
Design of Event Management System for Space Big

Data Secure Transmission Message Middleware Based

on G/S mode

Yuanhong Zhang1,a, Min Zhang2,b,*

a873158916@qq.com,*Corresponding author :b362631406@qq.com

1School of Computer Engineering, Chengdu Technological University, Chengdu 611730, China

2School of Network and Communication Engineering, Chengdu Technological University, Chengdu

611730, China

Abstract. With the continuous expansion of the scope of spatial information

applications, the G/S model has achieved a new leap in network access to spatial

information from the current C/S and B/S structures. As an important part of

communication between G and S ends in G/S mode, message middleware plays a

particularly important role in ensuring the security of spatial data transmission. This

paper proposes a message middleware system in G/S mode, which ensures the security of

spatial data transmission and effectively ensures the network efficiency of the entire G/S

mode spatial data security middleware system. One important component of Messaging-

Oriented Middleware is the Event Management Subsystem (EMS). The thesis ends with

the discussion on the designing and implementing of the Event Management Subsystem

of Messaging-Oriented Middleware.

Keywords: Message-Oriented Middleware; Event; Spatial Data; Global State

1. INTRODUCTION

In 2004, an article titled "Mapping Opportunities" [3]in the American journal Nature identified

Geotechnology, biotechnology, and nanotechnology as the three cutting-edge sciences of the

21st century. Due to the advent of the Neogeography era, more people are learning to use

spatial and geographical thinking to serve themselves. With the application of Global

Positioning System (GNSS), various professional geographic information platforms, digital

cities, and digital earth construction, the demand for spatial data is becoming increasingly

strong. The G/S mode is a spatial data exchange standard based on the new hypergraphic (or

hypergeographic) markup language HGML (Hypergraphic Markup Language or Hyper

Geographic Markup Language), where G is the spatial information browser and S is the spatial

information server. Middleware is the core of future cloud services [2], located between

application software and operating systems, at the lower level of application software, above

spatial databases, networks, and operating systems. It is mainly used to help users efficiently

and flexibly integrate and develop complex application software[5]. Due to the extremely

complex nature of spatial data, coupled with the large number and dynamic changes of users

and resources in the system environment, new challenges and opportunities for spatial data

security have emerged. Integrating middleware technology with the new G/S model to achieve

PMBDA 2023, December 15-17, Nanjing, People's Republic of China
Copyright © 2024 EAI
DOI 10.4108/eai.15-12-2023.2345421

mailto:873158916@qq.com

multi-level security such as system connections, application programs, and message encryption

and decryption[7], and researching the security mechanism of spatial data transmission in its

architecture system, providing theoretical basis and application models for exploring and

establishing the availability of a service-oriented popular spatial information service application

platform in the new geographic information era[6].

The main task of Message-Oriented Middleware in event management is to monitor the status

of the entire system, and when the state change notification system or application. Message-

Oriented Middleware event management subsystem to complete the following two main

functions:

Event generation and notification.

System status monitoring and the establishment of a global state.

The Event Management Subsystem of Messaging-Oriented Middleware implementation

usually with reference to (but not strictly follow) the SUN's distributed event specification[1],

the following is a detailed discussion to the Event Management Subsystem of Messaging-

Oriented Middleware to achieve.

2. MESSAGE-ORIENTED MIDDLEWARE EMS DESIGN AND

IMPLEMENTATION

Because the Message-Oriented Middleware can not follow uniform standards for the design

and implementation of Message-Oriented Middleware with different middleware providers

will be different. Similarly, in the realization of Message-Oriented Middleware event

management subsystem not to follow the course of the design and implementation

specifications; But the design and implementation of Message-Oriented Middleware event

management subsystem in the light of the distributed event specification, Java Message

Service specification subscription publishing model; In addition, Message-Oriented

Middleware event management subsystem also refer GSRA algorithm for global state of the

records, systems and applications that need to be logged in to use this global state.

2.1 Message-Oriented Middleware EMS Workflow

Message-Oriented Middleware EMS workflow shown in Figure 1:

Figure 1. Workflow messaging middleware EMS

Seen from the figure, EMS to be responsible for the completion of the function:

• Receive Subscribe to local event.

• Receive local event producers publish events.

• Receive remote EMS notification.

• Storage of events (such as dead-letter event, etc.).

• The local application event notification.

• Forward event notifications to the remote application (via remote EMS).

EMS this structure shows that it implements the so-called distributed event specification in

third-party object function[8].EMS through the development of the same event-related strategies

to achieve the filtering of the event; In addition, it uses the concept of the event queue, it has a

storage function of the incident (but such storage is limited), so the EMS to achieve a

distributed event specification storage - transmitting agent, the event filter, Event-mail and

other third-party objects need to implement the function.

However, despite the Message-Oriented Middleware EMS reference to distributed event

specification, it is not fully to achieve in accordance with specifications distributed events, and

should not be distributed event specification from the point of view to discuss Message-

Oriented Middleware EMS functionality.

