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AbstractThis article mainly discusses the methods of predicting specific datasets using 
linear regression with regularization and linear regression with gradient descent. Firstly, 
the basic principles and mathematical models of these two methods are introduced in detail. 
Then, through case studies, the authors demonstrate how to apply these two methods for 
prediction in real-world problems. Finally, the article discusses the advantages and 
disadvantages of these two methods and how to choose the appropriate method in practical 
applications. 
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1 INTRODUCTION 

The problem at hand is to analyze and predict the values of different suburbs or towns in the 
city of Boston using a given dataset. This dataset encompasses a variety of attributes, including 
urban population, city size, river water quality, species diversity, and urban consumption levels. 
The primary objective is to build models that can accurately predict the median value of a home 
while gaining insights into the relationship between various attributes and home values. 

There are several important reasons why addressing this issue is crucial. Firstly, predicting home 
values can greatly benefit buyers, sellers, and investors in understanding the real estate market 
and making informed decisions regarding buying, selling, and investing. This allows them to 
make strategic decisions based on the projected performance of the real estate market. 

Additionally, governments and urban planners can utilize these predictive models to develop 
better housing policies and promote sustainable urban development. By understanding the 
relationship between various attributes and home values, policymakers can make informed 
decisions to create more livable and affordable communities. 

Furthermore, investors can leverage these predictive models to assess potential investment 
returns and risks in different regions. This enables them to make informed investment decisions 
based on the projected performance of the real estate market in specific areas. 

To address this problem, we will first consider the methodology, which involves utilizing 
Simple Linear Regression and Multiple Linear Regression to analyze the dataset. Additionally, 
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other methods of linear regression will also be explored. We will then substitute and analyze the 
experimental dataset, while also setting up the experiment to ensure accurate and reliable results. 

2 METHODOLOGY 

2.1Linear Regression 

Regression is a statistical technique used to describe the dependence of a response variable on 
a set of explanatory variables. There are two reasons for using regression model. One is to 
identify how changes in an explanatory variable affects the response. This can be useful for 
identifying patterns and trends in data that may not be immediately apparent. Another is for the 
purpose of prediction. When used for it, the model provides an estimate of the predicted values 
of the response as a function of the explanatory variables. Moreover, regression has many 
practical applications in fields such as economics, finance, and social science.[1] 

Linear Regression is a popular approach in machine learning. It is useful to allow us to model 
the relationship between input variables and the output variable, which is a general way for data 
fitting.  

Nowadays, there are many studies on optimization of Linear Regression. In this report, we apply 
the normal equation and gradient descent on Linear Regression for the prediction of Boston 
Housing Price, which aims to study the performance of these several models.[1] 

2.1.1Simple Linear Regression 

Simple Linear Regression has only one input variable. It is often used in various areas such as 
finance, mathematics, clinical medicine, and others.[2]  

Suppose there are 𝑛 observation values in a dataset, each with two features x and y. Our goal 
is to find a linear model that best fits these observation values. 

Assume the linear regression function is: 𝑦 𝛽 𝛽 𝑥, and we need to fit β β , β  by 
minimizing the sum of squared errors (SSE, according to the ordinary least squares (OLS) 
method)  

∑ 𝑦 𝑦 ∑ 𝑦 𝛽 𝛽 𝑥            (1) 
We assume that the loss function 𝐽 𝛽 , 𝛽  equals to Equation (1). 

And we partially derive 𝛽  and 𝛽  on 𝐽 𝛽 , 𝛽  and let the derivatives equal to 0, then we 
get:  

𝛽 𝑦 𝛽 �̅�       (2) 
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where 𝛽  is the slope of the line, 𝛽  is the intercept, 𝑛 is the number of observations 𝑥, 𝑦 , 
𝑥 and 𝑦 are the observation values. [3] 

2.1.2Multiple Linear Regression 

Multiple Linear Regression is defined as a model of the association between several inputs and 
an output, which is often used,[4] for example, in salary and many factors such as education level, 



race, age, work experience, gender etc. Assume that there is a hyperplane 𝑦 𝛽 𝛽 𝑥
𝛽 𝑥 ⋯ 𝛽 𝑥   , where 𝑦  is the target variable, 𝐱𝟏, 𝐱𝟐, . . . , 𝐱𝐩   are the features, 
𝛃𝟏, 𝛃𝟐, . . . , 𝛃𝐩  are the coefficients and 𝛽  is the parameter. 

