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Abstract

Smart watches allow instant access to information; however, the visual notification is not always reachable
depending on the forearm posture. Flexible and curved display technologies can enable full-wrist circumference
displays that show information at the most visible positions using pose awareness. A prototype device is
implemented with 10 LEDs and 10 accelerometers around the wrist. The most visible LED is estimated using a
machine learning technique. The main idea is to utilize direct relationship between the raw acceleration signals
and the position of the most visible LED, rather than assigning the position by particular classes of activities
or forward-kinematic model-based estimation. Also, sensor reduction is attempted by introducing new features.
A user study showed that the system allowed 89.9 % of the system’s judgment to fit with the gap of 1 LED (18
mm) from the user’s expectations. The rotation-sensitive features proved to be informative, and a single sensor
placed on the inside of the wrist achieved a performance level on par (F-measure 0.681) with the performance
when all (10) sensors are used.
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1. Introduction

Wearables attached to a user’s body as everyday objects,
like a watch, a shirt, shoes, a bracelet, and so on, allow
the user to be monitored and/or informed anytime,
anywhere. Various such applications have been proposed
for healthcare and fitness [11, 32, 45], social interaction
[5, 20, 21, 25], work support [37], safety awareness [1, 15],
education/training [8, 36] and notification of messages.
In particular, wrist-worn devices are very popular,
boosted by the cultural affinity to watches and bracelets.
Wrist is considered to be the most noticeable and
accessible position for information notification among
other bodily places such as arm, chest, shoulder, thigh,
waist, hip, and shoe [4, 16]. A number of such products

∗Corresponding author. Email: fujinami@cc.tuat.ac.jp

that fit into the category of smart watches have been
commercially brought to the market [3, 14, 34].

In a traditional smart watch that uses the watch face
as a display area, displayed information can be hidden
from the user’s viewpoint depending on the posture of
the forearm, which causes a delay or missed information
delivery. Tactile feedback, for example with vibrations,
can draw the user’s attention without distracting the
eye. However, these vibrations nonetheless distract the
user from ongoing tasks because he/she needs to turn
the watch display to his/her face to obtain information
details. To overcome this limitation, flexible and curved
displays have been drawing attention for using with
wrist-worn devices [6, 30, 33, 39, 42]. Such devices
expand the display area from a portion on the wrist,
like watch face, to the whole wrist circumference. This
motivated us to investigate a method to adjust the
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placement of information display within the whole wrist
circumference by taking into account the device posture.
We believe that this approach will result in fewer
interruptions to ongoing tasks.

With this goal in mind, we propose here a method
to identify the most visible position on the wrist from
among ten candidate positions based on the forearm
posture. The main idea behind this approach is to utilize
the relationship between the sensor (accelerometer)
signals and the most visible position. Applications for
such a forearm pose-aware information display are,
for example, notifying the user of incoming message
by turning the most visible part on (or changing its
color), displaying the email icon with the number of
unread messages, or displaying weather forecast. Our
proposed method is designed to be used as an ambient
or glanceable display [10, 18]. Detailed information
containing longer text and complex figures should be
explicitly accessed by the user after checking the initial
information and deciding to suspend on-going task.
Thus, orientation-adjustment is not considered because
the aforementioned content is less likely to be affected
by display orientation; this simplifies the system design.
The contributions of the article are as follows:

• A LED-based full-wrist circumference display
device is developed as a tool to investigate methods
of identifying the most visible position based on the
forearm posture.

• A method for selecting the most visible position
based on machine learning is proposed. Using
simple gravitational force as a classification feature
achieves the result that 89.9 % of the system’s
judgment fits within the width of ±1 LED (±18
mm) of the user’s expectations regarding the most
visible LED.

• Classification features are explored to improve the
selection accuracy as well as to reduce the number
of sensors. The results show that the rotation-
sensitive features are informative, and even a single
sensor placed on the inside of the wrist achieves
a performance level on par with the ten-sensor
version.

The rest of this article is organized as follows. Related
work is examined in Section 2. Section 3 describes
a prototype system that determines the most visible
position of a LED from ten candidate positions on the
whole wrist circumference based on the forearm posture.
An experiment to test the performance of the position
selection is presented in Section 4. An attempt to reduce
the number of sensors is described out in Section 5.
Finally, Section 6 concludes the article with an outlook.

2. Related work

2.1. Interaction on the arm and hand

The wrist is visible in most hand activities. Harrison,
et al. carried out an experiment to evaluate the
reaction-time performance against visual stimuli at seven
positions on the body: shoulder, chest, upper arm, waist,
wrist, thigh, and top of the shoe [16]. The result showed
that the wrist had the fastest reaction time to a visual
stimuli with the smallest standard error compared to
other positions. They argue that the wrist has a unique
role to deliver information most saliently during hand
activities. In another research, Ashbrook, et al.[4] carried
out an experiment to investigate the effect of placements
of on-body device (hip, pocket, and wrist) and activities
(walking and standing) on response time, where audio
notification (ringing) was utilized. The result showed
that the wrist was the fastest in acknowledging the
ringing. These studies suggest that the wrist is the most
suitable place for quick access to information on the
body.

