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Abstract. This current data integration system utilizes various methods such as 

DataWorks_DI, Ogg+DataHub, etc., for large-scale data access. It generates shared layer 

and analytical layer data in a T+1 manner, supporting upper-level data applications 

through Restful services. Given the existing data architecture, there are issues including 

redundant data synchronization links, inadequate processing timeliness, slow application 

queries, and non-integrated quantitative measurement data. These issues result in 

situations where business users still encounter unavailable or unreliable data during data 

utilization. To address the overall requirement of improving the timeliness of the data 

centralization system, and to meet the business needs for various real-time common data 

sets, there is an urgent need to establish a data architecture system that includes real-time 

incremental and full-data merging, real-time data processing modeling, and real-time 

data services. This system aims to build a comprehensive data processing capability that 

integrates both streaming and batch processing, enhancing the timeliness of data 

centralization application support. The goal is to enable rapid perception, monitoring, 

alerting, and processing of data from production business systems, ultimately improving 

the stability of production system operations. 
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1. Introduction 

With the continuous development and updates of the company's information technology, the 

volume of business data, operational logs, and other data generated by various business systems 

has experienced exponential growth. To address issues related to data storage and computation, 

the company has introduced various products associated with the data hub, which are currently 

widely used in multiple scenarios. However, as the requirements for the timeliness of analytical 

data increase, the conventional T+1 analytical approach is no longer sufficient. To address this 

challenge, a new lake-warehouse integration construction system based on Hudi is proposed for 

the power grid scenario [1]. This system aims to provide a comprehensive solution to enhance 

data processing efficiency and meet the increasing demands for analytical data timeliness. 

Based on the concept of a data lake, integrating open-source frameworks with the data 

centralization platform, we are constructing a comprehensive data development platform for 
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real-time data warehousing technology. This platform facilitates the ingestion, analysis, and 

operation of data from multiple sources and different formats, elevating traditional big data 

analytics from a T+1 scenario to a minute-level responsiveness. This significantly enhances 

the timeliness and accuracy of data. The platform accommodates the parsing and 

transformation of data from various heterogeneous sources, conducting technical verification, 

design implementation, and functional testing of data lake components [2]. This effort aims to 

improve data timeliness, simplify data analysis complexity, balance the trade-off between data 

timeliness and computational resource utilization, and optimize the design of data lake layers 

based on the improved real-time capabilities. 

This article, based on new big data components such as Hudi and the integrated construction 

concept of data lake and warehouse, proposes a comprehensive lake-warehouse construction 

system for the power grid scenario based on Hudi. It provides a detailed exposition of the 

construction system, covering platform architecture, platform design philosophy, and common 

scenarios. The discussion delves into the specifics of building a unified lake-warehouse 

system tailored for the power grid scenario using Hudi and similar cutting-edge big data 

components. 

2. Integrated Lake-Warehouse Overall Architecture Design 

The integrated lake-warehouse construction system for the power grid scenario based on Hudi 

primarily encompasses full-scenario construction, including data ingestion, data management, 

data development, computation and storage resource control, task scheduling, and more. The 

most crucial aspect of this architecture, in comparison to the company's previous big data 

frameworks, is the ability to ingest and query data at a minute-level granularity. To achieve 

this requirement, the system employs a combination of in-house developed tools and 

open-source technologies, designed around Hudi. It relies on S3 object storage and Kubernetes 

(k8s) for resource management, achieving effective resource isolation [3]. This comprehensive 

architectural framework covers the entire process from development to analysis and 

visualization. 

The system includes in-house developed data ingestion tools that support the ingestion of data 

from dozens of internal data sources. It introduces a new data layering approach, breaking 

away from fixed relationships between traditional data centralization layers while still 

maintaining compatibility with traditional data centralization scheduled offline analysis. This 

ensures the timely acquisition of changes in the underlying analytical data for scenarios with 

high real-time change demands, facilitating the retrieval of the latest results. The specific 

technical architecture is illustrated in the diagram below Figure 1. 



 

Fig 1. framework 

3. Main Tasks of System Construction 

3.1. Data Integration 

In the aspect of data integration, we conducted separate tests on the performance and resource 

consumption of data ingestion using Spark, Flink, and the Java client approach. Both Spark 

and Flink require additional memory and resources to maintain the cluster, which is inefficient 

for data ingestion tasks [4]. Moreover, the data types supported by Spark and Flink are bound 

to their own types, making it challenging to integrate with the existing products in our 

company. Although the Java client approach provides more flexibility for data transformation 

and ingestion, its data write interface is not mature, and the existing functionality does not 

meet the requirements of our company's business. 

