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Abstract: With the nationwide proliferation of carbon markets, the scarcity of carbon 
emissions allowances has become comparable to other commodities in traditional 
markets, endowing them with unique market value. Carbon prices play a central role in 
carbon market mechanisms, reflecting the outcomes of market competition and shaping 
government policies related to carbon emissions allocation. Consequently, the accurate 
prediction of carbon prices is essential for businesses to comprehend fluctuations in 
carbon prices, efficiently manage carbon emissions, and provide a sound foundation for 
trading decisions. In this study, we address data uncertainty by developing a probability 
density recurrent network. We investigate the intricate interrelationships and evolving 
patterns among data points using probability density distribution functions in time series 
data, enabling the creation of a prediction model to anticipate future data points. Multiple 
evaluation criteria corroborate the precision and effectiveness of the methodology 
employed in this research. 
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1. Introduction 

Establishing a nationwide carbon market has conferred upon carbon emission allowances a 
scarcity akin to other market commodities, thus endowing them with unique market value. 
Henceforth, the pivotal significance of carbon prices unfolds within the mechanisms of the 
carbon market. They not only mirror the outcomes of market competition but also act as a 
directive signal guiding the allocation of government carbon emissions. Understanding the 
dynamics of carbon prices, their driving factors, and precise forecasting are paramount, as 
they directly influence carbon price predictions. Accurate carbon price forecasting aids carbon 
reduction enterprises in gaining a thorough comprehension of and managing the patterns of 
carbon price fluctuations, effectively handling the associated revenue and risks, and providing 
a scientific basis for trading decisions. 

In the past, carbon price research predominantly relied on univariate and multivariate linear 
models, but these approaches proved flawed. For instance, Daskalakis et al. observed that spot 
prices of carbon emission allowances in the European Union Emissions Trading Scheme (EU 
ETS) exhibited a random walk pattern, which could be captured through jump-diffusion 
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models[1]. Paolella and Taschini found that EU carbon allowance prices could be effectively 
modeled by a generalized asymmetric t-distribution GARCH model[2]. Seifert et al. noted 
time-dependent volatility structures in EU carbon prices[3], and Benz and Trück replicated the 
nonlinear dynamics of EU carbon prices through Markov switching models[4]. In general, 
carbon prices exhibit nonlinearity, instability, leverage effects, asymmetry, and regional 
heterogeneity, influenced by factors like trading systems, environmental heterogeneity, and 
related policies, resulting in nonlinear, nonstationary, and multi-frequency characteristics in 
regional carbon emission trading prices[5–7]. 

Various methods have been employed in carbon price forecasting, with earlier research relying 
on qualitative analysis. Current research utilizes more sophisticated approaches, mainly 
categorized into three major classes: statistical and econometric methods, artificial intelligence 
methods, and hybrid forecasting methods. For instance, Chevallier utilized non-parametric 
techniques in carbon price forecasting, achieving a nearly 15% reduction in prediction errors 
compared to conventional linear autoregressive models[8]. Byun and Cho conducted an 
analysis using data from the European Futures Exchange and determined that, in specific 
scenarios, GJR-GARCH models outperformed TGARCH and GARCH models[9]. Koop and 
Tole applied dynamic model averaging in their endeavor to predict carbon prices, introducing 
three distinct advantages compared to conventional approaches. Initially, it facilitated the 
dynamic adjustment of coefficients for predictive variables over time. Additionally, it allowed 
for the continuous evolution of the entire forecasting model. Finally,  it overcame statistical 
issues arising from numerous potential predictive factors explaining carbon prices.[10]. 
Drawing upon EU carbon emission price data, Eugenia Sanin et al. employed ARMAX-
GARCH models, incorporating dynamic jump probabilities, to predict carbon prices. Their 
method surpassed the forecasting accuracy of standard ARMAX-GARCH models in capturing 
the intricacies of carbon price dynamics.[11]. Despite these models performing high prediction 
accuracy based on stationary data and linear assumptions, they fall short in efficiently 
handling the nonlinearity of carbon price fluctuations. 