A more complex method of Ordinary Least Squares (OLS) than above is to find the optimal 
solution for the matrix 𝛃𝟏, 𝛃𝟐, . . . , 𝛃𝐩 : 

𝐀 𝐗′ 𝐗′ 𝑋′ 𝐘      (4) 
where the size of matrix 𝐗  is 𝑚  rows by 𝑛  columns, which means the number of 
observations is 𝑚, and the number of independent variables is 𝑛. 𝐗′  means the transpose of 
matrix 𝐗′, 𝐗′ 𝐗′  denotes the inverse of the product of 𝐗′ transpose and 𝐗′. The result 𝐀 
represents the optimal solution, where [𝛽 , 𝛽 , ..., 𝛽 ] are the first 𝑛 elements of the parameter 
matrix 𝐀 and 𝛽  is the last element of matrix 𝐀.[4] 

Linear regression models can be solved using standard least squares methods, making them 
computationally efficient and easy to implement. But it is also sensitive to outliers, and outliers 
can have a large impact on the model’s fit, leading to unreliable results. 

2.2Linear Regression with Regularization 

To avoid the over-fitting situation, a regularization term can be added to the Equation (1) to 
avoid the parameters of the regression to be extremely large. Ridge Regression and Lasso 
Regression is a variation of linear regression that aims to reduce the complexity of the model 
by adjusting the loss function. This adjustment involves introducing a penalty parameter that 
corresponds to the squared magnitude of the coefficients.  

2.2.1Ridge Regression 

Firstly, we define the loss function:  

𝐿 𝑆𝑆𝐸 𝜆𝑅𝑒𝑔 ∑ 𝑦 𝑦 𝜆|𝛽|       (5) 
where 𝜆 is the regularization parameter or penalty parameter, |𝛽| is the norm of the vector 
𝛽 𝛽 , 𝛽 , 𝛽 , … , 𝛽 .  

In Ridge Regression, the L2 norm is applied on the Equation (5): |𝛽| ∑ 𝛽  .[5] 

The regularization term in ridge regression penalizes each regression coefficient and drives them 
towards smaller values. By shrinking the size of the regression coefficients, the regularization 
term reduces the variance of parameter estimates and helps mitigate the impact of 
multicollinearity so that the smooth parameter estimates can be obtained. Its parameter estimates 
typically do not become exactly zero, making it relatively weak in terms of feature selection. 

2.2.2Lasso Regression 

The loss function is the same as the Equation (5). But what the difference in Lasso Regression 
is that the L1 norm is applied: |𝛽| ∑ 𝛽  . 

The L1 norm is the sum of the absolute values of regression coefficients. It has the effect of the 
sparsity to the regression coefficients. When L1 norm is used as a regularization term, LASSO 
regression can shrink some regression coefficients to zero, effectively achieving feature 



selection by automatically identifying the most important features. It tends to produce sparse 
parameter estimates, meaning it sets some of the coefficients of unimportant features to zero. 
Therefore, LASSO regression is very useful for feature selection, as it can identify the most 
relevant features and eliminate redundant and noisy features.[6] 

So compared to the general linear regression, the difference is the regularization term 𝜆|𝛽|. The 
parameter λ controls the trade-off between the data fitting term (SSE) and the regularization 
term. A larger λ increases the penalty on the model complexity, encouraging the model to select 
fewer features or simpler parameter estimates, thereby reducing the risk of over-fitting. A 
smaller value of λ leans towards better fitting the training data but may lead to over-fitting and 
high variance. Therefore, by adjusting the value of λ, one can balance the trade-off between 
fitting and regularization to achieve better model performance.[7] 

To obtain the optimal vector 𝛽 , we can also use the same formula in 2.1.2, which is the normal 
equation. It obtains the closed-form solution for the optimal parameters by solving the equation 
where the derivative of the loss function is zero. This method is suitable for small datasets but 
may not be computationally efficient for large datasets. 

There is another method to find the optimal vector 𝛽: Gradient Descent. It iteratively updates 
the β vector to gradually minimize the loss function until it reaches the optimal solution. The 
details are as follows. 

2.3Linear Regression with Gradient Descent 

Gradient descent is an iterative optimization method used to locate the optimal value (maximum 
or minimum) of a specific objective function. This technique has gained widespread recognition 
in machine learning projects for refining model parameters and minimizing lost functions. 

