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ABSTRACT

Obtaining response time moments in processor sharing (PS)
queues is difficult due to serving of multiple jobs. Egali-
atarian PS (EPS) queues are limited to one class of arriv-
ing jobs. Discriminatory PS (DPS) assigns weights to differ-
ent job classes and offers more diverse modeling capabilities
than EPS. It is known that response time is the representa-
tive metric for delay as specified in service level agreements
(SLAs), which consider higher moments important. Hence,
we build an automated numerical algorithm for calculating
higher moments of response time in M/M/1-DPS queues for
multiple job classes and test two different case studies.
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ical analysis; eNetworks — Network performance evalu-
ation;
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1. INTRODUCTION

The processor sharing (PS) discipline has important ap-
plications in web server design [4] and bandwidth-sharing
protocols in packet-switched networks [[11] with delay as
the key measure. In a PS system with service rate 1 and
n jobs, each job is served at 1/n times the speed of the pro-
cessor. PS has the following useful properties: an implicit
fairness where expected job response time is directly propor-
tional to its size; arriving jobs access server resources with-
out queueing; handling heavy-tailed service times, which
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may arise as short jobs are allowed to overtake long jobs.
Often, the egality of PS omits applications with priority jobs
and, hence, we consider variants of PS. Discriminatory PS
(DPS) [16]], where each job j in the system receives its own
percentage of the server, extends PS by supporting multiple
job classes. In DPS, K job types are served by a vector of
weights (¢; > 0,j = 1,...,K) and, assuming there are n;
class i jobs (i = 1,..., K) in the system, each class j job is
served at rate:

Y =1k 1
ri(ny, ..., ng) Ziilaini,] ey (D)
Hence, the share of a job class increases with the number
of jobs, which prevents classes with smaller weights from
starving. DPS becomes PS if o; = «a;, fori,j = 1,...,K.
By varying DPS weights, the choice of instantaneous service
weights of different job classes enables differentiated quality
of service among specific type of jobs. For example, ADSL
subscribers are offered different payment rates in return for
corresponding shares of available bandwidth. Existing work
in the literature proves, via experiments, that the expected
unconditional response time of PS systems is reduced by
33% with DPS [15]]. With such work focusing primarily on
reducing mean response times, it is important to consider
higher moments to understand the effects of variance and
skewness on response time distributions. Similarly, exist-
ing work for approximating response times in M/M/1-DPS
queues [3} |7, 12, [17] is limited by the number of moments
obtained or the number of job classes considered. Hence,
this paper provides an automated algorithm to iteratively cal-
culate higher response time moments (i.e. more than two)
for multiple job classes in M/M/1-DPS queues. Our contri-
butions are as follows:

o Extend the two-moment equations introduced by Kim
and Kim [7] (utilized in an algorithm by Chis and Har-
rison [[17]) via an automated algorithm.

e Provide an explicit formula for the third moment of
response time in M/M/1-DPS queues for two classes.

e Obtain arbitrary (up to any order) response time mo-
ments numerically for multi-class M/M/1-DPS queues.

This paper is organized as follows: section |2| defines re-
sponse time; section [3] offers related work on response time
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in DPS queues; section [ presents the moment-generating
algorithm for M/M/1-DPS queues; section [5|summarizes re-
sults on two case studies; section [6|concludes the paper.

2. BACKGROUND

Response time (or sojourn time) is the time needed, af-
ter a job enters a system, to attain the required service and
depart the system. In queueing systems, response time 7 is
the sum of queueing time (or time spent waiting to start ser-
vice) and service time. Let A be the arrival rate, u be the
service rate, and p = A/u < 1 be the steady state system uti-
lization. For PS systems, the mean unconditional response
time at equilibrium (E[T]) can be computed using Little’s
law: E[T] = L/A = p/A(1 —p) = 1/u(l — p), where L
is the mean number of jobs in the system. When jobs re-
quire x units of service time, the mean conditional response
time is E[T(x)] = x/(1 — p). Calculating higher moments of
response time under PS requires layered branching of arriv-
ing jobs [8]. Further, DPS scheduling adds complexity with
multiple job classes. The next section summarizes existing
methods for analyzing response time in DPS queues.

3. RELATED WORK

One of the earliest significant works on DPS queues was
Kleinrock [[16] in 1967. Subsequently, Fayolle ef al [12]
summarized DPS results of Kleinrock and Mitrani in 1980
and obtained expected conditional response times for M/M/1-
DPS queues as a solution of integro-differential equations.
Further, Laplace transforms were used to obtain mean re-
sponse times for multiple classes, but there were no results
on higher response time moments. Yashkov [8] abstracted
PS scheduling as a layered branching of arriving jobs in
1987, but only references DPS queues via Fayolle.