In a conventional wristwatch-type device, the display
area is limited and fixed, namely the watch face. Flexible
and curved display devices [30, 33] expand display area
from a portion on the wrist to whole circumference
of the forearm [6, 39, 42]. Snaplet [39] is a sensor-
augmented flexible display device that can detect the
shape of the display, e.g., convex and flat, and offers
different interactions depending on the shape. SleeD
[42] is a touch-sensitive sleeve display that facilitates
explicit interaction with a wall-type display. DisplaySkin
[6] is a whole-wrist circumference display that is flexible
[30], and aims at realize implicit interactions with the
user by adjusting the position and the orientation of
displayed information to the forearm posture relative to
the shoulder. An experiment showed that the proposed
pose-aware display reduced the time to acknowledge the
notification, and minimized the overall interruption. The
concept of the display position adjustment is shown in
Cito [12], where the watch face itself can move around
the wrist manually or automatically to provide a variety
of new interactions. We share the idea of adjustment
of display position with DisplaySkin, which comes from
the nature of ambient or glanceable display; however,
we limit the display to show only iconic images or a
small number of characters not requiring an orientation
adjustment. Also, to make the display less obtrusive,
we do not take the watch-face movement approach like
Cito, because moving a relatively large display with a
certain mass would generate tactile feedback and cause
distraction. This design choice makes our system simple
yet useful as described in Section 2.2.

An array of tiny displays can create a flexible display
environment [23, 28]. Facet [23] has six segments of tiny
displays around the wrist; the user can assign particular
applications, e.g., weather forecast, calendar, etc., to
each of the segments. The range of the display area can
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be enlarged, and the position of the information can be
switched depending on the frequency of use. However,
the pairing of application (information) and the display
position needs to be specified by the user manually.
So, it may be difficult to acquire certain information
depending on the posture. Our proposed method can
be incorporated into Facet to make it pose-aware.
AugmentedForearm [28] is realized by connecting four
tiny displays in a row. In their prototype, information
detail and the level of privacy is controlled depending on
the coverage of clothes, e.g., sleeves, and the orientation
to the user. However, a method of estimating the
visibility of information to the user is not incorporated.

2.2. Human posture tracking

A number of human posture-tracking methods have been
developed for human-computer interaction. A popular
approach uses optical markers attached to the body and
cameras installed in the environment to capture the
posture [27, 41]. By contrast, the depth sensor-based
approach is a markerless method [9, 43], in which the
user does not need to attach any marker on his/her
body. However, a camera, which is a depth sensor, still
needs to be installed in the environment, which limits
the utilization of the system in a specific area, and also
faces occlusion problems.

Wearable devices have been investigated to allow
a system to track the user’s body posture anytime,
anywhere. Conductive polymer is used to track wrist
motion such as pronation/supination, ulnar/radial
deviation, and flexion/extension, in which load [22] and
stretch [38] generate a change in resistance in response to
the material deformation by wrist motion. Furthermore,
stretch sensing based on fiber optics is applied to
track flexion/extension and abduction/adduction of
wrist [19]. The utilization of surface electromyogram
(sEMG) sensor is a more direct approach [29, 40, 46],
in which electrical currents generated during muscle
contraction are measured, and neuromuscular activities
that generate particular postures are captured through
signal processing. By attaching widely spread electrodes,
as in a whole-wrist circumference device, various wrist
motions can be recognized [26, 29, 40]. These include
flexion/extension and pronation/supination of wrist. The
posture of forearm relative to the user’s eyes should
be identified to adjust the position of the display to
the users’ eye position. This requires separate devices
for elbow and shoulder joint movements, which makes
the system complicated and cumbersome for the user.
Furthermore, resistive sensor-based and sEMG-based
approaches require the sensor to be in contact with
the wrist firmly to capture proper deformation of the
resistive material and neuromuscular signal.

Inertial sensors provide information about the posture
based on the measurement of accelerometer, gyroscope,

and magnetometer. The advantage over resistive sensor-
based and sEMG-based approaches is that it allows
contact-free posture measurement. This means that an
inertial sensor does not need to be in contact with the
skin, but can be attached on the body part of interest.
By attaching two devices, for example one on the upper
arm and the other on the forearm, and setting body
parameters such as the relative position of the eyes
from the shoulder and the length of both upper arm
and forearm, the forward kinematic model can infer
the position and the orientation of the wrist relative
to the shoulder. This allows a system to identify the
most visible position as well as the orientation in any
position [6]. For our research, we adapt the inertial
sensor-based approach. However, we use only one device
that consists of one or more accelerometers on the wrist,
as this can fulfill the requirement for our applications:
the display content in our system does not contain long
pieces of text, but iconic images or a few words. So, a
user may interpret the information without the system
having to adjust the orientation relative to the user’s
eyes. In our approach, the model of visible positions for
different forearm postures is constructed by learning the
relationship between the sensor signals that represent
particular postures and the most visible positions. Such
“evidence-based” model requires a wide variation in
pairing of sensor signals and the most visible positions;
however, the processing algorithm becomes very simple,
and the system’s output is more effective because it
reflects actual visibility from the user’s point of view.