2.2 Message-Oriented Middleware EMS Module Structure and Realization

Here is the Message-Oriented Middleware EMS framework for the entire module structure, and

discuss its concrete realization. Message-Oriented Middleware EMS have achieved on the Win

NT/9x/2000 and UNIX; Because different operating systems, Message-Oriented Middleware

EMS to achieve different operating systems use different methods and techniques. These

technical details do not do a detailed discussion.

Message-Oriented Middleware EMS module structure as shown in Figure 2:

Figure 2. Schematic diagram of messaging middleware EMS module

Message-Oriented Middleware EMS event producers are divided into two categories:

Core Program: Message-Oriented Middleware system itself

Applications: other programs built on top of Message-Oriented Middleware

In order to distinguish between the different time producer, Message-Oriented Middleware

EMS achieve description of the event producer by producer object.

Similarly, Message-Oriented Middleware, a structure used to describe the event subscribers; In

order to achieve subscribe / publish model, in addition to the structure that contains the

subscriber's own information, but also includes how to notify the subscriber and other

information.

System maintains a subscriber table and a producer table, subscriber table is the role of record

of the event to subscribe subscriber information; EMS that there are two Subscribers: local

subscribers and remote subscribers, in terms of local subscribers, EMS allows the subscription

are: notification mode (push) and access mode (pull).Notice mode of subscribers, it will provide

its subscription event notification means (such as the WINDOWS, this may be a message ID

and window handle, to the UNIX case may be a pipe or a message queue identification).

To understand these objects, you must first understand the event subscription process and the

publishing process of applications program based on Message-Oriented Middleware EMS. The

following Figure 3 shows the outline of the subscription process:

Figure 3. EMS event subscription model of messaging middleware

Application program procedures subscription request, it passed to the EMS core information

includes: event name, subscription mode, their related information (including notification mode,

if it is, then the notification mode).

EMS core received subscription request, it needs to check the event table to ensure that

applications program to subscribe to the existence of such an event (event table is different

from the event list, the former is used to mark the current system can provide the types of

events, the latter The system has been received for the event); If the event does not exist, EMS

will return failure.

EMS confirmed the event exists, but also check whether the application of some of the events

strategy; If the event there is some strategy (such as allowing only certain features of the

application program to subscribe to the event, with event-related strategy is identified when the

event publisher to register an event), it needs to be checked for subscribers to ensure that

subscribers to meet these strategies, otherwise it returns failure. Through inspection, EMS core

will create a subscriber entry, initialize it to the application program information provided, and

then return success.

The above discussion, a situation not considered: only if the application subscription is a remote

event. On the remote event subscription processing is the core of the local EMS as applied

agency to request to the remote core EMS, the remote event receives a request, it will repeat the

above steps, then register a subscriber to the subscriber table of local EMS items, the final result

will return to the local EMS. The whole process may time out, the local EMS will be

responsible for dealing with this time-out, and return an error to the subscriber.

Associated with the subscription process is event publishing process, the following Figure 4

summarizes the Message-Oriented Middleware EMS event publishing process:

Figure 4. Message middleware EMS event model release

It can be seen from the figure, application program publishing events, the local Message-

Oriented Middleware EMS first request; EMS receives event requests issued to the application,

the first checks the event table and producer table to ensure effective release of the event; If the

events related to strategies, which means that EMS also certify for released the event of an

application program to ensure that it meets the events related to strategies.

EMS will then query the subscriber table by the event table; Subscriber table can find out

information of application program such subscription events in the current; EMS use it to

subscribe to the events of local or remote application notice; Between Event table and

subscriber table relationships can be broadly described as: Each event table entries (on behalf of

a class of events) has a pointer to subscribe to the list of subscribers to the event; For each type

of event has a subscriber list, EMS informed through this list of those applications to subscribe

to the current events.

If the EMS find a subscriber that it hopes to "View by" subscription event, the EMS will apply

in the event list, a table entry into the event list, based on information provided by the

subscriber or the system specified The default is to specify a life cycle event. When the list of

events in the event life cycle or the reference count to 0, this event will be removed from the list

of events by EMS.

On a remote subscriber, the local EMS will report directly to the EMS where remote

subscribers to be, the remote EMS notification by the remote subscribers.

Since the Message-Oriented Middleware EMS allows application-defined events, Message-

Oriented Middleware EMS need to provide a mechanism to allow the application of registered

events and logoff events. This process is similar to the WINDOWS user information

registration process; Application by calling xxmidRegisterEvent () API request for registration,

the EMS core is responsible for automatically assign a type number for new registration event

(event type); Then the application can use this type number or the name of the event (provided

in the registration event) for event publication and subscription.

Exists in the Message-Oriented Middleware EMS is an important question: how an application

to know whether certain types of events are registered? Or how an application to obtain a

certain type-related events information? The current Message-Oriented Middleware system can

not finish a global notification be when an application registered event; In order to ensure the

event type and name uniqueness, Message-Oriented Middleware EMS, requires users to

register the event to ensure that such events (consistent with the user-specified name of the

event) does not exist; This Message-Oriented Middleware EMS provides xxmidQueryEvent ()

API, the API requires name of the event, EMS will be based on the name to query for the entire

system to obtain event-related information.