The main goal of gradient descent is to find the best parameters of the model that give it the 
highest accuracy on both the training and test datasets. In gradient descent, the gradient refers 
to a vector that represents the direction of the fastest growth of the objective function at a certain 
point. By moving in the opposite direction of the gradient, the algorithm gradually descends 
towards lower function values and eventually reaches the minimum of the function. Gradient 
descent is a fundamental technique used in various machine learning algorithms to optimize 
model performance. 

During model training, the model calculates a lost function, such as root mean square error, by 
comparing the predicted value (𝑝𝑟𝑒𝑑) with the true value (𝑦). The purpose of our model is to 
minimize this lost function. 

To minimize the lost function, the model needs to determine the optimal values of 𝜃  and 𝜃 . 
Initially, the model randomly chooses the values of 𝜃  and 𝜃 , and then iteratively updates 
these values to minimize the lost function until the minimum value is reached. Once the model 
reaches the minimum lost function, it will have the best values for 𝜃  and 𝜃 . 

Using these updated values of 𝜃  and 𝜃  in the hypothesis equation of the linear regression 
model, our model can predict the output value 𝑦. The gradient descent algorithm for linear 
regression is:  

𝜃 𝜃 ∑ ℎ 𝑥 𝑦 𝑥     (6) 



where 𝜃  is the weights of the hypothesis, ℎ 𝑥  is the first 𝑖 input the 𝑦 value, 𝑖 is the 
feature index 0, 1, 2, . . . . . . , 𝑛  and 𝛼 is the learning rate.[8] 

Gradient Descent is applicable to different lost functions and has the capability to handle 
regression problems that involve non-linear relationships. And it can efficiently handle large by 
updating the parameters sequentially for each training example. 

3 EXPERIMENTS 

3.1 Dataset 

The provided passage pertains to a database containing information about various suburbs and 
towns in the Boston area. This dataset was compiled from the Boston Standard Metropolitan 
Statistical Area (SMSA) in the year 1970. Each entry or record within this database serves as a 
description for a specific Boston suburb or town, encompassing a range of attributes that 
characterize these locales (Table 1). 

TABLE 1. Attributes of the dataset 

CRIM This attribute denotes the per capita crime rate associated with each town. 

ZN 
This attribute represents the proportion of residential land zoned for large lots, 

typically measuring over 25,000 square feet, within the town or suburb. 

INDUS 
This attribute represents the proportion of non-retail business acres per town or 

suburb. 

CHAS 
This attribute represents a binary value that indicates whether a given town or 

suburb is bounded by the Charles River or not. 

NOX 
This attribute represents the concentration of nitric oxides (NOx) in parts per 10 

million (ppm) in the air of a given town or suburb. 

RM 
This attribute represents the average number of rooms per dwelling in a given 

town or suburb. 

AGE 
This attribute represents the proportion of owner-occupied units built before 1940 

in a given town or suburb. It provides information about the age distribution of 
the housing units within the area. 

DIS This attribute stands for "weighted distances to five Boston employment centers". 

RAD 

This attribute stands for "index of accessibility to radial highways". It represents 
a measure of how easily a given town or suburb's location can access radial 

highways, which are major roads leading outward from the city center in a hub-
and-spoke pattern. 

TAX 
This attribute represents the full-value property tax rate for each town or suburb. 
It indicates the annual property tax amount levied on property owners based on 

the assessed value of their properties. 

PTRATIO 
This attribute represents the pupil-teacher ratio in schools within each town or 
suburb. It's a measure of the number of students in relation to the number of 

teachers. 

B - 1000(Bk - 0.63)^2 
The expression B−1000(Bk−0.63)^2 appears to be a component of a formula or 
equation, but without further context or information about the variables and their 

meanings, it's challenging to provide a specific detailed explanation. 
LSTAT - % lower status of the population 

MEDV 
This attribute represents the median value of owner-occupied homes in thousands 

of dollars for each town or suburb. 

 



3.2Experimental Settings and Metrics 

The environment of experiments is as follows: 

The experimental equipment is a MacBook Pro (15-inch, 2016) with a 2.6 GHz quad-core Intel 
Core i7 processor and 16GB of 2133 MHz LPDDR3 memory. 

