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Abstract

Collaborative machine learning is a promising paradigm that allows multiple participants to jointly train
a machine learning model without exposing their private datasets to other parties. Although collaborative
machine learning is more privacy-friendly compared with conventional machine learning methods, the
intermediate model parameters exchanged among different participants in the training process may still
reveal sensitive information about participants’ local datasets. In this paper, we introduce a novel privacy-
preserving collaborative machine learning mechanism by utilizing two non-colluding servers to perform
secure aggregation of the intermediate parameters from participants. Compared with other existing solutions,
our solution can achieve the same level of accuracy while incurring significantly lower computational cost.
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1. Introduction

Collaborative machine learning is a promising
paradigm for training models from datasets hosted
by distributed parties. In contrast to conventional
centralized machine learning in which a central
server with access to all the training data trains a
machine learning model locally, collaborative machine
learning allows multiple parties each with a local
dataset to jointly train a global model over the whole
dataset without revealing any party’s local dataset to
others. Collaborative machine learning is particularly
attractive when local datasets involve highly sensitive
information such as health records.

Unfortunately, even though the local training dataset
of each participant is kept secret from other parties
during the training process, intermediate model
parameters exchanged among different participants
during the training process may still reveal some
information about the local dataset, which may be
used to infer or even recover the local dataset of a
target participant [1–4]. In particular, recent studies
have shown that it is possible to reconstruct local
input data from gradient information in collaborative
learning [5]. Therefore, it is important to design a
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sound mechanism to prevent such privacy leakage in
collaborative machine learning.

Existing solutions for protecting participants’ data
privacy in collaborative machine learning can be
broadly divided into two categories. The first category
[6–11] uses cryptographic techniques to encrypt the
intermediate model parameters while still allowing
global model updates. Although these solutions can
ensure the confidentiality of local model parameters
during the training process, encryption and decryp-
tion operations usually incur high computation and
communication cost, which may be even infeasible
for resource-constrained mobile devices. The second
category [12–17] adopt the Differential Privacy (DP)
paradigm to have each party randomly perturbs its
intermediate model parameters to prevent others from
inferring its local dataset while still allowing a reason-
ably accurate model to be trained. In comparison with
the encryption-based solutions, DP-based collaborative
machine learning methods are easier to deploy and
incur much lower computation cost. However, there
is an inherent trade-off between the level of privacy
guarantee and the accuracy of the trained model. In
addition, the random noise introduced in every iter-
ation of the training process may make the training
process converge much slower.

In this paper, we tackle this challenge by introduc-
ing a novel privacy-preserving collaborative machine
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learning mechanism. Our mechanism explores two
non-colluding servers and efficient cryptographic tech-
niques to realize secure aggregation of local model
parameters during the training process and protect the
privacy of the local dataset of each participant. Com-
pared with existing solutions, our solution can train
a global model with the same accuracy of standard
machine learning methods while incurring very low
computation and communication overheads. Our con-
tributions in this paper can be summarized as follows.

• We a novel privacy-preserving collaborative
machine learning mechanism that explores two
non-colluding servers and efficient cryptographic
primitives.

• Our mechanism allows multiple parties to train
an accurate global model without revealing any
party’s local dataset to each other.

• We confirm the efficacy and efficiency of the
proposed mechanism via detailed simulation
studies.

The rest of this paper is structured as follows. Section
2 discusses the related work. Section 3 formulates the
problem to be solved and presents the system model,
adversary model, and our proposed privacy preserving
mechanism. Section 5 describes the experiments we
conduct to evaluate the performance of our proposed
mechanism. Section 6 finally concludes this paper.

2. Related Work
Various solutions have been proposed to protect the
data privacy of participants in collaborative machine
learning, which can be broadly classified into two
categories: encryption-based solutions and Differential
Privacy (DP)-based solutions.

Encryption-based solutions protect the intermediate
model updates through Secure Multi-Party Compu-
tation (SMPC). SMPC was developed for the scenar-
ios where multiple parties wish to jointly evaluate a
function over their private data without revealing any
party’s data to other parties. Different SMPC tech-
niques have been used to realize privacy-preserving
collaborative learning, including Yao’s garbled circuit
protocol [6, 7], homomorphic encryption [8, 9], secure
aggregation methods [10, 11], etc. These encryption
based mechanisms can produce accurate model without
harming the prediction accuracy of the trained model
because they do not change the model parameters.
On the other hand, since these techniques commonly
involve expensive public key operations, they usually
incur high computation and communication costs.