To strike a balance between data writing efficiency and resource consumption, and to meet the 

later demand for real-time data ingestion monitoring, we performed source-code-level 

development and optimization of Hudi. See Figure 2, We utilized the Java client approach in 

conjunction with our existing SG_ETL tool to develop a Hudi plugin, enabling unified offline 

and real-time data ingestion. Compared to traditional methods, this approach significantly 

saves resources during data writing, and during transmission, it allows real-time monitoring of 

data writing based on the content of each batch of data ingested into the lake, thereby reducing 

write latency. 

 

Fig 2. Data ingestion 



3.2. Storage-Compute Separation 

With the current 10 Gigabit network bandwidth, network transmission is no longer a 

performance bottleneck. The primary task of a data lake system is how to manage the 

relationship between the storage resources for a massive amount of platform data and the 

computing resources for various types of analysis tasks in different businesses. See Figure 3, 

Due to differences in storage data formats and importance levels, a unified storage-compute 

architecture cannot independently scale storage or computing resources. In response to 

practical scenarios, the system adopts a storage-compute separation approach. The system 

stores business data in the Hudi format in S3-like systems, ensuring data storage isolation 

between different layers and users based on their respective buckets. For computing, Flink and 

Doris are used based on different scenarios such as analysis and ad-hoc queries. Analytical 

tasks run on Kubernetes (k8s) [5], and multi-tenant resource allocation and isolation are 

ensured through Kubernetes' permission management. The storage structure is illustrated in 

the diagram below. 

 

Fig 3. Storage-Compute Separation 

3.3. Data Model 

In traditional big data models, data is divided into source layer, shared layer, analytical layer, 

and other business logic. This model, when calculating data on a daily basis, allows multiple 

businesses to share the same calculated part, saving resources. However, in a data lake, the 

bottom layer of source data is updated in real-time. Using the traditional layering model 

cannot reflect the real-time data writing characteristics. Business logic can only meet the 

timeliness of processing logic by directly reading source layer data during computation. 

Based on the real-time characteristics, we have formulated the development idea of storing 

algorithms without storing data, with independent business logic. Nodes within a business are 

dependent on each other, while nodes outside the business are for analysis. Although this 

increases the computational cost, each business logic can achieve the optimal execution time. 

At the same time, to be compatible with traditional daily-level business operations, as Figure 4 

show, we retain the layered model, recording the snapshot information of each table after the 

last update each day. Through the source layer, relevant calculations are executed to the shared 

analytical layer, achieving compatibility with the lake-warehouse and fully supporting the 

original business logic analyzed on a daily basis. 

We have specified a data table creation standard, where the data lake tables follow the 

convention of using the business system name as a prefix + specific table name. and the prefix 

is used to automatically obtain information such as business ownership and responsibility 



when creating the data table [6]. The creator ensures the classification of the data table, and 

business analysts can quickly obtain the required data by querying the system prefix for 

analysis. 

 

Fig 4. Data Model 

3.4. Watermark 

In traditional big data models, data is typically updated on a daily basis, and analysis can only 

be performed on the changes between the last snapshot of the previous day, with intermediate 

results being deleted during the merge process. This approach fails to meet the requirements 

for real-time and accurate analysis. The new data lake technology, leveraging the update and 

delete capabilities of components like Hudi, follows the 'one table' philosophy, synchronizing 

incremental and historical data in a single table, making data immediately available upon 

ingestion. However, the traditional approach of determining whether all required data has been 

written based on time intervals is no longer applicable in the absence of incremental and full 

tables. If the required data is not entirely ingested during the calculation, it may lead to 

inaccuracies and discrepancies in results from multiple calculations. 

