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Abstract：In the digital age, the explosive growth of data and the need for instant 
performance pose challenges to database management systems. In a big data environment, 
query performance has become a key issue, and index optimization is a key means to 
improve performance. Automatic Indexing It dynamically selects, creates and adjusts 
indexes through machine learning models, evaluates the need for new indexes and the 
need for existing indexes, creates a new index when needed, and deletes it when it is no 
longer needed. This article introduces the working principle and research methods of 
automatic indexing, conducts simulation experiments, and analyzes the experimental 
results to complete the application exploration and practice of automatic indexing 
technology in a big data environment. At the end of the text, the challenges and 
limitations of automatic indexing are presented. 
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1 Preface 

The index problem is a long-standing problem in the database field. Researchers have 
discovered that indexes may improve the efficiency of data queries, and also recognized the 
difficulty and challenges of index selection [1-2]. Traditional manual index management has 
always been one of the main methods for database performance optimization, including B-
Tree indexes, bitmap indexes, partitioned indexes, function-based indexes, etc. Mainstream 
commercial database vendors have developed relevant tuning tools to assist DBAs in tuning, 
such as Microsoft's SQL Server database tuning advisor (DTA) [3] and IBM's DB2 design 
advisor (DB2Advis) [4-5] and Oracle's SQL access advisor (SQL access advisor) [6], etc., the 
dynamically changing query patterns in the big data environment make it difficult for 
traditional manual methods to track and adapt, and the speed of manual intervention often 
cannot keep up with the data. and changes in query patterns. With the development of machine 
learning technology and the expansion of database application scenarios, related research on 
index selection issues has regained the attention of more and more researchers. For example, 
the index selection scheme that introduces machine learning technology [7], some researchers 
have proposed Adaptive indexing technology [8-10], which automatically generates an index 
structure based on query statements and makes adaptive adjustments to avoid the problem of 
index selection, such as database cracking[8] and index adaptive merging[9] technology, 
automatic indexing technology provides an unprecedented automation method, providing an 
intelligent and efficient index management solution in big data. 

PMBDA 2023, December 15-17, Nanjing, People's Republic of China
Copyright © 2024 EAI
DOI 10.4108/eai.15-12-2023.2345391



2 Introduction 

The development of automatic indexing technology provides new ways to solve the 
complexity of index management in big data environments. Auto-indexing automatically 
creates indexes, making them unusable, and making them invisible and visible if they need to 
be rebuilt. Based on the query, it can also create SQL baselines. Very importantly, it can learn 
from previous implementations and their impact on performance and automatically change the 
policy using reinforcement learning algorithms. The core idea of this technology is to use 
machine learning algorithms to learn query patterns from database workloads, predict 
potential performance improvements, and automatically create or adjust indexes. The 
introduction of automatic indexing makes index management no longer dependent on manual 
labor, but is continuously optimized through real-time analysis and adaptive learning. In a big 
data environment, research on how automatic indexing works involves multiple key aspects to 
ensure its adaptability to large-scale, high-complexity data sets. Detailed working steps see 
figure 1 below: 

 

Figure 1 Schematic diagram of automatic indexing artificial intelligence cycle 

The first is the capture phase. During this phase, it captures all SQL statements from the 
application workload and creates an automatic SQL tuning set.It then goes through the 
identification phase, where all query performance is analyzed and candidate indexes are 
suggested. These indexes are created and made invisible.During the validation phase, query 
performance with and without candidate indexes is measured. If an index is required, 
materialize the index and measure performance again.Next comes the decision stage. At this 
stage, if there are performance improvements, the index will become visible. If there is no 
improvement, the index will remain invisible. If certain queries have a performance impact on 
the index, create a SQL plan baseline using those affected queries. This way the performance 
of these queries does not change.The final phase is monitoring where query performance is 
continuously monitored and the cycle is repeated. Invisible indexes that have exceeded the 
retention period will be deleted. 



3 Research methods for automatic indexing in big data  

3.1 Analysis of data set characteristics 

First, automatic indexing performs in-depth analysis of the characteristics of large-scale data 
sets, including data distribution, data relationships, and data types. This analysis helps 
determine which columns might be good candidates for an index, as well as the type and 
ordering of the index. With complete visibility into your data set, Automated Indexing can 
more accurately select and create adaptable indexes to improve query performance. 

