
A construction System of Lake-Warehouse Integration

in the Electricity Industry Based on Hudi

* Peng Wanga, Jianhao Zhangb, Xiang Wangc, Guangrui Pengd, Mingli Chene, Tianfeng Shaof,

Xiaotong Tuog, Jian Huh

*awangpeng@sgepri.sgcc.com.cn, bzhangjianhao@sgepri.sgcc.com.cn, cwangxiang@sgepri.sgcc.com.cn,
dpengguangrui@sgepri.sgcc.com.cn, echenmingli@sgepri.sgcc.com.cn,

fshaotianfang@sgepri.sgcc.com.cn, gtuoxiaotong@sgepri.sgcc.com.cn, hhujian@sgepri.sgcc.com.cn

NARI Group Corporation (State Grid Electric Power· Research lnstitute); China Realtime Database Co.,

Ltd.Nanjing, China

Abstract. This current data integration system utilizes various methods such as

DataWorks_DI, Ogg+DataHub, etc., for large-scale data access. It generates shared layer

and analytical layer data in a T+1 manner, supporting upper-level data applications

through Restful services. Given the existing data architecture, there are issues including

redundant data synchronization links, inadequate processing timeliness, slow application

queries, and non-integrated quantitative measurement data. These issues result in

situations where business users still encounter unavailable or unreliable data during data

utilization. To address the overall requirement of improving the timeliness of the data

centralization system, and to meet the business needs for various real-time common data

sets, there is an urgent need to establish a data architecture system that includes real-time

incremental and full-data merging, real-time data processing modeling, and real-time

data services. This system aims to build a comprehensive data processing capability that

integrates both streaming and batch processing, enhancing the timeliness of data

centralization application support. The goal is to enable rapid perception, monitoring,

alerting, and processing of data from production business systems, ultimately improving

the stability of production system operations.

Keywords: data lake; Real-time computing; lake house; data management

1. Introduction

With the continuous development and updates of the company's information technology, the

volume of business data, operational logs, and other data generated by various business systems

has experienced exponential growth. To address issues related to data storage and computation,

the company has introduced various products associated with the data hub, which are currently

widely used in multiple scenarios. However, as the requirements for the timeliness of analytical

data increase, the conventional T+1 analytical approach is no longer sufficient. To address this

challenge, a new lake-warehouse integration construction system based on Hudi is proposed for

the power grid scenario [1]. This system aims to provide a comprehensive solution to enhance

data processing efficiency and meet the increasing demands for analytical data timeliness.

Based on the concept of a data lake, integrating open-source frameworks with the data

centralization platform, we are constructing a comprehensive data development platform for

PMBDA 2023, December 15-17, Nanjing, People's Republic of China
Copyright © 2024 EAI
DOI 10.4108/eai.15-12-2023.2345365

mailto:wangpeng@sgepri.sgcc.com.cn
mailto:zhangjianhao@sgepri.sgcc.com.cn
mailto:wangxiang@sgepri.sgcc.com.cn
mailto:pengguangrui@sgepri.sgcc.com.cn
mailto:chenmingli@sgepri.sgcc.com.cn
mailto:shaotianfang@sgepri.sgcc.com.cn
mailto:tuoxiaotong@sgepri.sgcc.com.cn

real-time data warehousing technology. This platform facilitates the ingestion, analysis, and

operation of data from multiple sources and different formats, elevating traditional big data

analytics from a T+1 scenario to a minute-level responsiveness. This significantly enhances

the timeliness and accuracy of data. The platform accommodates the parsing and

transformation of data from various heterogeneous sources, conducting technical verification,

design implementation, and functional testing of data lake components [2]. This effort aims to

improve data timeliness, simplify data analysis complexity, balance the trade-off between data

timeliness and computational resource utilization, and optimize the design of data lake layers

based on the improved real-time capabilities.

This article, based on new big data components such as Hudi and the integrated construction

concept of data lake and warehouse, proposes a comprehensive lake-warehouse construction

system for the power grid scenario based on Hudi. It provides a detailed exposition of the

construction system, covering platform architecture, platform design philosophy, and common

scenarios. The discussion delves into the specifics of building a unified lake-warehouse

system tailored for the power grid scenario using Hudi and similar cutting-edge big data

components.