As artificial intelligence progresses swiftly, innovative approaches have emerged to address 
the constraints inherent in statistical and econometric models. These solutions have been 
successfully introduced and applied across diverse forecasting domains, such as in the realm 
of wind energy forecasting. For example, Zhu et al. developed an adaptive multi-scale 
ensemble learning paradigm combining ensemble empirical mode decomposition (EEMD), 
particle swarm optimization, and least squares support vector machines with kernel prototype, 
significantly improving carbon price prediction accuracy compared to popular forecasting 
methods, demonstrating high accuracy in both magnitude and orientation forecasts[12]. Xu et al. 
introduced an innovative approach to predict carbon prices by leveraging time series complex 
network analysis techniques in conjunction with the extreme learning machine. By conducting 
empirical assessments with carbon emission price data across the second, third, and 
transitional stages of the EU ETS, the CPN-ELM model emerged as an effective enhancer of 
forecasting precision. This was particularly evident in its improved accuracy in predicting both 
the magnitude and directionality of carbon prices[13]. In contrast to statistical and econometric 
approaches, artificial intelligence methods demonstrate heightened predictive efficacy owing 
to their remarkable modeling prowess in capturing nonlinear shifts in carbon prices. However, 
due to inherent limitations, single models cannot consistently attain the desired performance. 



 
 
 
 

Moreover, considering the significant volatility of carbon prices, the performance of artificial 
intelligence methods is not always ideal. 

To further enhance predictive capabilities and harness diverse methodologies, hybrid 
forecasting approaches have gained prominence across various research domains and 
applications. In the realm of carbon price forecasting, modern hybrid models primarily utilize 
methods such as data decomposition, optimization algorithms, and various forecasting models.  
These models amalgamate the strengths of different methodologies to attain accurate 
predictions of carbon prices. For instance, Zhou et al. formulated a pioneering hybrid 
framework to predict carbon prices, amalgamating extreme symmetry mode decomposition, 
ELM, and grey wolf optimization techniques[7]. Zhang et al. proposed a hybrid model that 
combines complete EEMD, cointegration models, generalized autoregressive conditional 
heteroskedasticity models, GARCH, and ant colony optimization for grey neural network. 
This approach demonstrated superior performance compared to other models, as evidenced by 
data from the EU ETS[14]. Sun and Huang presented a novel hybrid model for forecasting 
carbon prices. This model integrates secondary decomposition algorithms originating from 
both empirical mode decomposition and variational mode decomposition, incorporates genetic 
algorithms and backpropagation neural networks, offering an innovative perspective on carbon 
price prediction[15]. 

2. Analysis of Carbon Market Characteristics 

The nationwide unified carbon market commenced official trading on July 16, 2021. The 
initial carbon compliance period encompassed 2,162 crucial emission units within the power 
generation sector, accounting for an annual greenhouse gas emission coverage of 
approximately 4.5 billion tons of carbon dioxide. As of September 28, 2023, the national 
carbon market has been operational for a cumulative 538 trading days, with a total traded 
volume of 254 million tons of carbon emission allowances and a cumulative transaction value 
of ¥11.903 billion. Among these, the listed agreement transactions have accumulated a traded 
volume of 41.3298 million tons and a total transaction value of ¥2.076 billion. In comparison, 
the bulk agreement transactions have reached a cumulative traded volume of 212.7623 million 
tons and a total transaction value of ¥9.827 billion. 

Concerning the total traded volume and transaction value, both exhibit an inverted "V" shaped 
trend, characterized by an initial increase followed by a decrease, as shown in Figure 1. Both 
reached their highest values in December 2021 and their lowest in September 2022. Similarly, 
the traded volume and transaction value of the listed and bulk agreements followed the same 
trends, showing a peak at the end of 2021 and a low point in August 2022. 

Regarding carbon quota price trends, the national carbon price has undergone a process of 
initial suppression followed by an upturn, gradually stabilizing. The CEA price has remained 
around ¥60 per ton. On December 31, 2021, the closing price was ¥54.22 per ton, marking a 
12.96% increase from the opening price on July 16. The first carbon compliance period 
concluded successfully, with a compliance rate of 99.5% based on the carbon compliance 
volume. Over half of the critical emission units actively participated in market trading, 
contributing to a stable increase in market transaction prices. 



 
 
 
 

   

   

(a) Monthly Total Trading Value (b) Monthly Listed Agreement Trading Value (c) Monthly Bulk Agreement Trading Value 

Figure 1. Monthly Carbon Market Trading Volume and Transaction Value. 

