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Abstract. In this paper, a stochastic epidemic model including the time since vaccination 
(vaccine-age) in the presence of high-risk infectious diseases is formulated and studied. 
The stationary distribution and ergodicity of the proposed model are investigated. The 
results suggest that with treatments triaged between high-risk and low-risk infectious 
diseases, reasonable allocations of medical resources can accelerate the extinction of 
diseases and, also, that large random fluctuations favor the extinction of the diseases. 
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1 Introduction 

In the early period after a new infectious disease has appeared, there are only a few infected 
people, so a hospital's resources are sufficient at this time. But rapid spread of the disease and 
fast increases in the number of cases leads to shortages of medical resources such as vaccines, 
medicines, and doctors in hospitals [1,2,3]. Meanwhile, healthcare workers also face pressure to 
triage patients with high-risk or low-risk infectious diseases, and these decisions played 
important roles in the prevention and control of infectious diseases. Therefore, limited medical 
resources and pressure regarding patient selection are two important factors in the spread of 
infectious diseases.  

To study the mechanism of limited medical resources and patient selection pressure on disease 
control. Qin et al. proposed a non-smooth Filippov infectious disease model with threshold 
strategy to investigate how limited medical resources and patient selection pressure affect the 
outbreaks of high-risk 

0
R

 
and low-risk infectious diseases[4,5]. With limited medical resources, 

they found that choice pressure can help to prevent the spread of emerging infectious diseases, 
and it is also shown that lowering the threshold in a timely manner or increasing the maximum 
recovery rate was beneficial to the control of emerging infectious diseases. 

The effect of vaccines can only be maintained for short periods for many infectious diseases, 
so that the impact of the time since vaccinations should be taken into consideration[6]. Let   

be the vaccine-age (i.e., the length of the period since the vaccination took place) and denote 
the number of the vaccinated population with vaccine-age   at time t  as ( , ), ( )V t    is the 
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rate at which the vaccine wanes at vaccine-age   and 0 ( ) 1   . Here, 
0

( )d  


  , 

which guarantees that no one will be vaccinated when vaccine-age   is close to infinity. In 

other words, when vaccine-age   approaches infinity lim ( , ) 0V t





 , the number of 

vaccinated people tends to zero. For simplicity, every year the number of people with 
influenza is assumed to be a constant, i.e., 

2
I k , thus, the number of patients with high-

risk disease is represented by ( )I t . So model can be described as 
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where the total population is divided into four classes: the susceptible populations ( )S t , the 

vaccinated ( )V t , the high-risk infectious diseases ( )I t  and those removed ( )R t .  , d , g ,  , 

 , 
1
c , 

1
b , 

2
b  are respectively the population recruitment rate, the natural mortality rate, the 

ratio coefficient of vaccinated and susceptible patients, the effective contact rate of infected 
and susceptible patients, the recovery rate of infected patients, the maximum recovery rate of 
patients per unit time, the impact of medical resource limitation on the treatment of high-risk 
infectious diseases, and the impact of medical resource constraints on the treatment of low-
risk infectious diseases. Assume that the infected people with temporary immunity become 
susceptible at rate m , while the infected people with permanent immunity become recovered 
at rate 1 m . For 0r  , indicates that high-risk infectious diseases are above the threshold, 
so medical workers should not only give priority to treat patients with high risk disease, but 
also allocate only limited medical resources to these patients. For (0,1]r  , both high-risk 
and low-risk infectious diseases are treated.  

With the initial and boundary conditions as follows 

0 0 0 0
(0) , (0) , (0) , ( ,0) ( ), (0, ) ( ), (2)S S I I R R V V V t gS t       
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0 0 0 0 00
( ) , (3)S I R V d N 


     

0
N  is a constant and denotes the total population size at the initial time. Integrating the second 

equation in model (1) along the characteristic line t   constant, which implies that 
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where ˆ t   , because 
0

dte N  0  as t   , then expression (2) becomes 
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Substituting equation (6) into the first equation of model (1) 
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It is found that the recovered population ( )R t  does not affect the dynamics of ( )S t  and ( )I t , 
for system (1) so we only need to consider the following equations, 
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However, human behaviors are inevitably influenced by environmental factors. For example, 
humidity, wind direction and other factors can directly affect the contact rates between 
infected and susceptible populations [8]. It means that some parameters of the model (1) are no 
longer constants, but fluctuate within a certain range. Therefore, assume that parameters   
and d  are disturbed by white noise, and the fluctuations are formulated by a stochastic process 

1 1
( )B t     ,     

2 2
( )d d B t , where 

1
 and 

2
 represent the intensity of the 

white noise. 
1
( )B t

 
and 

2
( )B t  are standard Brownian motions and defined on a complete 

probability space   0
, , ,

t t



   with its filtration  

0t t
 , where  

0t t
  is right 

continuous and 
0
  contains all  -null sets [7]. . Then model (1) with white noise can be 

described by the following equations, 
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The paper is arranged as follows. It is easy to prove the existence and uniqueness of the global 
solution will first be investigated. I will not repeat myself in this article, the stationary 
distribution and ergodicity for the proposed system are investigated. Finally, numerical 
simulations are conducted to support the analytical results and biological implications are 
addressed. 