3. Prototype System

A prototype system is implemented based on our ideas to
investigate the most-visible-position-detection method.

3.1. Design

Assumptions and Requirements. The design of our
prototype system is based on the requirement that to
estimate the forearm posture, the user would wear a
single device on his/her wrist, rather than attaching
multiple devices (as in [6]). The device is assumed to
be stable around the forearm, meaning that it does
not rotate significantly around the wrist during forearm
motion, and therefore the display position on the device
does not change. This assumption is also followed in the
wrist watch design. We further require that the device
be flexible like a wrist belt. For judging the visibility
of the display, we assume that the forearm posture will
be stable for a certain time period. This assumption is
also often made in commercial smartphones [2, 13] on
the basis of mobile human-computer interaction research
[17, 35], where the screen orientation, namely landscape
and portrait, changes depending on the orientation of the
device.
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Design Choices. One sensor may be attached anywhere
to represent the “state” of the device, and to find the
relationship between the state and visibility if the device
is rigid and is circular or elliptical. Here, the state of
the device is defined by the shape and the posture of
the device. As assumed above, the device is flexible.
Therefore the shape of the device may change during
wearing and may differ from individual to individual.
To address the issue, two solutions are possible: 1)
finding places where deformation hardly happens and
2) capturing the dynamic shape changes. We can make
an analogy with sEMG-based human motion tracking,
in which specific electrode positions are utilized [7],
or dense electrodes on a whole-wrist circumference
device are used to measure forearm activity [29]. We
took the latter approach to capture the shape of the
device and the posture using as many accelerometers as
possible. This means that the shape of the whole-wrist
circumference device is represented by a set of vectors of
three gravitational components from all accelerometers.
However, using many sensors is not the final choice; the
number of electronic components should be minimized
to reduce the cost and the power consumption and also
to minimize the size and the weight of the device. So,
following an approach similar to that of the whole wrist
circumference sEMG-sensing device [29], we also tried
to reduce the number of sensors, as discussed later in
Section 5.

The final design of the display would be realized by
a single continuous wrist-circumference display [30, 33],
on which icons of corresponding data sources will be
presented with additional information at the most visible
position, However, in our prototype, multiple LEDs are
aligned around the wrist side-by-side at equal intervals.
The LED positions in this prototype can be converted to
particular areas on the continuous display concatenated
with each other.

The components of the prototype system are
illustrated in Figure 1. The system identifies the most
suitable LED for a particular forearm state based on
the relationship with acceleration signals. The main idea
is that the choice is made based on specific pattens of
acceleration signals, rather than specific class of activities
like reading a book or driving a car. The system does
not need to recognize the type of activity and obtain
the most suitable position for the activity. This frees
the device manufacturer from the burdensome task of
having to collect data for each activity class. The process
of obtaining one particular position (ID) of LED from
among multiple LEDs is defined as a classification task
in supervised machine learning, in which a set of data
(classification features) are given to a trained classifier,
which outputs the ID of the chosen LED.

Figure 1. Functional components of experimental
prototype system.

3.2. Implementation

A prototype system was implemented as follows. Ten full-
color LEDs (SWITCH SCIENCE SSCI-019156) and ten
tri-axis accelerometers (ADXL335) are connected to one
Arduino UNO with Mux Shield II via a soft cable of
about 1.2 m, in which accelerometers are sampled at
a rate of 50 Hz. Mux Shiled II is utilized to increase
the analog input ports. Arduino is connected to a PC
via USB cables. It runs the feature calculator and the
most-visible-LED-identification component (hereinafter
we call the identification component “LED selector”). In
the data collection and experiment, Arduino is usually
put on a table and, if necessary, the user holds it in the
other side of the hand. In this prototype, mean values of
ten samples (=200 ms) for each of the three axes of the
ten accelerometer are utilized as features that represent
gravitational force for each axis. We consider that the
combination of component gravitational forces of three
axes represent the posture of that accelerometer sensor,
and that the postures of the ten sensors around the wrist
indicate the forearm posture in the global coordinate
system. So, the dimension of the feature vector is 30
(=10 sensors × 3 axes). A Weka machine learning toolkit
[24] (version 3.7.13) is used to model and test the LED
selector.

Figure 2 depicts the equipment of the system showing
the ID assignments for both accelerometers and LEDs.
The sensors and the LEDs are soldered on a flexible
circuit board, and a polyurethane sheet (5 mm thickness)
is placed between the circuit board and the skin to
avoid hurting the skin in case that the board directly
touches the wrist. So, the thickness of the device from
the skin to the top of the accelerometer is about 13
mm. Due to the size limitation of the sensor and LED
modules, the accelerometers and LEDs are placed at
average intervals of 18 mm and 17 mm, respectively. As
the device is assumed to be stable around the forearm,
the IDs correspond to the positions of accelerometers and
LEDs: the ID 1 is on the ulnar styloid process (marked
“1” in Figure 2), and the numbers increase in a clockwise
manner. This means that LED “6” is near the radius
styloid process, while LED “9” is around the inner-wrist
center. Note that there is a 1 mm difference in the size
of the sensor and the LED, which breaks a one-to-one
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relationship between these components. However, this is
not problematic because these components are placed
independently placed: that is, sensori is not intended
to indicate the posture of LEDi, but to estimate the
posture of forearm.