In national carbon trading from July 2021 to August 2023, concerning monthly carbon prices, 
there is a clear V-shaped trend, initially declining and then rising. The difference between the 
highest and lowest monthly carbon prices has gradually decreased, as illustrated in Figure 2. 
The lowest monthly price was recorded in October 2021 at ¥38.5 per ton, while the highest 
was observed in August 2023 at ¥62.6 per ton. The highest monthly price was at its lowest in 
November 2021, at ¥46 per ton, and peaked in August 2023 at ¥75 per ton. The most 
significant price gap between the highest and lowest monthly prices occurred in December 
2021, with a difference of ¥22.29 per ton. In contrast, in November 2022, the highest and 
lowest monthly prices were closest, with a difference of only ¥0.9 per ton. 

  

(a) Monthly Opening Price (b) Monthly Closing Price 

  

(c) Monthly High Price (d) Monthly Low Price 

Figure 2. Monthly Carbon Market Prices. 



 
 
 
 

3. Carbon Price Forecasting Methods 

Anticipating fluctuations in the carbon market and prices requires a thorough examination of 
data uncertainty. Initially, we estimate a series of the probability density distribution function 
(PDF) based on time-series data. Each PDF, associated with a specific time point, is treated as 
a node in the network. Following this, a Recursive Network of Probability Densities (RNPD) 
is established, utilizing the topological structure and applying link prediction theory to assess 
the similarity between nodes. This method enables a thorough exploration of the connection 
relationships and developmental trends among these nodes, facilitating the construction of 
prediction models for anticipating future nodes. 

3.1. Construction of PRDN 

Consider the observable variables 𝑥௜ and 𝑥௝ correspond to random variables 𝑋௜and 𝑋௝ at times 
𝑖  and 𝑗 , and define 𝐷௜௝ ൌ 𝑋௜ െ 𝑋௝  as the difference between variables 𝑥௜  and 𝑥௝ . The 
probability of repetitions below a threshold 𝜀 can be expressed as equation (1). 

𝑃௜௝ሺ𝜀ሻ ∶ൌ Prob൫ห𝐷௜௝ห ൑ 𝜀൯.                (1) 
This can be computed by equation (2). 

𝑃௜௝ሺ𝜀ሻ ൌ ׬ 𝜌௜
௑ሺ𝑥௜ሻ׬௫೔ିఌ

௫೔ାఌ
 𝜌௝௜௜

௑ ൫𝑥௝ ∣ 𝑥௜൯𝑑𝑥௜𝑑𝑥௝
ାஶ

ିஶ
  ൌ ׬ ׬ 𝜌௜௝

௑൫𝑥௜, 𝑥௝൯𝑑𝑥௜𝑑𝑥௝ 
௫೔ାఌ

௫೔ିఌ
ାஶ

ିஶ
 .      (2) 

where 𝜌௜௝
௑൫𝑥௜, 𝑥௝൯ represents the joint probability density. By relating the density functions to 

the distribution functions, the recursive probability 𝑃௜௝ሺ𝜀ሻ  can be interpreted as the total 
probability of 𝐷௜௝ ൌ 𝑋௜ െ 𝑋௝ within the interval ሾെ𝜀, 𝜀]. Thus, the equation can be rewritten as 
equation (3). 

𝑃௜௝ሺ𝜀ሻ ൌ Prob ൫ห𝐷௜௝ห ൑ 𝜀൯ ൌ Prob ൫𝐷௜௝ ൑ 𝜀൯ െ Prob ൫𝐷௜௝ ൑ െ𝜀൯.            (3) 
Which implies equation (4). 

𝑃௜௝ሺ𝜀ሻ ൌ 𝐹௜௝
஽ሺ𝜀ሻ െ 𝐹௜௝

஽ሺെ𝜀ሻ. (4) 

where 𝐹௜௝
஽൫𝑑௜௝൯ ∶ൌ Prob ൫ห𝐷௜௝ห ൑ 𝑑௜௝൯ , and 𝑑௜௝ ∈ ሺെ∞, ൅∞ሻ  is the cumulative distribution 

function (CDF) of 𝐷௜௝. 