DP-based solutions protect participants’ data privacy
by having each participant randomly perturb its local
model parameters. Different DP-based solutions add

random noises to different model parameters, including
local model parameters [12–14], local objective func-
tionss [15, 16], and local training datasets [17]. DP-
based collaborative machine learning methods provide
a tunable balance between data privacy and model util-
ity. The additional computation cost introduced by the
perturbation is also small, making DP-based solutions
more efficient than encryption-based methods. How-
ever, the noises introduced during the training process
result in the decrease in the accuracy of the trained
model.

3. Problem Formulation

In this section, we introduce the system and adversary
models along with our design goals.

3.1. System Model

We consider a system in which a central server and N
participants collaboratively trains a global model. We
use the Alternating Direction Method of Multipliers
(ADMM) [18] as our machine learning method, which
is an promising machine learning framework and has
been attract a lot of attentions in recent years due to its
capability to support a wide range of objective functions
and mild constrains on objective functions such as weak
convexity.

In ADMM, participants minimize their local loss
functions based on their local dataset and reach
consensus with others to train a global model. The
constrained collaborative optimization problem can be
formulated as following:

min
xi∈RD ,i∈1,...,N

N∑
i=1

fi(xi)

subject to xi = z,∀i ∈ 1, ..., N

(1)

where xi ∈ RD is participant i’s local copy of the model
parameter to learn, and fi is participant i’s local loss
function. A consensus over x1, ..., xN needs to be reached
with the global copy of the model z to complete the
training process.

Under the ADMM framework, Eq. (1) can be
rewritten in the augmented Lagrangian form

Lρ(x1, ..., xN , z, λ) =
N∑
i=1

(fi(xi) + λi(xi − z) +
ρ

2
||xi − z||22)

(2)
where λ1, ..., λN are the augmented Lagrange multipli-
ers and ρ is the penalty term for regulation. Eq. (2) can
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Figure 1. ADMM based collaborative machine learning model

be further transformed into alternative x-update and z-
update in ADMM as follows.

xk+1
i = argmin

xi
(fi(xi) + λki (xi − z

k) +
ρ

2
||xi − zk ||

2
2)

zk+1 =
1
N

N∑
i=1

(xk+1
i +

1
ρ
λki )

λk+1
i = λki + ρ(xk+1

i − zk+1)

(3)

xk+1
i , zk+1, λk+1

i are values updated in the (k + 1)th

iteration.
The high-level system structure and the training

process is illustrated as Fig. 1. Participants are
responsible to update and maintain their own x values,
while the server aggregates the local updated x values
from all participants and updates the global z value.
The system works in a synchronous fashion. In the
(k + 1)th iteration, each participant i uses the current
global model parameter zk to calculate the new x value
xk+1
i according to the x-update step in Eq. (3) and then

sends xk+1
i and λki to the server. The central server

gathers the received x values and λ values from the N
participants and calculate new global parameter zk+1

based on the z-update step in Eq. (3) and send it to all
participants. After receiving the new global parameter
zk+1, each participant i calculates the new λ value based
on the λ-update step in Eq. (3). This alternative and
iterative parameter updating process terminates when
the change in z and the maximum difference between xi
and z between two adjacent iterations are both smaller
than predefined thresholds.

In this collaborative learning mechanism, the server
only requires participants to update their x and λ values
to train the final model, thus participants can keep their
local dataset unexposed to other parties.

3.2. Adversary Model
We assume that N participants and a central server
jointly train a machine learning model using the
ADMM-based collaborative learning algorithm. We
assume that the adversary is either be an honest-but-
curious central server or a malicious participant that
engages in the collaborative training and eavesdrops the
updated parameters from the victim. The adversary’s
goal is to infer a victim participant’s private dataset via
inference attacks.

We assume that the adversary can observe the
communication between the server and the victim
participant. Specifically, the adversary knows the z
values sent by the server, and the x and λ values sent
by the victim participant in each iteration. However,
we assume that the adversary does not have the direct
access to the victim’s local dataset.

We stress that if the accurate global model is
published by the end of training, the information
leakage of a participant’s local dataset caused by the
final model itself is inevitable. Therefore, we only
seek to prevent the information leakage caused by the
intermediate parameters in the training process alone.