Figure 2. Equipment of the prototype system and the
assignment of the IDs of sensors and LEDs.

3.3. Implementing LED selector

Data collection. As described above, the LED selector
is realized by supervised machine learning, in which a
classification model is trained with feature-class pairs.
We collected a dataset of 18 postures in daily activities
from 20 persons (16 males and 4 females). Their
wrist circumference ranged from 13.0 cm to 17.5 cm
(mean: 15.4 cm, S.D ±1.31). The device was attached
on the non-dominant hand (the left hand for all the
participants) to simulate a wrist watch. The participants
were asked to perform each of the 18 postures five times
(from posture 1 to 18) in their own way for one second
per posture. The postures as seen in daily activities are
shown in Figure 3. These are categorized into four groups
considering the height of the forearm against the eyes as
follows: 1) on or slightly above the thigh, 2) on or slightly
above the table, 3) above the table (near the chest), and
4) higher than the eye level. In 4), we ask the participants
to grab an object that is easily reachable, but not to try
to grab too high.

The procedure for data collection was as follows. First,
the participant was asked to simulate the activity and
hold the posture with his/her forearm for one second.
Then an experimenter turned on all LEDs. To identify
a particular LED easily, each of the ten LEDs had a
different color: green, orange, purple, red, blue green,
blue, yellow, pink, light blue, and white. Once the most
visible LED was answered, all LEDs were turned off,
and another trial started from the beginning after an
interval of 6 seconds. The participants were asked not to
focus on the device until it turned on, but to perform

the directed activity naturally. This procedure allows us
to collect pairs of acceleration signals and class labels for
supervised learning. Note that the LEDs were assigned
colors in a random order for each trial, and we confirmed
that the colors were distinguishable from each other.
The participant could take rest between trials to avoid
fatigue. No participant reported fatigue during or at the
end of the experiment.

We performed a one-way ANOVA to check if
there is any difference in the most visible positions
among postures. A significant difference was found
(F(17, 1782)=74.77, p<.01). So, we conclude that
the effectiveness of notification can be improved by
displaying it at the most visible position for each
posture. Note that we are interested in associating the
acceleration signals (rather than a posture like reading
a book, typing on a keyboard) with the position of the
most visible LED. This has the advantage that the LED
selector model can be applied to an unknown activity
with similar postures.

Classifier selection. There are benefits and limitations
associated with different classification models [31]. We
compared various types of modern supervised classifi-
cation models to find the most accurate one for later
experiments. Näıve Bayes (NB, a baseline approach),
Nearest Neighbor (NN, instance-based approach), Multi-
Layer Perceptron (MLP, an artificial neural network
approach), Sequential Minimal Optimization (SMO, a
support vector machine approach) with polykernel, deci-
sion tree (J48) and Random Forest (an ensemble learning
approach) were used in the comparison.

To evaluate our method under realistic conditions,
we conducted the leave-one-person-out cross-validation
(LOPO-CV), where the data of one person is removed
and the data of remaining persons are used to train
the classifier. The data of the removed person is used
to test the classifier. Then we start with the original
dataset again (putting the data of the removed person
back in the dataset), and remove the data of another
person and repeat the training and the testing process.
This is repeated until the data of each person has been
removed and used for testing. In the end, the average of
all these test is calculated. An initial analysis of the data
showed that there was no preference for LED 1 and 10,
which were located around ulnar styloid process, i.e., on
the little finger side. So, the selector was trained for the
remaining eight classes.

The main metric in the evaluation is the F-measure
that is the harmonic mean between recall and precision.
The metrics for each class are represented by Formulas
(1) to (3), where Ncorrecti , Ntestedi , and Njudgedi

represent the number of cases correctly classified into
classi, the number of test cases in classi, and the number
of cases classified into classi, respectively, while i ranges
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Figure 3. Forearm postures in data collection.

over each of the eight classes.

recalli =
Ncorrecti

Ntestedi

(1)

precisioni =
Ncorrecti

Njudgedi

(2)

F -measurei =
2

1/recalli + 1/precisioni
(3)

Table 1 summarizes the averages of recall, precision,
and F-measure and relevant classifier parameters used
in Weka. We applied grid search to find parameters for
SMO. The table shows that SMO had the highest values
in Recall, Precision, and F-measure; RandomForest was
the second highest in Recall and F-measure; and Näıve
Bayes was the second highest in Precision. Paired t-tests
between the highest classifier (SMO) and these second
highest classifiers showed that SMO is significantly
higher than the second highest classifiers in F-measure

(t(19)=4.53, p<0.01) and Recall (t(19)=5.43, p<.01),
but not significantly higher in Precision (t(19)=1.39,
p>.05). Given that the F-measure represents the overall
performance of a classifier, we utilize SMO in the later
experiment.