The upper limit 𝑀௜௝and lower limit 𝑚௜௝ of the CDF 𝐹௜௝
஽൫𝑑௜௝൯ can be estimated by equation (5) 

൞
𝑀௜௝൫𝑑௜௝൯ ൌ min ቄinf

ఛ
𝑓௜௝൫𝜏, 𝑑௜௝൯ , 0ቅ ൅ 1

𝑚௜௝൫𝑑௜௝൯ ൌ max ൜sup
ఛ

𝑓௜௝൫𝜏, 𝑑௜௝൯ , 0ൠ
.                   (5) 

where 𝑓௜௝൫𝜏, 𝑑௜௝൯ ൌ 𝐹௜
௑ሺ𝜏ሻ െ 𝐹௝

௑൫𝜏 െ 𝑑௜௝൯. 

For all 𝐷௜௝ ൌ 𝑑௜௝ , it holds that 𝐹௜௝
஽൫𝑑௜௝൯ ∈ ൣ𝑚௜௝൫𝑑௜௝൯, 𝑀௜௝൫𝑑௜௝൯൧ ⊆ ሾ0,1ሿ . The upper bound 

𝑃௜௝
௨ሺ𝜀ሻ and lower bound 𝑃௜௝

௟ ሺ𝜀ሻ of the recursive probability 𝑃௜௝ሺ𝜀ሻ can be expressed as equation 
(6). 

ቊ
𝑃௜௝

௨ሺ𝜀ሻ ൌ min൛𝑀௜௝ሺ𝜀ሻ െ 𝑚௜௝ሺെ𝜀ሻ,1ൟ

𝑃௜௝
௟ ሺ𝜀ሻ ൌ max൛𝑚௜௝ሺ𝜀ሻ െ 𝑀௜௝ሺെ𝜀ሻ,0ൟ

.                (6) 



 
 
 
 

With the recursive threshold 𝜀 established, it is ensured that 𝑃௜௝ሺ𝜀ሻ ∈ ൣ𝑃௜௝
௟ ሺ𝜀ሻ, 𝑃௜௝

௨ሺ𝜀ሻ൧ ⊆ ሾ0,1ሿ. 
Assuming the probability 𝑃௜௝ሺ𝜀ሻ  is a random variable distributed within the interval 
ൣ𝑃௜௝

௟ ሺ𝜀ሻ, 𝑃௜௝
௨ሺ𝜀ሻ൧, its probability density is denoted as 𝜌௜௝

௉ ሺ𝑝௜௝ሻ. Consequently, the connection 
probability between sequences at times 𝑖 and 𝑗 is expressed as equation (7). 

Prob൫𝐴௜௝ ൌ 1൯ ൌ ׬ 𝜌௜௝
஺∣௉൫𝐴௜௝ ൌ 1 ∣ 𝑝௜௝൯𝜌௜௝

௉ ൫𝑝௜௝൯𝑑𝑝௜௝
௉೔ೕ

ೠ

௉೔ೕ
೗   ൌ ׬ 𝑝௜௝

௨ 𝜌௜௝
௉ ൫𝑝௜௝൯𝑑𝑝௜௝

௉೔ೕ
ೠ

௉೔ೕ
೗   ൌ 𝐸ఘ೔ೕ

ು ൣ𝑃௜௝൧. (7) 

where 𝜌௜௝
஺∣௉൫𝐴௜௝ ൌ 1 ∣ 𝑝௜௝൯  represents the probability of 𝐴௜௝ ൌ 1 given 𝑃௜௝ ൌ 𝑝௜௝ . The result 

from the above equation shows that the expected value of the utility random variable 𝑃௜௝ can 
be calculated to determine the probability of connections between nodes. Assuming 𝑃௜௝ 
follows a uniform distribution within the range ൣ𝑃௜௝

௟ , 𝑃௜௝
௨൧, the overall probability at 𝑖 and 𝑗 is 

equation (8). 

Prob ൫𝐴௜௝ ൌ 1൯ ൌ 𝐸ఘ೔ೕ
೛ ൣ𝑃௜௝൧ ൌ ൫𝑃௜௝

௟ ൅ 𝑃௜௝
௨൯ 2⁄ .                          (8) 

In summary, the adjacency matrix of PDRN is constructed as follows equation (9). 