4. The Proposed Approach
As discussed in Section 2, existing privacy preserving
collaborative learning solutions have different limita-
tions. DP-based solutions produces an inaccurate final
model, while encryption-based methods incur high
computation cost. To tackle with these limitations, we
seek to design a collaborative machine learning mecha-
nism that simultaneously achieves high model accuracy,
strong privacy guarantee for local participants, and
high computation efficiency.
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Inspired by the secure aggregation mechanisms [10,
11], we observe that the iterative updates of the
global model parameter can be considered as a SUM
aggregation of local model parameters. Therefore, we
propose a light-weight privacy preserving collaborative
learning method that explores two non-colluding
servers to allow participants to train an accurate
model efficiently without revealing information of
their private datasets. Such two non-colluding servers
have also been explored in other secure multiparty
computation applications such as [19].

We assume there are two non-colluding servers,
including a primary server S1 and an auxiliary server
S2. Server S1 is responsible for the global model
updates, and server S2 is merely used for privacy
provision. We assume that each participant i shares a
secret key Ki with the S2 via some secure channels.
The proposed privacy preserving collaborative machine
learning algorithm works as follows.

Before the first iteration, server S1 informs the IDs
of all the participants to S2 and then randomly selects
its initial z0 value and broadcasts it to all the N
participants. Each participant i selects its initial λ0

i . In
the (k + 1)th iteration (k ≥ 0), each participant i first
executes the x-step according to Eq. (3) as

xk+1
i = argmin

xi
(fi(xi) + λki (xi − z

k) +
ρ

2
||xi − zk ||

2
2) (4)

and computes

λk+1
i = λki + ρ(xk+1

i − zk) . (5)

LetH : {0, 1}∗ → RD be a cryptographic hash function
that maps any input into a D-dimensional vector. In
particular, suppose that each λki and xki is represented as
a q-bit binary number, i.e., λki , x

k
i ∈ {0, . . . , 2

q − 1}. Given
a cryptographic hash functionH ′(·) that maps any input
to a digest of h bits, where h ≥ qD, we can realize H(·)
by defining

H(x) = H ′(x) mod 2qD .

The participant i then generates a random noise rk+1
i =

H(Ki ||k), where Ki is the secret key shared with S2. He
then computes

yk+1
i = xk+1

i +
1
ρ
λki + rk+1

i (6)

and send yk+1
i to S1.

After receiving yk+1
1 , . . . , yk+1

N , server S1 informs S2
that it has received the local model parameters from all
participants. S2 then computes

rk+1 =
N∑
i=1

H(Ki ||k) (7)

and sends rk+1 to S1.
On receiving rk+1, server S1 then computes

zk+1 =
1
N

N∑
i=1

yk+1
i − rk+1

=
1
N

(
N∑
i=1

(xk+1
i +

1
ρ
λki + rk+1

i )) − rk+1

=
1
N

(
N∑
i=1

(xk+1
i +

1
ρ
λki +H(Ki ||k))) −

N∑
i=1

H(Ki ||k)

=
1
N

N∑
i=1

(xk+1
i +

1
ρ
λki )

(8)
and send it to all participants.

After receiving the new global parameter zk+1, each
participant i calculates the new λ value based on the
λ-update step in Eq. (3), and the (k + 1)th iteration
ends. Fig. 2 illustrates the proposed privacy preserving
collaborative learning system.

As we can see from Eq. (7) and Eq. (8), during the
training process, server S1 does not learn any of the
exact local parameters xk+1

1 , . . . , xk+1
N and λk+1

1 , . . . , λk+1
N

from any individual participant. Since S1 does not
know the secret key shared between each participant
and S2, it cannot remove rk+1

i from yk+1
i it receives to

recover xk+1
i or λk+1

i for any participant i. Meanwhile,
what S2 has at hand are only secret keys shared with
participants, and the current iteration number that S1
announces, it is impossible for S2 to infer the values
of xk+1

1 , . . . , xk+1
N and λk+1

1 , . . . , λk+1
N either. Therefore,

as long as S1 and S2 do not collude with each other,
neither of them can learn the values of xk+1

1 , . . . , xk+1
N

and λk+1
1 , . . . , λk+1

N in each iteration. The data privacy of
individual participants is thus preserved.

We can also see from Eq. 8 that S1 can still
compute an accurate global model parameter zk in
each iteration, so the utility of the final model is
not harmed. In contrast to existing encryption-based
solutions that involve expensive public key operations,
the cryptographic hash function that we use incurs
a much lower computation cost. There is only one
extra simple computation required from both S1 and
each participant, compared with the non-privacy-
preserving version. There is also only one more round of
message exchange between S1 and S2 in each iteration.
Therefore, our design goal has been fulfilled: high
accuracy of the model, high privacy preservation level
of participant’s data, and low computation cost.