In addition, in order to ensure the uniqueness of the event type number, Message-Oriented

Middleware EMS in the startup to the higher (Message-Oriented Middleware used in a tree

structure) request the regional distribution of an event type, event type regional area can be free

to use by this node Message-Oriented Middleware EMS;A parent node Message-Oriented

Middleware EMS must ensure that this area should be divided not repeatedly.

Current,Message-Oriented Middleware EMS have not yet to find a satisfactory solution; EMS

on a node may returns an error when the application register the event, because the node can

use the event type ID is limited (although there may be many event type ID has not been used).

Cancellation of the event is a reverse process. After the event is canceled, EMS will attempt to

notify all application of subscribers the event, and then remove the same type of event-related

resources. As the Message-Oriented Middleware EMS for event management, there are still

these shortcomings, it is expected in future versions might consider using a distributed database

to resolve use of the event type ID and event name.

2.3 EMS GSRA Algorithm

Message-Oriented Middleware EMS using GSRA Algorithm to collect the global state of the

process represented briefly by the following Figure 5:

Figure 5. GSRA the process of collecting global state of sponsors

As the initiator of GSRA algorithm, in addition to run the code collection global status, it also

needs to respond like other GSRA algorithms, record the status of their own nodes and

connected to channel (figure dashed line);This recording process as shown Figure 6:

To point out that, despite the Message-Oriented Middleware EMS achieve GSRA algorithm,

but its not currently being used; Main purpose using GSRA Algorithm is to support transaction

processing may occur in the rollback operation.

Figure 6. GSRA response to those processes (the node state record)

3. ANALYSIS OF TEST RESULTS

In order to study the feasibility and effectiveness of this technology, experiments were first

conducted on Linux system servers. This server is composed of six IBM rack mounted servers.

Firstly, when there is data input, event management is triggered, and the system prompts to

generate public and private keys, as shown in Figure 7. Then check if the server generates

public and private keys, as shown in Figure 8 and Figure 9.

According to the experiment, it can be concluded that the event management system of the

message middleware system is completely feasible.

Figure 7. Generate public and private keys

Figure 8. Generate public keys

Figure 9. Generate private keys

4.CONCLUSION

Message-Oriented Middleware in distributed processing play an increasingly important role and

in internet technology is currently a hot research[4].Development efficient, safe, reliable

Message-Oriented Middleware suited to China's national conditions for the construction of

China's information technology development is very important.Currently a number of

middleware products have been widely applied to public security bureau, telecommunications,

banking, securities and other important national sectors and industries.Some Message-Oriented

Middleware products used in a number of technical and performance achieved or even

exceeded, such as catch up with IBM, BEA and other companies of similar products.

Acknowledgment: First of all thanks to my mentor, Professor Miao Fang put the careful

attention and guidance.Teacher Miao showing the teacher's rigorous scholarship and depth of

expertise that I will never forget.Second, I want to thank the students living in and around my

friends, they are my classmates Rui Liu, Ye Cheng-ming, they give me a lot of help, give me a

great deal of relevant information and data.Finally, I would like to thank Beijing TongTech,

they provided to me the papers design environment.

REFERENCES

[1] S. Cejka, A. Frischenschlager, M. Faschang, M. Stefan, and K. Diwold, " Operation of

modular smart grid applications interacting through a distributed middleware,” Open Journal of Big

Data, vol. 4, no. 1, pp. 14-29, Jan. 2018.

[2] Chen Bingxing, Qiu Baozhi. Construction technologyofclustermessage-

orientedmiddleware[J].ApplicationResearchofComputers, 2012(05):36- 38.

[3] Guo Xirong. Research on Digital Tourism Engineering and Evaluation Technology Based on

G/S Model [D]. Chengdu: Chengdu University of Technology, 2002.

[4] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, " Middleware for Internet of

things: A survey,” IEEE Internet of Things Journal, vol. 3, no. 1, pp. 70-95, Feb. 2016.

[5] Zhang Yunyong, Zhang Zhijiang, Liu Jinde, et al. Principles and Applications of Middleware

Technology [M] Beijing: Tsinghua University Press, 2004.

[6] Jammalamadaka R C , Gamboni R , Mehrotra S ,et al.A middleware approach for building

secure network drives over untrusted internet data storage[J]. 2022.

[7] Hu Bin, Lin Zongkai, Guo Yuchai, et al. Design and Implementation of Multi Layer

Architecture Middleware (Edb Client, EdbServer) [J] Computer Research and Development, 1998

(10): 870-872.

[8] S. Cejka, A. Frischenschlager, M. Faschang, and M. Stefan, " Security concepts in a distributed

middleware for smart grid applications,” in Proc. of the Symposium on Innovative Smart Grid

Cybersecurity Solutions, Vienna, 2017, pp. 104-108.