𝐴መ௜௝ሺ𝜀ሻ ൌ ቊ
൫𝑃௜௝

௟ ሺ𝜀ሻ ൅ 𝑃௜௝
௨ሺ𝜀ሻ൯ 2⁄ , 𝑖 ് 𝑗

0, 𝑖 ൌ 𝑗
.                             (9) 

The presented equation elucidates that the entries within the adjacency matrix range between 
[0,1], signifying the probabilities of connections among network nodes. PDRN operates as a 
weighted network, with connection probabilities serving as weights. Leveraging the 
topological structure of the network provides a lucid depiction of potential connections and 
their respective strengths among nodes. Furthermore, given that PDRN is constructed based 
on PDFs derived from the original data, it not only encapsulates numerical information from 
the source data but also accommodates inherent data uncertainty. Consequently, employing 
the topological structure of PDRN for the analysis of original data emerges as an effective 
approach for uncertainty analysis. 

3.2. Determining Node Similarity Using Link Prediction 

The Link Prediction approach employing Local Random Walk (LRW) can be applied to 
identify prospective edges within the network. The random walk states of network nodes are 
encapsulated in a probability transition matrix denoted as 𝑃 . Within a weighted network 
consisting of 𝑁 nodes, the computation of the transition probability from node 𝑖 to node 𝑗 is 
expressed by equation (10). 

𝑃௜௝ ൌ 𝑤௜௝ 𝑠௜⁄ . (10) 
where 𝑤௜௝ is the probability of a connection between nodes 𝑖 and 𝑗, with 0 ൏ 𝑤௜௝ ൑ 1 if nodes 
𝑖 and 𝑗 are connected; otherwise 𝑤௜௝ ൌ 0. The strength of node 𝑖, denoted as 𝑠௜, is defined as 
𝑠௜ ൌ ∑ 𝑤௜௝௝ . After 𝑡 steps, 𝜋పሬሬሬ⃗  is given by equation (11). 

𝜋పሬሬሬ⃗ ሺ𝑡ሻ ൌ 𝑃்𝜋పሬሬሬ⃗ ሺ𝑡 െ 1ሻ. (11) 
where, 𝜋పሬሬሬ⃗  is the probability of moving from node 𝑖 to other nodes, 𝑃் signifies the transpose 
of matrix 𝑃. At the initial state 𝑡 ൌ 0, 𝜋పሬሬሬ⃗ ሺ0ሻ represents the random walkers located at node 𝑖, 
with dimensions 𝑁 ൈ 1. The 𝑖-th element of 𝜋పሬሬሬ⃗ ሺ0ሻ equals 1, while all other elements are set to 
0. 



 
 
 
 

Assuming the initial resource distribution for each node is 𝑠௜ ሺ2|𝐸|ሻ⁄ , where |𝐸| represents the 
number of network edge connections, the similarity between node 𝑖 and 𝑗 after each step can 
be computed as equation (12). 

𝑆௜௝
௅ோௐሺ𝑡ሻ ൌ

௦೔

ଶ|ா|
𝜋௜௝ሺ𝑡ሻ ൅

௦೔

ଶ|ா|
𝜋௝௜ሺ𝑡ሻ. (12) 

However, during the drift from node 𝑖 to 𝑗, even when nodes 𝑖 and 𝑗 are very close, the walker 
may gradually move away from both nodes. In this case, due to the tendency of walkers to 
stay in the local area rather than drift to the rest of the network, the prediction accuracy may 
be reduced. Therefore, by superimposing the random walk processes of each step, the resultant 
similarity between nodes is ultimately heightened, as depicted in (13). 

𝑆௜௝
ௌோௐሺ𝑡ሻ ൌ ∑ 𝑆௜௝

௅ோௐሺ𝑙ሻ௧
௟ୀଵ . (13) 

where, SRW represents Superimposed Random Walk. 

In summary, the equation above is used to calculate the similarity between node 𝑁 and the 
previous 𝑁 െ 1 nodes, denoted as 𝑆ௌோௐ ൌ ൣ𝑆ଵே, 𝑆ଶே, ⋯ , 𝑆ሺேିଵሻே൧. The results are sorted in 
descending order, 𝑆ெሺଵሻே, 𝑆ெሺଶሻே, ⋯ , 𝑆ெሺேିଵሻே , corresponding to nodes 

൫𝑡ெሺଵሻ, 𝑦ெሺଵሻ൯, ൫𝑡ெሺଶሻ, 𝑦ெሺଶሻ൯, ⋯ , ൫𝑡ெሺ௞ሻ, 𝑦ெሺ௞ሻ൯, which are the top 𝑘 nodes most similar to the 
last node ሺ𝑡ே, 𝑦ேሻ. 