5. Performance Evaluation
In this section, we report our experiment results.
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Figure 2. Privacy-preserving collaborative machine learning

5.1. Experiment Setup
We implemented our Privacy Preservation ADMM-
based Collaborative Learning algorithm (PPADMM)
based on Least Absolute Shrinkage and Selection
Operator (Lasso) as it can be easily extended to a
wide variety of statistical model. In addition, we
choose SHA-256 as the cryptographic hash function
in our algorithm. We implemented our solution using
Python 3. Our training and testing dataset in this
experiment is generated by the in-built regression
distribution generator in sklearn.datasets, a library
developed specifically for machine-learning purpose in
Python 3. sklearn.datasets can generate a dataset that
satisfies a certain Gaussian distribution with tunable
mean values and noise. The software is run on a laptop
with a 2.60 GHZ CPU that has 8 Intel i7-6700HQ cores
and 16GB RAM.

5.2. Experiment Design
Collaborative Learning System. The collaborative
machine learning system consists of 10 participants
and 2 non-colluding servers S1 and S2. S1 serves as
the primary server which gathers local parameters
and updates the global model, and S2 is responsible
for privacy provision. S1, S2 and participants update
global model and local models iteratively following the
protocol described in Section 4.

Dataset and System Parameters. We generate 22000
synthesized samples following a Gaussian distribution,
each with 10 features, and use them to train and test
our Lasso predictor. The size of the training set is
20000, and the size of the test set is 2000. The standard
deviation of the gaussian noise of the dataset is 20. We
set the learning rate α to be 0.001, and the regulation

parameter ρ to avoid overfitting to be 1, which are the
common parameter settings for Lasso regression.

Performance Metrics. We evaluate the performance of
our algorithm with following metrics.
Accuracy: We use 2 metrics to measure the accuracy

of our algorithm. The first one is the Root Mean Square
Error (RMSE) defined as follows.

RMSE =

√√√
N∑
i=1

(ŷi − yi)2

N
(9)

where yi is the true label of sample i, ŷi is the label
predicted by the model, and N is the total number of
samples. RMSE is a common method used to evaluate
the prediction error of a regression-based model. It
reflects the differences between the true values and the
predicted values of samples. The lower the RMSE is, the
more accurate the model is.

The second metric is the Model Parameter Euclidean
Distance (MPED), which is defined as follows.

MPED =
∥∥∥W − Ŵ ∥∥∥

2
=

√√
m∑
i=1

(wi − ŵi)
2

(10)

where W is the true regression function that generates
the training dataset, and Ŵ is the predictor trained
with our algorithm. wi and ŵi are the ith parameter
of W and Ŵ respectively, and m is the total number
of parameters. MPED represents the difference between
the parameters of the true regression function and the
predicted regression function. Smaller MPED indicates
that the predicted regression is closer to the true
distribution of data in the dataset.
Computation Cost: We measure the computation

cost of our algorithm when it is run with a certain

5 EAI Endorsed Transactions on 
Security and Safety 

01 2021 - 09 2021 | Volume 8 | Issue 28 | e3



Z. Liu, R. Zhang

(a) ε = 0.01 (b) ε = 0.1

(c) ε = 1 (d) ε = 10

Figure 3. Relationship between RMSE and the number of iteration of ADMM, PPADMM, and DSSGD.

iteration number. We consider the actual running
time of the algorithm as the computation cost in this
experiment.

5.3. Experimental Results

We compare three algorithms: the original ADMM-
Lasso, our algorithm PPADMM, and a classic DP-based
privacy preserving collaborative learning algorithm,
DSSGD [12], with respect to their performance on
model accuracy and computational efficiency using the
metrics in Section 5.2.