2. Integrated Lake-Warehouse Overall Architecture Design

The integrated lake-warehouse construction system for the power grid scenario based on Hudi

primarily encompasses full-scenario construction, including data ingestion, data management,

data development, computation and storage resource control, task scheduling, and more. The

most crucial aspect of this architecture, in comparison to the company's previous big data

frameworks, is the ability to ingest and query data at a minute-level granularity. To achieve

this requirement, the system employs a combination of in-house developed tools and

open-source technologies, designed around Hudi. It relies on S3 object storage and Kubernetes

(k8s) for resource management, achieving effective resource isolation [3]. This comprehensive

architectural framework covers the entire process from development to analysis and

visualization.

The system includes in-house developed data ingestion tools that support the ingestion of data

from dozens of internal data sources. It introduces a new data layering approach, breaking

away from fixed relationships between traditional data centralization layers while still

maintaining compatibility with traditional data centralization scheduled offline analysis. This

ensures the timely acquisition of changes in the underlying analytical data for scenarios with

high real-time change demands, facilitating the retrieval of the latest results. The specific

technical architecture is illustrated in the diagram below Figure 1.

Fig 1. framework

3. Main Tasks of System Construction

3.1. Data Integration

In the aspect of data integration, we conducted separate tests on the performance and resource

consumption of data ingestion using Spark, Flink, and the Java client approach. Both Spark

and Flink require additional memory and resources to maintain the cluster, which is inefficient

for data ingestion tasks [4]. Moreover, the data types supported by Spark and Flink are bound

to their own types, making it challenging to integrate with the existing products in our

company. Although the Java client approach provides more flexibility for data transformation

and ingestion, its data write interface is not mature, and the existing functionality does not

meet the requirements of our company's business.

To strike a balance between data writing efficiency and resource consumption, and to meet the

later demand for real-time data ingestion monitoring, we performed source-code-level

development and optimization of Hudi. See Figure 2, We utilized the Java client approach in

conjunction with our existing SG_ETL tool to develop a Hudi plugin, enabling unified offline

and real-time data ingestion. Compared to traditional methods, this approach significantly

saves resources during data writing, and during transmission, it allows real-time monitoring of

data writing based on the content of each batch of data ingested into the lake, thereby reducing

write latency.

Fig 2. Data ingestion

3.2. Storage-Compute Separation

With the current 10 Gigabit network bandwidth, network transmission is no longer a

performance bottleneck. The primary task of a data lake system is how to manage the

relationship between the storage resources for a massive amount of platform data and the

computing resources for various types of analysis tasks in different businesses. See Figure 3,

Due to differences in storage data formats and importance levels, a unified storage-compute

architecture cannot independently scale storage or computing resources. In response to

practical scenarios, the system adopts a storage-compute separation approach. The system

stores business data in the Hudi format in S3-like systems, ensuring data storage isolation

between different layers and users based on their respective buckets. For computing, Flink and

Doris are used based on different scenarios such as analysis and ad-hoc queries. Analytical

tasks run on Kubernetes (k8s) [5], and multi-tenant resource allocation and isolation are

ensured through Kubernetes' permission management. The storage structure is illustrated in

the diagram below.

Fig 3. Storage-Compute Separation

3.3. Data Model

In traditional big data models, data is divided into source layer, shared layer, analytical layer,

and other business logic. This model, when calculating data on a daily basis, allows multiple

businesses to share the same calculated part, saving resources. However, in a data lake, the

bottom layer of source data is updated in real-time. Using the traditional layering model

cannot reflect the real-time data writing characteristics. Business logic can only meet the

timeliness of processing logic by directly reading source layer data during computation.

Based on the real-time characteristics, we have formulated the development idea of storing

algorithms without storing data, with independent business logic. Nodes within a business are

dependent on each other, while nodes outside the business are for analysis. Although this

increases the computational cost, each business logic can achieve the optimal execution time.

At the same time, to be compatible with traditional daily-level business operations, as Figure 4

show, we retain the layered model, recording the snapshot information of each table after the

last update each day. Through the source layer, relevant calculations are executed to the shared

analytical layer, achieving compatibility with the lake-warehouse and fully supporting the

original business logic analyzed on a daily basis.

We have specified a data table creation standard, where the data lake tables follow the

convention of using the business system name as a prefix + specific table name. and the prefix

is used to automatically obtain information such as business ownership and responsibility

when creating the data table [6]. The creator ensures the classification of the data table, and

business analysts can quickly obtain the required data by querying the system prefix for

analysis.