3.3. Construction of Prediction Models 

Weighted Prediction Method Based on Similar Node Trend. To predict node ሺ𝑡ேାଵ, 𝑦ேାଵሻ, 
which is the next point after node ሺ𝑡ே, 𝑦ேሻ and the closest point to it, the trend of change from 
ሺ𝑡ே, 𝑦ேሻ  to ሺ𝑡ேାଵ, 𝑦ேାଵሻ  is assumed to be similar to the trends of change from 
൫𝑡ெሺଵሻ, 𝑦ெሺଵሻ൯, ൫𝑡ெሺଶሻ, 𝑦ெሺଶሻ൯, ⋯ , ൫𝑡ெሺ௞ሻ, 𝑦ெሺ௞ሻ൯  to their respective next nodes. Hence, the 
method put forward employs the weighted amalgamation of the shift pattern from the top 𝑘 
nodes exhibiting high similarity to the node ሺ𝑡ே, 𝑦ேሻ for forecasting the shift in the pattern of 
the present state. The prediction equation is as follows equation (14). 

𝑦ேାଵ ൌ ∑ 𝛼௜

௬ಾሺ೔ሻశభି௬ಾሺ೔ሻ

௧ಾሺ೔ሻశభି௧ಾሺ೔ሻ

ሺ𝑡ேାଵ െ 𝑡ேሻ ൅ 𝑦ே
௞
௜ୀଵ  .                      (14) 

where 𝛼௜ ൌ 𝑆ெሺ೔ሻ୒ ቀ∑ 𝑆ெሺ೔ሻ୒
௞
௜ୀଵ ቁൗ  represents the weights. 

The setup process of this prediction model demonstrates its utilization of PDRN and link 
prediction approaches alongside the original dataset. This allows for the recognition of 
numerous historical states resembling the current one. Following this, the model utilizes the 
weighted developmental patterns extracted from these historical states to predict changes in 
the current state's trends. For instance, when unforeseen events lead to fluctuations in carbon 
prices, the model incorporates the impacts of similar historical events on changes in carbon 
prices to generate predictions. 

Weighted Prediction Method for Extrapolation of Similar Node Trends. In contrast to the 
previous prediction, after obtaining the top 𝑘 nodes highly similar to node ሺ𝑡ே, 𝑦ேሻ, the model 
carries out a weighted projection of the connection patterns between these similar nodes and 
the last node to predict future nodes. The prediction model is as follows equation (15). 

𝑦ேାଵ ൌ ∑ 𝛼௜

௬ಿି௬ಾሺ೔ሻ

௧ಿି௧ಾሺ೔ሻ
ቀ𝑡ேାଵ െ 𝑡ெሺ೔ሻ

ቁ ൅ 𝑦ே
௞
௜ୀଵ  .                           (15) 



 
 
 
 

This prediction model focuses on the continuity of changes in the prediction target, where 
future states are expected to continue from past and current states, for example, the continuous 
upward or downward fluctuations in carbon trading prices. 

3.4. Combined Prediction 

The two aforementioned prediction models are characterized by distinct focal points. Carbon 
price variations can be broadly classified into two categories: those exhibiting a sustained and 
continuous trend, amenable to prediction by the first model, and those experiencing abrupt and 
irregular shifts, suitable for prediction using the second model. To amalgamate the strengths of 
these two models, accommodating the forecasting of both abrupt and continuous price changes, 
a unified prediction model is formulated through the following steps: 

(1) Define Node Distances: The distances between node ൫𝑡ெሺ௜ሻ, 𝑦ெሺ௜ሻ൯ and node ሺ𝑡ே, 𝑦ேሻ, node 
൫𝑡ெሺ௜ሻ, 𝑦ெሺ௜ሻ൯ and node ሺ𝑡ேାଵ, 𝑦ேାଵሻ, and node ሺ𝑡ே, 𝑦ேሻ and node ሺ𝑡ேାଵ, 𝑦ேାଵሻ are determined 
using the equations (16)–(18). 