We measure both RMSE and MPED to evaluate the
accuracy of the regression models trained by all these
three algorithms with different privacy parameters
ε = 0.01, 0.1, 1, 10, respectively. The result is
shown in Fig. 3. We can see that our algorithm

PPADMM has the same RMSE as the original ADMM-
Lasso algorithm. This is because during the secure
aggregation process of PPADMM, the primary server
S1 removes the aggregated noise with the help of the
auxiliary server S2 to obtain the exact original global
model parameters, thus the final model produced by
PPADMM and ADMM-Lasso are identical. Since in
DSSGD the participants perturbs the local parameters
with Laplace noise in every iteration, it results in a
model that predicts labels of data with a much higher
RMSE compared with PPADMM and ADMM-Lasso. For
example, RMSE of DSSGD can still be larger than 100
when ε = 0.1 after it converges, while PPADMM and
ADMM-Lasso has a RMSE close to 20, which is the
standard deviation of the gaussian noise of the dataset.
The convergence speed of PPADMM and ADMM-Lasso
is also faster than that of DSSGD, according to Fig. 3. We
can also see that there is an inherent trade-off between
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(a) ε = 0.01 (b) ε = 0.1

(c) ε = 1 (d) ε = 10

Figure 4. Relationship between MPED and iteration number under ADMM, PPADMM, and DSSGD

the data privacy and model utility in a DP-based
mechanism. The RMSE of predicted labels generated by
DSSGD decreases as the privacy parameter ε increases,
indicating that the accuracy of the model increases as
the privacy guarantee decreases. Such trade-off does
not appear in PPADMM and ADMM-Lasso, as RMSE of
labels predicted in both mechanisms are independent
of the privacy parameter ε.

We also measure how Model Parameter Euclidean
Distance (MPED) of three algorithms (see Eq. (10))
change with the iteration number as the other criteria
for model accuracy. The result is shown in Fig. 4. We
can find that similar to the measurement of RMSE,
PPADMM and ADMM-Lasso generate smaller MPED
under different privacy parameters ε compared to
DSSGD, which means our algorithm trains a model
closer to the true distribution of original dataset.

Fig. 5 shows the computation time of three
algorithms. The x-axis represents the iteration number
that the algorithm runs, and the y-axis represents
the real-world computation time of the algorithm
spends with such number of iterations. We can
see that PPADMM has a higher computation cost
compared with ADMM-Lasso and DSSGD. The main
reason that PPADMM incurs higher computational
cost is that even though we apply SHA-256 as
our cryptographic hash function, and it is more
efficient than cryptographic techniques such as Yao’s
Garbled Circuit and homomorphic encryption used in
other existing cryptographic-based privacy preserving
collaborative algorithms, SHA-256 itself is still more
time-consuming compared with the generation of
Laplace noise in DSSGD. Although our algorithm
has a higher computation cost than DSSGD, we can
see that the difference between these two is not
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Figure 5. Comparison of the computation time of ADMM, PPADMM, and DSSGD

unacceptably large, and unlike other cryptographic-
based mechanisms [6, 8, 11], our algorithm results in
a linear-growth computational cost. We let participants
and S2 apply SHA-256 to generate secure hash digests
at each iteration in our implementation, allowing S2 to
change the secret key shared with a participant during
the training process. An more computationally efficient
approach for participants and S2 is that they can
pre-compute the hash digest before the collaborative
learning starts, if they agree on not changing the shared
secret key in the middle of the training.

Since the information leakage of participants’
local datasets caused by exchanged intermediates in
collaborative learning is fairly complex, and it varies
corresponding to different types of inference attacks
that the adversary launches, there is yet no universal
criterion that quantitatively measures such privacy
leakage in a collaborative learning system. We argue
that our algorithm provides stronger privacy guarantee
than DP-based mechanisms, since the intermediate
local parameters exchanged in PPADMM is merely the
cryptographic hash digest of the original ones. It is
computationally infeasible for the adversary to acquire
the original local parameters if he does not know the
secret key shared between participants and S2, due to
the one-way property and collision-free property of
the cryptographic hash function. On the other hand,
DP-based mechanisms provide privacy protection by
adding noise generated from a certain distribution
such as Laplace distribution. Such distribution can be
estimated through multiple rounds of observation on
the perturbed intermediates, and such estimation could
be used to reduce the impact of perturbation on these

intermediates and infer the distribution of original
intermediates.

6. Conclusions and Future Work
In this paper, we introduce a novel privacy-preserving
collaborative learning mechanism based on secure
SUM aggregation via two non-colluding servers. Our
solution allows the server to receive accurate aggregated
local model update in each iteration without learning
any individual participant’s local model update and
can achieve the same level of accuracy of standard
collaborative learning mechanisms. Built upon efficient
cryptographic primitives, the computation cost of our
mechanism is also orders of magnitude lower than
existing encryption-based solution. We have confirmed
the efficacy and efficacy of our mechanism through
experiment studies.
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