4. Experiment

After implementing the LED selector, we conducted
an experiment to confirm the effectiveness of machine
learning-based selection of the most visible LED. Also,
the robustness of selection against various forearm
postures was evaluated.

4.1. Method

In Section 3.3, an SMO-based LED selector selectori was
built using the dataset from 19 users (after removing
the data of one user (Pi), whose data was utilized for
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Table 1. Comparison of various supervised classifier approaches using Leave-One-Person-Out cross-validation (LOPO-
CV).

Recall Precision F-measure Relevant parameters in Weka

Näıve Bayes 0.619 0.667 0.630 –
NN 0.563 0.592 0.562 number of neighbors=1,

nearest neighbor search=liner search
MLP 0.607 0.640 0.600 learning rate=0.3, epoch=500, momentum=0.2
SMO 0.688 0.692 0.676 kernel=poly kernel, complexity=0.05,

tolerance=0.005, epsilon=1.0×10−12

J48 0.572 0.598 0.570 confidence=0.25,
minimum number of instances per leaf=2

RandomForest 0.640 0.659 0.634 number of trees=50

test), which is based on LOPO-CV principle. So, 20 LED-
selectors were implemented in total. After implementing
all the selectors, the same 20 users were invited to
perform this experiment, and selectori was utilized for
Pi. This means that the trained model of selectori does
not contain any information about Pi, which we consider
as a condition for fair experimentation, even though the
number of users is limited to 20. Finally, the average of
20 trials was calculated.

Similar to as described in Section 3.3, the device
was attached to the users on their non-dominant wrists
(left hands), and the users were asked to perform 18
postures (see Figure 3), five times each, in their own
ways. For each trial, the system determined one LED
as the most visible one and turned it on in red color.
The users were asked to answer the level of visibility
based on the criteria shown in Table 2. Although the
device consisted of 10 LEDs, we asked the users to
assume that they were wearing a display showing textual
and graphical information with small size words or
images, and they can imagine the contents, the font size,
background/foreground color, and the message length of
as they wish. So, the difference between “2” and “3”
ratings is whether the users consider the text presented
by their assumed applications is readable (“3” rating)
or not (“2” rating). To obtain the ground truth, the
users were asked the most visible positions before the
system showed its decision. This is regarded as the user
“expectation”.

4.2. Results

Performance of visible LED selection. The percentage
figures in Table 3 indicate the agreement of the user
preference against the system’s judgment. The highest
percentage of “4” rating, which indicates the best visible
position for the users, is 48.0 %, which appears in
postures 6 and 13, while the lowest percentage (14.0 %)
is found in posture 17. We also show the performance
under a relaxed condition, where “3” and “4” ratings are
merged into a single category “adequate position”. For

Table 2. Evaluation criteria for system-selected
display position.

Rating Definition

1 Not visible at all
2 Can see the lighting, but characters might

not be distinguishable
3 Not the best, but clearly see the lighting,

and characters might be distinguishable
4 Best position

Figure 4. The most visible LED selected by the
system.

this category, the highest percentage (100 %) appears
in postures 6, 13 and 15, while the lowest percentage
(79.0 %) is found for postures 17 and 18 . As shown in
the table, the overall average of best position selection is
35.9 %, while that of adequate position is 94.9 %.

One-way ANOVA for the best position selection shows
a significant difference among posture groups (F(3,
356)=7.55, p<.01). Regarding the adequate position
selection, one-way ANOVA also shows a significant
difference among posture groups (F(3, 356)=141.23,
p<.01). Finally, a significant difference among posture
groups is found in the average ratings (the rightmost
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column) as a result of one-way ANOVA (F(3,
356)=16.95, p<.01).

We examined the correlation between the wrist
circumference and the system’s judgment. Pearson’s
correlation coefficients between the wrist circumference
and 1) the ratio of best position selection, 2) the ratio
of adequate position selection, and 3) average rating
are shown in Table 4. The table indicates that the
percentages of best position selection and adequate
position selection decrease as the wrist circumference
gets longer, and that the average rating also decreases.
However, t-tests for correlation revealed that they are
not significantly correlated (p>.05).

The gap between the system’s judgment and the user
expectations. We show the gap between the system’s
judgments and the user expectations, which is defined
by Formula (4) as the subtraction of the LED ID
that the system selected as the best one (LEDsystem)
from the LED ID that the user considered the best
(LEDsubject). Although the values of LEDuser and
LEDsystem are primarily nominal, they can be regarded
as the distance from the starting point, i.e., ulnar
styloid process, because the LEDs are arranged at equal
interval. As described in Section 4.1, users were asked
to select the most visible position (LED ID) prior to
the system’s judgment. So, a positive gap value indicates
that the system selected a LED more towards the pinkie
(little finger) than the user expectation when the palm
was down. Zero means that the system’s response and
the user expectation agreed for the most visible LED
position.

gap = LEDuser − LEDsystem (4)

Table 5 shows the detail of the relative frequency
of gaps (percentages) per posture. An average gap
is defined as the average of gaps among all users.
The difference between Tables 3 and 5 is that Table
3 indicates the user’s agreement with the system’s
judgment, while Table 5 shows the approximate physical
distance between the system’s judgments and the user
expectations in terms of LED IDs. Given that the
average gaps are positive, we can see that the system
tended to select on the left of the position expected
by the user. One-way ANOVA regarding average gap
shows a significant difference among posture groups (F(3,
356)=7.95, p<.01).

