation study, separate experiments were conducted for each component of the model
illustrated in Figure 1. These components include textual multi-layer features, gated attention
units (GAU), and low-rank fusion strategies. All experiments in this section were carried out
under Setting A. The results in Table 5 reveal the significance of the GAU module, as the
accuracy decreases from 91.21 to 89.42 when the GAU is eliminated. second, the choice to
use multilevel embedding of text is justified: it can be seen experimentally that the accuracy



drops to about 88 using the BERT final layer output replacing the multilevel feature joint
representation. Third, by replacing the low rank-fusion of multi-modal representations with
feature fusion[33] performance will drop significantly from 91.21 to 84.51. in terms of F1
scores, the macro F1 is reduced to 52.38 and the weighted F1 score is reduced to 82.56.

Table 5: Ablation Analysis of the Humanitarian Categorization Task in Setting A Using Our Suggested

Method.
Test Set
Model Accuracy Macro F1 Weighted F1
MLLMF(Ours) 91.21 68.73 91.94
-Multi-layers features of text 88.26 55.76 86.54
-GAU 89.42 56.37 87.79
- LMF 84.51 52.38 82.56

6 Conclusion and Future Work

A novel multi-modal framework for combining text and visual inputs is presented in this
research. The method introduces a new multi-level feature union module, which makes full
use of features at different levels in the text as a basis for discrimination, enabling significant
improvement in the effectiveness of the classification task even on small samples.

The framework also introduces strategies for joint gated attention units (GAUs) and low-rank
fusion, emphasizing both intra-modal semantics and inter-modal associations of multimodal
data. The effectiveness of this approach is assessed in two crisis tasks involving social media
posts with images and textual captions. Experimental results demonstrate that the method not
only surpasses mainstream multimodal combination approaches but also attains notable
advantages in terms of model parameters and training speed. These advantages are crucial for
the urgency of crisis detection tasks.

Although the present model achieves better results in terms of balancing accuracy and
efficiency, however, the improvement in terms of accuracy is limited compared with the state-
of-the-art model, on the one hand, because of the limitations of image and text feature
extraction methods, improving them is expected to better obtain advanced feature
representation of unimodal data, on the other hand, the heterogeneity of different modalities
leads to the problem of modal imbalance, and subsequent work will investigate a resource
balanced multimodal data classification method, which is an important work. Additionally,
testing and expanding the approach to additional multimodal issues like sarcasm recognition
in social media postings are planned for future study.
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