𝑑ெሺ೔ሻ→ே ൌ 𝑡ே െ 𝑡ெሺ೔ሻ
. (16) 

𝑑ெሺ೔ሻ→ேାଵ ൌ 𝑡ேାଵ െ 𝑡ெሺ೔ሻ
. (17) 

𝑑ே→ேାଵ ൌ 𝑡ேାଵ െ 𝑡ே. (18) 
(2) Determine Weight Coefficients: When the separation between node ൫𝑡ெሺ௜ሻ, 𝑦ெሺ௜ሻ൯ and node 
ሺ𝑡ேାଵ, 𝑦ேାଵሻ is considerable (indicated by a large value of 𝑑ெሺ೔ሻ→ே ), the likeness between 

nodes within the network will diminish. In this scenario, weights are assigned according to the 
distance between nodes to measure similarity. The weight coefficients are defined as follows 
equations (19)~(20). 

𝑤ଵ ൌ 𝑑ே→ேାଵ ቀ∑ 𝑑ெሺ೔ሻ→ேାଵ
௞
௜ୀଵ ቁൗ . (19) 

𝑤ଶ ൌ ∑ 𝑑ெሺ೔ሻ→ே
௞
௜ୀଵ ቀ∑ 𝑑ெሺ೔ሻ→ேାଵ

௞
௜ୀଵ ቁൗ . (20) 

where 𝑤ଵ is the weight coefficient for the Similar Node Trend Change Weighted Prediction 
Method, and 𝑤ଶ  is the weight coefficient for the Weighted Prediction Method for 
Extrapolation of Similar Node Trends. 

(3) Combined Prediction: Assuming that the results obtained from the first method are 
represented as 𝑌ଵ, and the results from the second method are represented as 𝑌ଶ , the final 
prediction is given by equation (21). 

𝑦ොேାଵ ൌ 𝑤ଵ𝑌ଵ ൅ 𝑤ଶ𝑌ଶ (21) 
Thus, the combined prediction model for predicting ሺ𝑡ேାଵ, 𝑦ேାଵሻ based on the top 𝑘 similar 
nodes is expressed as equation (22). 

𝑦ොேାଵ ൌ 𝑤ଵ ቆ∑ 𝛼௜
௬ಾሺ೔ሻశభି௬ಾሺ೔ሻ

௧ಾሺ೔ሻశభି௧ಾሺ೔ሻ

ሺ𝑡ேାଵ െ 𝑡ேሻ ൅ 𝑦ே
௞
௜ୀଵ ቇ ൅ 𝑤ଶ ቆ∑  𝛼௜

௬ಿି௬ಾሺ೔ሻ

௧ಿି௧ಾሺ೔ሻ

ቀ𝑡ேାଵ െ 𝑡ெሺ೔ሻ
ቁ ൅ 𝑦ே

௞
௜ୀଵ ቇ (22) 

(4) Prediction Accuracy: To evaluate the prediction performance, four accuracy measurement 
metrics are calculated as follows equations (23)~(26). 

𝑀𝐴𝐸 ൌ
ଵ

ே
∑ |𝑦ො௧ െ 𝑦௧|ே

௧ୀଵ  (23) 

𝑀𝐴𝑃𝐸 ൌ
ଵ

ே
∑ ቚ

௬ො೟ି௬೟

௬೟
ቚே

௧ୀଵ  (24) 



 
 
 
 

𝑆𝑀𝐴𝑃𝐸 ൌ
ଵ

ே
∑ |௬ො೟ି௬೟|

௬ො೟ା௬೟

ே
௧ୀଵ  (25) 

𝑅𝑀𝑆𝐸 ൌ ටଵ

ே
∑ ሺ𝑦ො௧ െ 𝑦௧ሻଶே

௧ୀଵ  (26) 

4. Carbon Price Forecasting Results 

Since the establishment of the national carbon market in China in July 2021, the carbon 
market has undergone a period of development, and there is now data on carbon prices for 
over 500 days. The data used for carbon prices in this study consists of daily maximum and 
minimum prices from the national carbon market, spanning from July 16, 2021, to September 
28, 2023. The data was sourced from the carbon neutrality section of the CSMAR database, 
comprising a total of 538 sample data points, as depicted in Figure 3. 

 

Figure 3. Carbon Price Trends from July 16, 2021, to September 28, 2023. 