Fig 4. Data Model

3.4. Watermark

In traditional big data models, data is typically updated on a daily basis, and analysis can only

be performed on the changes between the last snapshot of the previous day, with intermediate

results being deleted during the merge process. This approach fails to meet the requirements

for real-time and accurate analysis. The new data lake technology, leveraging the update and

delete capabilities of components like Hudi, follows the 'one table' philosophy, synchronizing

incremental and historical data in a single table, making data immediately available upon

ingestion. However, the traditional approach of determining whether all required data has been

written based on time intervals is no longer applicable in the absence of incremental and full

tables. If the required data is not entirely ingested during the calculation, it may lead to

inaccuracies and discrepancies in results from multiple calculations.

One approach to address this challenge is to save data at different times in a timeline and

retrieve data at different time points through timeline backtracking, thus improving the

accuracy of calculation results. However, since data is ingested in real-time, ensuring that the

required data is fully available when a calculation task starts becomes a crucial aspect of the

data lake system [7]. Simply relying on time and parent node dependencies cannot fully

satisfy this requirement. To address this issue, the company, in its self-developed ETL data

ingestion tool, referenced the watermark concept from streaming computing frameworks. It

designed a watermark data detection system that considers multiple dimensions such as the

time of data generation and the time of data ingestion. When the incoming data includes the

time of data generation, the system can record the maximum and minimum values of the fields

in each batch during ingestion through configuration. As the data generation time is

incremental, and considering possible delays, a 'table-ready' node was designed in the

scheduling process. The system determines that the required data is fully ingested by checking

if the maximum time of the data needed for a calculation task is less than or equal to (the

minimum time point in the latest batch ingested - acceptable delay time). Otherwise, the

scheduling program continues monitoring and waiting to ensure the timeliness and accuracy of

the scheduled tasks.

The specific process of publishing a computing task is as follows:

Configure the 'table-ready' node: In this node, configure the maximum time point (max_time)

of the data needed for the tables involved in the analysis program to determine that all

required data has been ingested.

Users save and submit the written analysis SQL, click 'run,' or configure the task scheduling

time. The scheduling system is responsible for triggering the execution. When saving, the

system automatically checks whether the user has read and write permissions for the analysis

table, and if the SQL statement is written correctly. When the scheduled time is reached, the

system sends the task to the execution program.

During program execution, the 'table-ready' node continuously checks whether the watermark

of the table meets the requirements. If not, it enters a loop waiting state until the watermark >=

max_time. Once the required data has been completely ingested, it starts executing the SQL

logic.

After the execution of the business logic is completed, update the task instance status and

notify relevant programs to display running data or execute the next node.

Once all nodes are completed, the process concludes.

4. System usage example

4.1. Partial Field Update

In company frequently encounters scenarios where various ledger tables in business systems

need to be transformed into a consolidated ledger table for use by the analysis system. The

existing middleware framework often results in delayed data updates, leading to inaccurate

analytical results that are unusable. Given that each ledger table in this scenario typically has a

unified identity recognition component, a self-developed merging logic class based on Hudi's

PartialUpdateAvroPayload class is employed in the data lake. See Figure 5, this class is

responsible for merging the updated data obtained from the business systems into the data lake

table.

Fig 5. Partial Field Update

Merging Logic:

1. Table create: Aggregate all table fields based on the primary key. To prevent other identical

fields in multiple tables, append the source table name to the field names in the wide table to

avoid inadvertent modifications.

2. Insert: Directly insert when there is no data with the primary key, and set other fields in the

wide table to null. If the data exists, update all fields involved in the wide table. When a field

in the inserted data is null, set it uniformly to a value that won't occur in the business scenario

based on the field type.

3. Update: Update all the fields involved in the table that are being updated, leaving other

non-updated fields unchanged.

4. Delete: Set all the involved fields in the wide table to null. If all fields are null, delete the

data.

4.2. Large-Scale Data Update and Merge

In the company's use of the data lake, the primary data scenario involves daily ingestion of

billions of records into a single table, with a significant number of update operations. In the

existing mid-tier system for this scenario, the data has to be first written to incremental tables,

and a daily schedule is employed to merge and obtain the final results. As the Figure 6

described, With the adoption of data lake technology, data is directly written into the data table

using a read-time copy mode to accelerate the writing speed. Hudi's write-merge logic

consumes resources, and simultaneous writing and merging impact the writing speed. In a

scenario where scheduling and merging are separated, the writing program generates log files

in real-time, while the merging program is cyclically scheduled by the scheduling module.