4.3. Analysis

In the user experiment, we utilized the LED selector built
in Section 3.3. So, it has an average recall, precision,
and F-measure of 0.688, 0.692, and 0.676, respectively.
However, taking into account the fact that there are
practically eight classes, the average “best position”
performance of 35.9 % in Table 3 is much higher than

random selection (=12.5 % (1/8)). Also, the average
performance of 94.9 % for “adequate position” indicates
that the system works well to select the best display
location according to the user expectation.

In Table 5, 35.9 % of the system’s judgments has zero
gap, and 89.9 % of them fit in the gap of ±1 LED on
overall average. This corresponds to a range of 36 mm
(the distance between three LEDs). An average gap of
0.73 especially indicates that the system tends to turn on
a LED that is placed outside the user expectation within
one LED (13.14 mm).

As shown in Sections 4.2, there is some variation
in the performance among different postures. Post-
hoc test regarding the difference of the best position
selection (rating 4) by posture groups shows that Group
1 is significantly lower than Groups 2 and 3 (p<.01),
and Group 4 is significantly lower than Groups 2 and
3 (p<.01). In the performance of adequate position
selection (ratings 3 and 4), Group 4 is significantly lower
than the other three groups (p<.01), and Group 2 is
significantly lower than Group 3. In the average ratings,
Group 4 received a significantly smaller average rating
than the other three groups (p<.01), and Group 1 is
lower than Group 3. Finally, Group 4 had a significantly
larger gap than the other three groups (p<.01).

The groups were formed based on the height of the
forearm against the eyes: for Group 1 this is the lowest
while for Group 4 this is the highest. Based on the post-
hoc tests, we found that the system works better for
middle height (on the table, near the chest as for Groups
2 and 3, especially for Group 3) than the lowest height
(on or slightly above the thigh, as for Group 1, or higher
than eye level. as for Group 4). The LED selector was
built using the dataset from all other users except for
the user who was to be tested. So, we consider that
the low performance was mainly caused by the failure in
handling individual differences. Middle height indicates
that the distance between the device and the user’s
eyes is small; we assume that the visibility might not
vary much among the users. In addition to the distance
problem, we consider that the lowest performance in
Group 4 might be caused by an insufficient number of
training instances. As shown in Figure 3, postures 17
and 18 in Group 4 look different from each other as
well as from the other postures. By contrast, postures 1,
3, and 4 look very similar to each other, which triples
the size of the dataset for these postures and allows
the LED selector to weaken individual differences. To
confirm these hypotheses, more controlled experiments
are needed.

As described in Section 4.1, the difference between
ratings 2 and 3 is whether the user considers an
imaginary text readable or not. We had a follow-up
interview by e-mail, and found that the users mostly
assumed a text of 5 Japanese and Chinese characters
(a new line is started for more than 5 characters) with
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Table 3. The percentage of user judgments that fit into “best position” and “adequate position” [%]. Also, average
ratings are shown.

Group Posture Rating 4 only Ratings 3 and 4 Average
(Best position) (Adequate position) rating

1

1 20.0 97.0 3.2
2 31.1 96.0 3.3
3 39.0 99.0 3.4
4 34.0 98.0 3.3
5 27.0 99.0 3.3

average 30.2 97.6 3.3

2

6 48.0 100.0 3.5
7 43.0 96.0 3.4
8 31.0 89.0 3.2
9 37.0 98.0 3.4
10 45.0 88.0 3.3
11 35.0 97.0 3.3

average 39.8 94.6 3.3

3

12 33.0 97.0 3.3
13 48.0 100.0 3.5
14 45.0 98.0 3.4
15 45.0 100.0 3.5
16 39.0 99.0 3.4

average 42.0 98.8 3.4

4
17 14.0 79.0 2.9
18 32.0 79.0 3.0

average 23.0 79.0 3.0

Overall average 35.9 94.9 3.3

Table 4. The relationship between the wrist circum-
ference and the system’s performance

Rating 4 only
(Best position)

Ratings 3 and 4
(Adequate position)

Average
rating

-0.300 -0.206 -0.251

5.1 mm square each character on average. They expected
the display to show the name or the type of application,
e.g., Twitter, LINE, e-mail, news, as well as the sender of
the message, a news headline, or the subject of an e-mail
message. Five characters corresponds to 25.5 mm, which
is equivalent to two to three LEDs, considering that a
LED is 18 mm. So, we consider that the result obtained
above represents a strict case for presenting an iconic
image for notification with the size of a LED because of
lower possibility of occlusion.

5. Reducing the number of sensors with
new features

As described in Section 3.1, ten accelerometers were
utilized to understand the posture, resulting in a dense
sensor environment. However, for a practical system, the
number of sensors should be as small as possible, while

keeping the performance of the suitable-LED-selection
system high. In this section, we attempt to reduce
the number of sensors by introducing new features in
addition to the original raw gravitational signals, so that
each sensor contributes more information to the system.