The operation system is macOS Monterey 12.6.7 and the programming tool is PyCharm 
2023.1.1 (Community Edition). Python version is Python 3.11.3, and the dependency library 
modules are matplotlib 3.7.2, pandas 2.0.3 and scikit-learn 1.3.0. 

3.3Experimentation 

There are four models to predict the Boston Housing Price: Linear Regression, Ridge 
Regression, Lasso Regression and Linear Regression with Gradient Descent. We figured all of 
them and compared their performance and scores (Table 2).  

TABLE 2. Python packages 

import matplotlib.pyplot, pandas, numpy 
from sklearn.linear_model import LinearRegression, Ridge, 

Lasso, SGDRegressor 
from sklearn.model_selection import train_test_split, 

GridSearchCV 
from sklearn.metrics import mean_squared_error 
from sklearn.preprocessing import StandardScaler 

We first define four functions to implement four models. After downloading the Boston housing 
price dataset into the project, we use the pandas in python to read the dataset. Then, we split it 
into features and target variables (x, y) and divide them into training and testing sets. The data 
is standardized using the StandardScaler package. The estimators used are LinearRegression, 
Ridge, Lasso, and SGDRegressor from the sklearn.linear_model package. Finally, we train the 
models on the training set, obtain the prediction values, compare them with the actual values, 
and calculate the mean squared error (MSE). 

There is something creative of how to choose the regularization term 𝛼 in Ridge Regression 
and Lasso Regression. We use GridSearchCV in python to try to select the optimal 𝛼.  

In Ridge Regression, through experiments with specific values of 0.01, 0.1, 1.0, 2.0, 5.0, and 
10.0, we found that the optimal regularization term is 2.0. So, we set the range of alpha from 
0.1 to 3.1 with an interval of 0.1. The final best alpha value is determined to be 
2.9000000000000004. 

In Lasso Regression, using the same specific values for testing, we found that the optimal alpha 
is 0.01. We speculate that for Lasso Regression, the smaller the alpha, the better the regression 
effect. So, we kept trying until alpha reached 1 , but the program threw an error indicating 
overfitting. Therefore, we concluded that the best regularization term for Lasso Regression, 
under successful fitting, is 1 . 

Based on the obtained optimal regularization terms, we calculated the mean squared error (MSE) 
for both models.[7] 

 



3.4Experimental Result 

The following four diagrams respectively represent Linear Regression, Ridge Regression, Lasso 
Regression, and Linear Regression with Gradient Descent, along with their corresponding Mean 
Squared Errors (MSE): 

 

Figure 1 Linear Regression 

 

Figure 2 Ridge Regression 

 

Figure 3 Lasso Regression 



 

Figure 4 Linear Regression with Gradient Descent 

Through these figures (figure 1-4), it can be observed that if we do not consider individual 
outliers, the predicted results of these models are quite close. For Ridge regression and Lasso 
regression, we adjusted the value of the alpha parameter in a timely manner. Without adjustment, 
the differences are more pronounced. 

TABLE 3. The values of MSE 

Models MSE 

Linear Regression 24.291119474973513 

Ridge Regression 24.35406348400126 

Lasso Regression 24.29111947497387 

Gradient Descent 24.620096310125522 

According to the experimental results, in the Boston housing price dataset, the MSE of Lasso 
Regression and Linear Regression is minimum, while that of Linear Regression with Gradient 
Descent is maximum. Therefore, on smaller datasets, the predictive performance of Linear 
Regression and LR with Regularization is better (Table 3). 

4 CONCLUSION 

Linear Regression is the fundamental linear regression algorithm used for predicting continuous 
target variables. Ridge Regression and Lasso Regression are improvements to Linear 
Regression, introducing regularization terms to reduce the risk of overfitting. Ridge Regression 
uses the regularization term with the L2 norm, which is suitable for situations where multiple 
correlations exist. Lasso Regression uses the regularization term with the L1 norm, which is 
suitable for scenarios involving feature selection and sparse modeling. Linear Regression with 
Gradient Descent solves the linear regression model parameters using gradient descent 
algorithms, which is suitable for large-scale datasets and high-dimensional feature scenarios.[9] 

Choosing an appropriate regression algorithm depends on the characteristics of the dataset and 
the requirements of the problem. If there is a high degree of correlation between features, 
consider using Ridge Regression; if feature selection or sparse modeling is required, consider 



using Lasso Regression; if the dataset is large or the feature dimension is high, consider using 
Linear Regression with Gradient Descent.[10] 
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