For example, for a customer information table, automatic indexing can perform data analysis, 
query analysis, partition analysis, etc. through in-depth analysis of the national customer 
information data set. Automatic indexing will first conduct a comprehensive data analysis of 
the data set, including analysis of the data distribution, data relationships, and data types of 
each column. For example, you can view the unique value distribution, frequency distribution, 
etc. of columns such as region, customer number, and insurance type. 

3.1.1. Analyze commonly used query patterns 

Which columns are frequently used in conditional filtering, sorting, or join operations. This 
helps determine the best indexing strategy to support frequently executed queries and improve 
query performance. Suppose there is a sales order database. Automatic index analysis finds 
that most queries involve the order_date, customer_id, and product_id columns. Through the 
machine learning model, it was found that for frequent range queries, such as retrieving orders 
by date range, creating a range index based on the order date order_date may improve 
performance. At the same time, for the case of equivalence query of frequent customer 
number customer_id, it may be recommended to create an equivalence index based on 
customer number customer_id. In this way, the automatic indexing system generates index 
strategies suitable for different query needs based on query patterns to optimize database 
performance. 

3.1.2. Select ideal candidates for the index 

Based on the results of the analysis, automatic indexing will select which columns are ideal 
candidates for the index. This may include fields such as region, customer number, etc. to 
support common query operations. 

3.1.3 Determine the type of each index 

Based on data distribution and query requirements, automatic indexing will determine the type 
of each index (such as B-tree index, hash index, etc.) and the sorting method (ascending or 
descending order). For example, a B-tree index might be chosen for range queries, while a 
hash index might be chosen for equality queries. 

3.2 Automatic index selection 

In practical applications, machine learning models for automatic index optimization can adopt 
a variety of methods. For example, decision tree model, random forest model, deep learning 
model. Machine learning algorithms can predict which indexes are likely to have a positive 



impact on specific query performance by analyzing query execution plans, query optimization 
history, and database statistics. Query plan performance allows the system to select execution 
plans to minimize query response time. Automatically identify potential query patterns and 
data access patterns by analyzing database workloads. Based on these patterns, the system can 
automatically create appropriate indexes and can provide real-time index optimization 
suggestions, allowing the database system to flexibly adapt to changing data and query 
requirements. 

3.3 Adapt to large scale and high complexity 

Taking into account the characteristics of the data set, machine learning model learning, real-
time performance monitoring and automatic index adjustment, the principle of automatic 
indexing is designed to adapt to large-scale, high-complexity data environments. This design 
enables the system to flexibly and intelligently select and optimize indexes to meet the needs 
of complex query patterns when facing large and dynamically changing data sets. 

4 Research design and experiments 

In order to gain a deeper understanding of the performance and effect of Automatic Indexing 
in a big data environment, we conducted a series of experiments, focusing on the experimental 
parameters, steps and performance evaluation. The research design of this article and the 
specific details of the experiment are described in detail below. 

4.1 Software and hardware configuration 

Oracle version 21c was selected for the database, the operating system was a Linux virtual 
machine, and a separate table space was configured. 

4.2  Data selection and feature engineering 

The experiment selected representative large-scale data sets of customers, products, orders, 
and order details, including multi-table associations, complex queries, and large-scale data, 
and loaded approximately 900,000 random records. Such a data set can better simulate the 
database workload in a real big data environment. 

4.3 Experimental steps 

1) Start SQL optimization tracking and collect detailed information about the query execution 
plan. 

2) Use concurrent queries to simulate workloads, multi-table queries, and associate tables with 
900,000 pieces of data. 

3) Use WHERE conditions to simulate filtering queries on different columns. 

4) Turn off SQL optimization tracking, analyze the execution plan, and query the cost estimate 
and access path of each step. 

5) Machine learning model training and prediction, use historical query execution plans and 
performance data to train the model, and learn which index configurations are most effective 



for different types of queries. For example, use the decision tree algorithm for training, use the 
scikit-learn library, partition the data set, model training, model evaluation, and model 
prediction to determine the index configuration most likely to improve performance. 

6) Automatic index selection, configure automatic indexing at the solution level in the Oracle 
database, turn on the configuration parameter AUTO_INDEX_MODE, and automatically 
select or recommend indexes for queries based on the prediction results of the machine 
learning model. 

7) Generate a report, view the automatic indexing report, and select several important parts 
from the report to display. For example, Table 1 shows the index list created using automatic 
indexing, and Table 2 shows the comparison of historical query performance indicators and 
automatic indexing indicators. Table 3 shows the comparison between historical execution 
plan indicators and automatic index indicators. 