As Figure 3 illustrates, carbon trading prices have exhibited significant fluctuations without a 
clear pattern. Since establishing the national carbon market (from July 16, 2021, to September 
28, 2023), carbon prices have fluctuated between 38.5 CNY per ton to 77 CNY per ton. In the 
early stages, these fluctuations were quite pronounced, signifying a high degree of instability 
in the carbon market. Despite a subsequent increase in carbon prices over time, noticeable 
volatility persisted. Consequently, accurately predicting carbon prices and their changing 
trends is paramount. 

To evaluate the predictive accuracy of carbon prices using data from the national carbon 
market since its establishment (from July 16, 2021, to September 28, 2023), we performed a 
forecasting analysis. In the beginning, we employed carbon pricing information spanning from 
July 16, 2021, to April 30, 2023, as the training set for forecasting the carbon price on May 1, 
2023. Subsequently, we integrated the observed carbon price on May 1, 2023, into the 
prediction model for estimating the price on May 2, 2023. This process was repeated until we 
obtained the carbon price forecast results for September 28, 2023, as shown in Figure 4 and 
Figure 5. 
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Figure 4. Forecast of Daily Maximum Carbon Prices 
from September 1, 2022, to November 28, 2022. 

Figure 5. Forecast of Daily Minimum Carbon 
Prices from May 1, 2023, to September 28, 2023. 

To assess the accuracy of the predictions made for daily maximum and minimum carbon 
prices from May 1, 2023, to September 28, 2023, the results were compared to the actual 
values, as presented in Table 1. 

Table 1. Forecast Accuracy for Daily Maximum and Minimum Carbon Prices. 

Accuracy Metric MAE MAPE SMAPE RMSE 

Daily Maximum Carbon Price 0.8798 0.0133 0.0067 1.5507 
Daily Minimum Carbon Price 1.2006 0.0185 0.0092 2.1372 

From Table 1, it is evident that, based on four different error measurement methods, the errors 
between the predicted and actual values for daily maximum and minimum carbon prices from 
May 1, 2023, to September 28, 2023, are relatively small. Among these metrics, the 
symmetric mean absolute percentage error exhibits the least magnitude, followed by the mean 
absolute percentage error, while the root mean square error records the greatest numerical 
value. Hence, using carbon price data from July 16, 2021, to September 28, 2023, we have 
generated forecasts for the carbon prices over the next 20 days, as presented in Table 2. 

Table 2. Forecast of Carbon Prices for the Next 20 Days. 

Date 
Daily 

Maximum 
Carbon Price 

Daily 
Minimum 

Carbon Price 
Date 

Daily 
Maximum 

Carbon Price 

Daily 
Minimum 

Carbon Price 

Day 1 77.35 75.27 Day 11 80.46 80.18 
Day 2 77.69 75.53 Day 12 80.51 80.24 
Day 3 78.00 76.04 Day 13 80.56 80.31 
Day 4 78.31 76.56 Day 14 80.61 80.38 
Day 5 78.61 77.08 Day 15 80.67 80.44 
Day 6 78.92 77.59 Day 16 80.72 80.51 
Day 7 79.23 78.11 Day 17 80.77 80.57 
Day 8 79.54 78.63 Day 18 80.82 80.64 
Day 9 79.85 79.14 Day 19 80.87 80.71 

Day 10 80.15 79.66 Day 20 80.92 80.77 



 
 
 
 

5. Conclusion 

In summary, since establishing the national carbon market, carbon trading prices have 
exhibited significant fluctuations and instability. Using time series data and constructing a 
PDRN for prediction, we conducted carbon price forecasts from May 1, 2023, to September 
28, 2023. Our predictive model demonstrated exemplary performance in forecasting daily 
maximum and minimum carbon prices, with minor errors, particularly the symmetric mean 
absolute percentage error being the smallest and the root mean square error being the largest. 

In conclusion, despite significant fluctuations in carbon prices, our predictive model exhibited 
reasonable accuracy in carbon price forecasting. These forecast results can support businesses 
and government decision-making in the carbon market, helping manage the costs and risks 
associated with carbon emissions and better adapt to the volatility and instability of the carbon 
emission market. However, it is essential to closely monitor market changes and policy 
adjustments and continuously improve and update predictive models to adapt to the dynamic 
nature of the carbon market. 
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