One approach to address this challenge is to save data at different times in a timeline and 

retrieve data at different time points through timeline backtracking, thus improving the 

accuracy of calculation results. However, since data is ingested in real-time, ensuring that the 

required data is fully available when a calculation task starts becomes a crucial aspect of the 

data lake system [7]. Simply relying on time and parent node dependencies cannot fully 

satisfy this requirement. To address this issue, the company, in its self-developed ETL data 

ingestion tool, referenced the watermark concept from streaming computing frameworks. It 

designed a watermark data detection system that considers multiple dimensions such as the 

time of data generation and the time of data ingestion. When the incoming data includes the 

time of data generation, the system can record the maximum and minimum values of the fields 

in each batch during ingestion through configuration. As the data generation time is 

incremental, and considering possible delays, a 'table-ready' node was designed in the 

scheduling process. The system determines that the required data is fully ingested by checking 

if the maximum time of the data needed for a calculation task is less than or equal to (the 

minimum time point in the latest batch ingested - acceptable delay time). Otherwise, the 

scheduling program continues monitoring and waiting to ensure the timeliness and accuracy of 

the scheduled tasks. 



The specific process of publishing a computing task is as follows: 

Configure the 'table-ready' node: In this node, configure the maximum time point (max_time) 

of the data needed for the tables involved in the analysis program to determine that all 

required data has been ingested. 

Users save and submit the written analysis SQL, click 'run,' or configure the task scheduling 

time. The scheduling system is responsible for triggering the execution. When saving, the 

system automatically checks whether the user has read and write permissions for the analysis 

table, and if the SQL statement is written correctly. When the scheduled time is reached, the 

system sends the task to the execution program. 

During program execution, the 'table-ready' node continuously checks whether the watermark 

of the table meets the requirements. If not, it enters a loop waiting state until the watermark >= 

max_time. Once the required data has been completely ingested, it starts executing the SQL 

logic. 

After the execution of the business logic is completed, update the task instance status and 

notify relevant programs to display running data or execute the next node. 

Once all nodes are completed, the process concludes. 

4. System usage example 

4.1. Partial Field Update 

In company frequently encounters scenarios where various ledger tables in business systems 

need to be transformed into a consolidated ledger table for use by the analysis system. The 

existing middleware framework often results in delayed data updates, leading to inaccurate 

analytical results that are unusable. Given that each ledger table in this scenario typically has a 

unified identity recognition component, a self-developed merging logic class based on Hudi's 

PartialUpdateAvroPayload class is employed in the data lake. See Figure 5, this class is 

responsible for merging the updated data obtained from the business systems into the data lake 

table. 

 

Fig 5. Partial Field Update 



Merging Logic: 

1. Table create: Aggregate all table fields based on the primary key. To prevent other identical 

fields in multiple tables, append the source table name to the field names in the wide table to 

avoid inadvertent modifications. 

2. Insert: Directly insert when there is no data with the primary key, and set other fields in the 

wide table to null. If the data exists, update all fields involved in the wide table. When a field 

in the inserted data is null, set it uniformly to a value that won't occur in the business scenario 

based on the field type. 

3. Update: Update all the fields involved in the table that are being updated, leaving other 

non-updated fields unchanged. 

4. Delete: Set all the involved fields in the wide table to null. If all fields are null, delete the 

data. 

4.2. Large-Scale Data Update and Merge 

In the company's use of the data lake, the primary data scenario involves daily ingestion of 

billions of records into a single table, with a significant number of update operations. In the 

existing mid-tier system for this scenario, the data has to be first written to incremental tables, 

and a daily schedule is employed to merge and obtain the final results. As the Figure 6 

described, With the adoption of data lake technology, data is directly written into the data table 

using a read-time copy mode to accelerate the writing speed. Hudi's write-merge logic 

consumes resources, and simultaneous writing and merging impact the writing speed. In a 

scenario where scheduling and merging are separated, the writing program generates log files 

in real-time, while the merging program is cyclically scheduled by the scheduling module. 

 

Fig 6. Large-Scale Data Update and Merge 

5. Conclusions 

The current integrated construction system for the power grid scenario based on Hudi involves 

the overall development of the data lake-warehouse system, encompassing data ingestion, 

storage, management, analysis, and utilization. The goal is to enhance data timeliness, reduce 

usage costs, and achieve dynamic scaling and resizing while ensuring data accuracy and 

stability. Built around Hudi as the core data storage component, the system implements 

storage-compute separation and supports dynamic scaling and resizing. It leverages big data 

computing frameworks such as Spark/Flink and MPP libraries like Doris to address various 

data analysis scenarios. This approach provides effective support for maintaining a balance 



between storage and computing resources for the company's big data tasks, as well as ensuring 

the timeliness of data analysis. 
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