5.1. Defining new features

We define new features by taking into account
relationships between the axes and the dominance of
particular axes for particular postures. Nine types of
features are calculated from raw acceleration signals
(rawi,x|y|z), in which i (from 1 to 10) denotes the number
of accelerometer, as shown in Figure 2. Formulas (5) to
(13) define these features. Mean and variance represent
the average and the variance of the three axes raw
data, which are defined by the formulas (5) and (6),
respectively. Gravitational acceleration is considered to
be the raw data. The sign of the signal depends on
the direction of the accelerometer toward the force of
gravity although the magnitude of the force may be
identical. So, we consider that the mean represents
the general sensor direction, not the exact direction
of each axis. The variance shows how the three axes
differ from each other, which may contribute to the
general sensor direction as well. Max (Formula (7))
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Table 5. The detail of the gap between the system’s judgments and the user expectations per posture [%].

Group Posture Average
Gap

gap < -4 -3 -2 -1 0 +1 +2 +3 +4 <

1

1 0.81 0.0 0.0 0.0 0.0 20.0 79.0 1.0 0.0 0.0
2 0.73 0.0 0.0 0.0 0.0 31.0 65.0 4.0 0.0 0.0
3 0.53 0.0 0.0 0.0 1.0 39.0 54.0 0.0 0.0 0.0
4 0.70 0.0 0.0 0.0 0.0 34.0 62.0 4.0 0.0 0.0
5 0.80 0.0 0.0 0.0 1.0 27.0 63.0 9.0 0.0 0.0

average 0.71 0.0 0.0 0.0 0.4 30.2 64.6 3.6 0.0 0.0

2

6 0.53 0.0 0.0 0.0 2.0 48.0 45.0 5.0 0.0 0.0
7 0.63 0.0 0.0 0.0 0.0 43.0 51.0 6.0 0.0 0.0
8 0.88 0.0 0.0 0.0 0.0 32.0 48.0 20.0 0.0 0.0
9 0.70 0.0 0.0 0.0 0.0 37.0 56.0 7.0 0.0 0.0
10 0.73 0.0 0.0 0.0 0.0 45.0 39.0 14.0 2.0 0.0
11 0.73 0.0 0.0 0.0 0.0 35.0 58.0 6.0 1.0 0.0

average 0.70 0.0 0.0 0.0 0.3 40.0 49.5 9.7 0.5 0.0

3

12 0.76 0.0 0.0 0.0 0.0 33.0 58.0 9.0 0.0 0.0
13 0.54 0.0 0.0 0.0 1.0 48.0 47.0 4.0 0.0 0.0
14 0.58 0.0 0.0 0.0 1.0 45.0 49.0 5.0 0.0 0.0
15 0.61 0.0 0.0 0.0 0.0 45.0 49.0 6.0 0.0 0.0
16 0.69 0.0 0.0 0.0 0.0 39.0 53.0 8.0 0.0 0.0

average 0.64 0.0 0.0 0.0 0.4 42.0 51.2 6.4 0.0 0.0

4
17 1.23 0.0 0.0 0.0 2.0 14.0 48.0 31.0 5.0 0.0
18 0.79 0.0 1.0 2.0 8.0 32.0 31.0 18.0 5.0 3.0

average 1.01 0.0 0.5 1.0 5.0 23.0 39.5 24.5 5.0 1.5

Overall 0.73 0.0 0.1 0.1 0.9 35.9 53.1 8.7 0.7 0.2

and min (Formula (8)) provide the maximum value and
minimum value, respectively, while “arg max” (Formula
(9)) and “arg min” (Formula (10)) give information of
the max and min axes, respectively. We consider that
the pairs of max(min) and “arg max(min)” represent the
information of dominant axis as a characteristic of the
sensor posture. Finally, three types of ratios are defined
as indicators of the relationships between the two axes
(Formulas (11) to (13)).

5.2. Offline experiment

A LOPO-CV was carried out using the same dataset and
SMO classifier as in Section 3.3. Table 6 summarizes
the average F-measures of 20 users for each sensor.
Additionally, in the rightmost column, the F-measures
of the LED selector built from all the ten sensors is
shown for comparison. As shown in the table, Sensor
7 had the highest F-measure (among the ten sensors) of
0.681, which is at the same level as all the sensors (“All”).
Paired t-tests between “All” and individual sensors show
that significant differences below p<.05 are found in
Sensors 1, 2, 3, 5, and 6. Furthermore, we could not
find any significant difference among sensors 4, 7, 8, 9,
and 10 (F(4, 95)=0.24, p>.05). As shown in Figure 2,
and based on our observation of users with various wrist
circumferences (from 13.0 to 17.5 cm), sensors 7 to 10 are

located on the inside of the wrist. So, we can conclude
that the system can be realized with only one sensor
attached on the inside of the wrist.