Table 1: Index creation status 

Owner Table Index Key Type Properties 
HR Test1 *SYS_AI_03vgaf9tybk Id2 BTree - 

HR Test1 SYS_AI_dmu539wl39n7s section BTree - 

Table 2 Query statistics 

 Original Plan Auto Index Plan 
Elapsed Times(s） 393880521 5234120 

CPU Time （s） 161139246 1715183 

Buffer Gets： 1433221 31712 

Optimizer Cost： 86828 32751 

Disk Reads： 1433960 0 

Direct Writers： 0 0 

Rows Processed： 3 1 

Executions： 7 1 

Table 3 Execution plan 

 Original Plan Auto Index Plan 
Plan Hush Value 520385367 3101189324 

Operation Full Table Scan Index Range Scan 
Rows 45237068 14419670 

Cost（%CPU） 86828 32751 
Time 00:00:04 00:00:02 

5 Effect analysis 

5.1 Performance analysis 

From the experimental results shown in the above three tables, performance evaluation is 
carried out in terms of response time, resource utilization, and indexing effect. Evaluate the 



 

 
 
 
 

actual improvement in query performance made by automatic indexing by measuring the 
execution time of each query. Monitoring the usage of system resources, including CPU 
utilization, memory usage, etc., it can be seen that after using the machine learning algorithm, 
the number of data rows accessed is reduced, and the execution time is shortened by half. 
After using the machine learning model for training and prediction, the index strategy is 
intelligently selected based on the actual query mode and data distribution, which can well 
adapt to complex query modes and optimize real-time performance monitoring indicators, 
thereby improving the query performance of the database. 

5.2 Analysis of the working principle of automatically creating and adjusting indexes 

Based on analysis of data set characteristics and dynamic query patterns, Auto Indexing 
automatically creates new indexes or adjusts the properties of existing indexes. This process is 
automated and does not require manual intervention by the database administrator. By 
automatically creating and adjusting indexes, the system can more flexibly adapt to changes in 
query patterns in big data environments, ensuring real-time optimization of indexes. 

From the analysis of automatically maintained data dictionary query results, automatic 
indexing first automatically creates invisible indexes, and then tests the impact of the indexes 
on SQL statements. If the impact is positive and the SQL statements perform better using 
indexes, then the indexes become visible. If the performance of the SQL statements does not 
improve due to automatic indexing, then these indexes will be marked as unavailable and the 
corresponding SQL statements will Be blacklisted. Unused manual indexes are never deleted 
by the automatic indexing process, but can be deleted automatically if needed. Automatic 
indexing can be disabled at any time, or set to report read-only mode. 

Some SQL statement performance will show improvements while others will show 
degradation due to automatically created indexes. In this case, the index becomes visible, but 
automatic indexing creates a SQL plan baseline to prevent performance-degrading SQL 
statements from using the index. Other SQL statements that do not suffer performance 
degradation will continue to use the index. The importance of automatic indexing in real-time 
adaptability. It can dynamically adjust indexes based on changes in actual query patterns to 
better adapt to dynamic workloads in big data environments. 

6 Conclusions 

This article first introduces how automatic indexing technology works, including the capture, 
identification, verification, decision-making and monitoring stages. Then, research methods 
for applying automatic indexing in big data environments are discussed, including data set 
feature analysis, dynamic query pattern learning, real-time performance monitoring and 
feedback, and considerations of adapting to large scale and high complexity. This article also 
shows the results of evaluating the performance of automatic indexing through experiments, 
including index creation, query statistics and execution plans. It proves the effectiveness of 
automatic indexing in improving query performance. The number of accessed data rows is 
reduced, and execution The time is cut in half. It has better adaptability to complex query 
models and implements real-time performance monitoring and optimization. . 



 

 
 
 
 

Although automatic indexing has shown significant advantages in big data environments, it 
also has some limitations that may affect its performance. In a big data environment, the 
heterogeneity and complexity of data may cause automatic indexes to perform inconsistently 
when facing different types and distributions of data. Certain data distribution patterns may be 
difficult to accurately capture by machine learning models, so when data heterogeneity is high, 
the performance improvement of automatic indexing may be subject to certain constraints. By 
continuously expanding and improving the functions of automatic indexing, we can look 
forward to more intelligent and adaptive index management tools in the future, bringing 
greater innovation and performance improvements to the database field. Research in these 
directions will help promote the widespread application of automatic indexing technology in 
big data environments. 
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