Fig 6. Large-Scale Data Update and Merge

5. Conclusions

The current integrated construction system for the power grid scenario based on Hudi involves

the overall development of the data lake-warehouse system, encompassing data ingestion,

storage, management, analysis, and utilization. The goal is to enhance data timeliness, reduce

usage costs, and achieve dynamic scaling and resizing while ensuring data accuracy and

stability. Built around Hudi as the core data storage component, the system implements

storage-compute separation and supports dynamic scaling and resizing. It leverages big data

computing frameworks such as Spark/Flink and MPP libraries like Doris to address various

data analysis scenarios. This approach provides effective support for maintaining a balance

between storage and computing resources for the company's big data tasks, as well as ensuring

the timeliness of data analysis.

References

[1] Ait, E.S., Hajji, H., Ait, E.K.K., Badir, H. (2023) Spatial big data architecture: From Data

Warehouses and Data Lakes to the LakeHouse. Journal of Parallel and Distributed Computing, 176:

70-79

[2] Idowu, E.A.A., Teo, J., Salih S., Valverde, J., Yeung J.A. (2023) Streams, rivers and data

lakes: an introduction to understanding modern electronic healthcare records. Clinical medicine, 23:

409-409

[3] Jiménez, P., Roldán, J.C., Corchuelo, R. (2022) On exploring data lakes by finding compact,

isolated clusters. Information Sciences, 591: 103-127

[4] Colleoni, C.J., Teixeira, B.O., Dubugras, R.D. (2022) Data integration in a Hadoop-based

data lake: A bioinformatics case. International Journal of Data Mining & Knowledge Management

Process, 12: 1-24

[5] Joe, M. (2021) The New Data Analytics: Riding on Data Lakes, Data Warehouses, and

Clouds. Database Trends and Applications, 35: 4-8

[6] Kimia, A., Maryam, G. (2023) Big Data Analytics Capability and Firm Performance:

Meta-Analysis. The Journal of Computer Information Systems, 63: 1477-149

[7] Ford, E.W. (2020) Data Streams, Data Lakes, and Information Pipelines: Enter the Chief

Research Information Officer. Journal of Healthcare Management, 65: 379-381

https://scholar.cnki.net/home/search?sw=6&sw-input=Ait%20Errami%20Soukaina
https://scholar.cnki.net/home/search?sw=6&sw-input=Hajji%20Hicham
https://scholar.cnki.net/home/search?sw=6&sw-input=Ait%20El%20Kadi%20Kenza
https://scholar.cnki.net/home/search?sw=6&sw-input=Badir%20Hassan
https://scholar.cnki.net/journal/index/SJES074373151189
https://scholar.cnki.net/home/search?sw=6&sw-input=Idowu%20Esther%20Ayobamidele%20Abisola
https://scholar.cnki.net/home/search?sw=6&sw-input=Teo%20James
https://scholar.cnki.net/home/search?sw=6&sw-input=Salih%20Sabrine
https://scholar.cnki.net/home/search?sw=6&sw-input=Valverde%20Joshua
https://scholar.cnki.net/home/search?sw=6&sw-input=Yeung%20Joshua%20Au
https://scholar.cnki.net/journal/index/7de94fb8-522c-4ecb-96d6-d17e6afcfe79
https://scholar.cnki.net/home/search?sw=6&sw-input=Jim%C3%A9nez%20Patricia
https://scholar.cnki.net/home/search?sw=6&sw-input=Rold%C3%A1n%20Juan%20C.
https://scholar.cnki.net/home/search?sw=6&sw-input=Corchuelo%20Rafael
https://scholar.cnki.net/journal/index/SJES002002550150
https://scholar.cnki.net/home/search?sw=6&sw-input=Joe%20McKendrick
https://scholar.cnki.net/journal/index/SPQD154798979881
https://scholar.cnki.net/home/search?sw=6&sw-input=Kimia%20Ansari
https://scholar.cnki.net/home/search?sw=6&sw-input=Maryam%20Ghasemaghaei
https://scholar.cnki.net/journal/index/STJD088744170715
https://scholar.cnki.net/home/search?sw=6&sw-input=Ford%20Eric%20W.
https://scholar.cnki.net/journal/index/SPQD109690127420