meani =
1

3

∑
a∈{x,y,z}

rawi,a (5)

variancei =
1

3

∑
a∈{x,y,z}

(rawi,a −meani)
2 (6)

maxi = max(rawi,a, a = x, y, z) (7)

mini = min(rawi,a, a = x, y, z) (8)

max axisi = arg max
a∈{x,y,z}

rawi,a (9)

min axisi = arg min
a∈{x,y,z}

rawi,a (10)

ratioi,x/y =
rawi,x

rawi,y
(11)

ratioi,x/z =
rawi,x

rawi,z
(12)

ratioi,y/z =
rawi,y

rawi,z
(13)

We choose sensor 7, which has the highest F-measure
in this sensor group, as a representative of effective
sensors. An average F-measure using only original 3-
axes acceleration signals of Sensor 7 is 0.659, which is
significantly lower than that of the all-sensors version
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Table 6. Average F-measures of 20 users for individual sensor and all sensors (rightmost column). A single asterisk
and a double-asterisk indicate that there is significant difference between the F-measures of “All” and a particular
sensor at the confidence level of p<.05 and p<.01, respectively.

Sensor ID 1 2 3 4 5 6 7 8 9 10 All

F-measure 0.631* 0.617* 0.623** 0.663 0.628** 0.659* 0.681 0.667 0.662 0.650 0.681

Table 7. Information gain of each feature obtained from Sensor 7 [bit]

rawx rawy rawz mean variance max min max axis min axis ratiox/y ratiox/z ratioy/z

0.14 0.98 1.08 0.52 0.33 0.28 0.40 0.14 0.01 0.87 1.07 1.33

(t(19)<-4.24, p<.01). This means that the new features
contributed to improve the F-measure. Therefore, we
analyzed the contribution of each feature based on
information gain (IG). IG is commonly used in feature
selection, where the gain of information provided by
a particular feature is calculated by subtracting the
conditional entropy with that feature from the entropy
under random guess [44]. So, a more informative feature
has a higher IG. Table 7 presents IG of each feature
obtained from Sensor 7. In the table, ratioy/z is the
most informative among the 12 features. This is because
the features rawz and rawy are also quite informative.
The raw signals as well as the ratios between the two
axes indicate the sensor tilt more directly than the other
features. The z and y axes are effective to characterize
rotation around the forearm, while the x axis contributes
to represent bending and stretching of the elbow in
the vertical direction. Rotation of the wrist affects the
visibility of notification due to occlusion. So, we consider
that such rotation-sensitive axes are more informative.

6. Conclusion

In this article, we proposed a method of identifying
visible position on the wrist from ten candidate positions
based on the forearm posture. A prototype system with
ten full-colored LEDs and ten tri-axis accelerometers
was implemented for demonstrating and evaluating the
functionality of choosing the most visible LED on the
wrist in different postures. A study with 20 users was
conducted to see how well the selected LED matches
with the users’ expectations. Also, further analysis
for reducing the number of sensors while avoiding
degradation of the selection performance is presented.
The following results were obtained:

• The LED selector component could identify the
most visible position among the ten candidates,
aligned side-by-side at equal intervals and wrapped
around the wrist, with an F-measure of 0.676 under
user-independent evaluation of LOPO-CV using
SMO. Thirty (10 sensors × 3 axes) raw acceleration
signals were used as classification feature.

• The most visible position and an adequate position
were selected at rates of 35.9 % and 94.9 %,
respectively.

• Comparing the system’s judgments and the user
expectations, 89.9 % of the system’s judgments
fall within ±1 LED (± 18 mm) of what the users
consider to be “the most visible position”, with
the average gap between them being +0.73 LED
(+13.14 mm).

• Information from the sensors located on the inside
of the wrist individually yield a performance
equivalent to that with all the ten sensors (F-
measure of 0.681).

• New features mean, variance,
max/min/argmax/argmin and ratios were
introduced, in addition to the raw acceleration
signals. Among these, the ratios between the
two axes achieved the largest information gain.
Rotation-sensitive axes, namely y and z, were
found to contribute towards the system’s decision.

In this research, we assumed that the information is
presented after a stable time period of at least 200 ms (10
samples at 50 Hz), so that the system can capture the
forearm posture through the components of gravitational
force. Though this assumption applied to a wide range
of activity in our daily lives, there are many other
activities where the user’s hand moves more quickly, for
example while wiping a table, talking with hand gestures,
and so on. We consider that it might be possible to
utilize the stable axis as a feature for regular motions
such as walking and wiping the table. For example, the
stable axis during wiping the table is the z (vertical
direction) axis while the directions of x and y axes change
frequently. So, the z axis can provide reliable information
to estimate the visible area on the wrist. By contrast,
for irregular motions accompanied by rotation, such as
hand gestures during talking, a gyro sensor can be used
to track the posture of the display device in a continuous
manner.

The results presented here were obtained with discrete
LEDs tied around the wrist. In the future, we plan
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to implement more advanced version with a flexible
and continuous display surface [30, 33] that can display
more information like a particular application’s icon with
status information. In such a case, our method can be
applied to a situation where the continuous display has
the same number (10) and the same size (18 mm) of
representative display areas as the current LED version.
Two or three neighboring areas can be concatenated to
display a larger piece of information.
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