2 Stationary distribution 

To discuss the existence of model (10) traversing a stationary distribution, an useful lemma is 

introduced firstly. Let ( )Z t  be a homogeneous Markov process in d  ( d is a d -
dimensional Euclidean space), which can be described by the following Stochastic Differential 
Equation[9] 

1

( ) ( ) ( ) ( ),
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r r
r

dZ t b hZ dt Z dB t

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with the diffusion matrix defined as follows 

1
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lemma 2. Assume that there is a bounded domain dQ    with regular boundary, and Q  
satisfies [10]: 

(1) there is with a positive constant 
0
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(2) there is a nonnegative 2C -function V  such that   is negative for any / .d Q  Then 
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for all dz   , where (.)f  is a function that is integrable with respect to the measure  . 

For convenience, let    be the maximum of   and  , and denote
[0, )
sup ( )u

t
th h

 
 ,

[0, )
inf ( )l

t
th h

 
 . The following results can be obtained from Lemma 2. 
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Let Q  be any bounded domain in 2

 , then there is a positive constant 
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Now, define a non-negative 2C -function V  and find a closed set 2Q    such that 
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explicit expression of  ,S I  will be derived in the following. Thus, define a 2C -function 
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It is shown that ( , )H S I  gets the minimum value at the unique point  * *
,S I . Therefore, a 

nonnegative 2C -Lyapunov function V  can be defined as follows, 
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3 Numerical investigations 

 
Fig 1. Stationary distribution of deterministic model and stochastic model. (a) We set initial values as 

( (0), (0)) (0.6,0.3)S I  . (b) We set initial values as ( (0), (0)) (2,0.6)S I  . All other 

parameters were fixed as: 0.98, 0.995, 0.3, 0.06,m     

0.8, 0.27g d  , 
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Fig 2. Effects of white noise on the extinction of infectious diseases. All baseline parameter values were 

fixed as : 0.5, 0.8, 0.3, 0.2,m      0.8, 0.27g d  ,
1

0.7c  ,

1
0.1b  ,

2
1.2b  , 1r  , 1k  . 

 

 

 



 
 
 
 

 
Fig 3. These plots show the sensitivity of r  to disease extinction and disease persistence. (a) 

0.5, 0.8, 0.2     , 
1

0.3  , 
2

0.2  , 0.3d  ,
1

0.1b   , 

2
1.2b  ; (b) 0.98, 0.995, 0.06     , 

1
0.1  , 

2
0.02  , 

0.05d  , 
1

0.3b  ,
2

0.9b  . All baseline parameter values were fixed as: 

0.3, 0.8m g  , 
1

0.7c  , 1, 1r k  . 

All baseline parameter values can be found in references[4,5]. From Fig 1, the initial values are 

fixed as ( (0), (0)) (0.6,0.3)S I   and ( (0), (0)) (2,0.6)S I   by simple calculation, we 

have 
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Then all conditions of Theorem 2 are satisfied, which implies that system (2) allows for a 
stationary (.)  which is ergodic. 

It is noted that infectious diseases are influenced by many factors, such as environmental noise. 
From Fig 2(a), keep 

1
 and increasing 

2
, then the speed of disease elimination will be 

accelerated. Fix 
2
 and increasing 

1
 will also accelerate the extinction of the diseases Fig 

2(b). It can be found that the greater the noise intensity, the more conducive it is to the 
extinction of infectious diseases. According to Fig 3(a), with the smaller of the resource 
allocations coefficient, resources will be prioritized to patients with high-risk infectious 
diseases, and then the disease will become extinct faster. When the disease is persistent, the 
scale of the outbreak will become smaller as decreases Fig 3(b). 

4 Conclusion 

In this paper, the existence and uniqueness of the ergodic stationary distribution are discussed 
by employing a novel combination of Lyapunov functions. Numerical studies are also 
performed to support our results. Compared to the previous results [4,5], the highlights are listed 
as follows: (1) the proposed model not only considers the effects of white noise, but also the 
vaccine-age are taken into account; (2) the ergodic stationary distribution of the model is also 
discussed; (3) random perturbations and medical resources are very critical to control the 
outbreaks of the diseases. 



 
 
 
 

There are many interesting questions deserving future investigation. In this paper, for 
simplicity, the average year of infection with low-risk diseases is assumed to be a constant. 
But if we consider both high-risk and low-risk infectious diseases, then how to propose the 
stochastic model with high-risk and low-risk infectious diseases? How do limited medical 
resources, patient selection pressure and white noise affect the global dynamics of the 
proposed system? What is the feasible treatment for the prevention and control of infectious 
diseases? We leave these questions for future work. 
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