In a PS queue with utilization p, it is known [1} |3|] that
the response time 7 of an arriving job requiring x units of
service has a distribution function with Laplace transform:

(1 _ p)(l _ prZ)e—[pp(l—r)+s]x
(1= pr)2 = p(1 = e 1l/rprix
where r is the smaller root of the equation pr>—(p+1+s/u)r+

1 = 0. This result is derived by solving a partial differential
equation (PDE) for a generating function G(z, s, x), namely:

T"(s|x)= 2

(u® = (o + p + s)z+pmaa—G % s -G )
z  Ox

Hence, this yields T*(s| x) = (1 — p)G(p, s, x). In 2004,
Kim and Kim [[7] offered a joint transform to obtain response
time moments for M/M/1-DPS queues with K job classes.
Response time moments were derived by differentiating a
PDE that governed a joint transform of elapsed response
time and number of customers in the system. Thus, Kim and
Kim solved (K + 1)(K +2)/2 independent equations to obtain
conditional response time moments. When K = 1, substitut-
ing equal @; weights into the aforementioned PDE from [7]]
and simplifying duly yields equation (3). For K = 2, a mech-
anized algorithm to solve the Kims’ equations for the sec-
ond moments was obtained for multiple job types [17] that
allowed arbitrary weighted @;, mean service requirements

1/u; and arrival rates A;. Explicit expressions for the first
two moments of class 1 jobs, which assume equal weights
a1 = ap = 0.5, were found to be:

1
E[T|]=—————— 4
R @
and
E[T2]= 4y (1+p2)+pa(1-p2)) 5)

Hi(1=p1=p2) 2 (1 (2=p1) +p2(2=p1 =202))

where the class-utilizations are p; = A;/y;, for i = 1,2, and
p1 + p2 < 1. The moments for class 2 are symmetrical,
interchanging the subscripts 1 and 2 in the expressions.

4. M/M/1-DPS RESPONSE TIME

To obtain the general k” moment in M/M/1-DPS queues,
we extend the work of [17] by forming a novel automated al-
gorithm, implemented in Wolfram’s Mathematica. The nu-
merical algorithm is based on the direct approach of solving
the moment-equations obtained by differentiating the Kim’s
joint transform PDE [7]] repeatedly — k times for the k" mo-
ment; the details are given in figure[I] This example screen-
shot of the algorithm initializes different weights and rates
for two job classes and outputs four response time moments
(sufficient for the purpose of this work), but easily extends
to higher moments as it is fast in its numerical iterations. We
display the third moment E[T13 ] in equation (@) symbolically
for job class 1 (with corresponding class 2 moment ]E[T23]
obtained by inverting subscripts 1 and 2). Note that we set
a) = ay = 0.5 for presentation purposes, but the weight ratio
can take any value:

diEIT}] = 423 (o1 (o2 = 1) = 2 (03 + 4p> + 1))
—2/.11[12 (pl —2p2+2) (p2+ l) (6)
+13(p1 = 2p2 + 2) (p2 = 1)

where 12d1 = ,u? (pl +p02— 1)3 (,u](pl —2) +,le(p| +2p2—2))2.

4.1 Response time distribution

Response time distribution can be approximated from mo-
ments using, for example, the generalized lambda distribu-
tion (GLD) [5,|9]. The GLD is a distribution-fitting approx-
imation, which inputs the first four response time moments
to match four “lambda” parameters and outputs density and
distribution functions. The GLD “quality-of-fit” is ascer-
tained only through a goodness-of-fit test as closed-form so-
lutions do not exist for the lambda parameters. With re-
sponse time moments obtained from variations of equations
@), (3. (6) and the algorithm from figure [I] (with different
values for « priority weights), one can easily parametrize the
GLD and obtain distributions. For our results, we compare
response time moments from our analytical approximations
with simulations on two different case studies.

S. RESULTS

We calculate results from two workloads: first, we col-
lect inter-arrival times of TCP traffic from experiments on
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Figure 1: Mathematica code of the automated algorithm with two job classes and four moments.

Intel Core i7-2600 CPU @ 3.40GHz machines, which form
the TCP dataset; secondly, we use parameters from a GRID
network application [13]]. Both datasets exhibit multiple job
classes with different access priorities and, hence, are suit-
able for our M/M/1-DPS queue. Class priorities are calcu-
lated using packet type and size. We approximate analyti-
cal response time moments using the numerical algorithm in
figure |I| To obtain simulated moments, we execute 10000
runs of one million observations using a standard MATLAB
package and provide 95% confidence intervals.

5.1 TCP datasets

Data is collected from servers running data applications
with TCP packet delivery. Using inter-arrival times from a
TCP dataset, we parametrize our M/M/1-DPS queue as fol-
lows: /11 = 0.2, /12 = 0.3,[11 = 1,/,[2 = 2, ) = ap = 0.5.
Hence, we obtain analytical (A) and simulated (S) response

time moments for class 1 in table[I] with corresponding class
2 moments in table 2] Analytical moments are calculated
from the numerical algorithm in figure[I]. Further, all mo-
ments are centralized to reveal the spread from the mean.

Table 1: Class 1 response time moments from TCP dataset 1.
E[T] E[(T-E[T)Y E[T-E[TD* E(T-EITDHY
A 1.54 3.25 16.64 174.62

S 1.54+9e-04 3.29+2e-03 16.86+0.01 177.15+0.10

Table 2: Class 2 response time moments from TCP dataset 1.
E[T] E[(T-E[T)Y E[T-E[TDY E(T-EITDHY
A 0.77 0.88 2.67 16.71

S 0.78 +4e-04 0.89+5e-04 2.69+2e-03 16.95+0.01

Further, we set different priority weights for each job class,
which is typical of TCP packets arriving with different-sized



requests. For example, one class i may have higher share
of the server (i.e. larger a; value), but have lower mean
service rate (i;). We collect mean arrival and service rates
from a second TCP dataset and parametrize our queue with
/11 = 0.2, /12 = 0.6, m = 2, My = 1.2, a; = 0.33 and
ap = 0.67. The corresponding multi-class response time
moments are summarized in tables [35]and [ The applicabil-
ity of modeling multiple arrivals and the flexibility of setting
arbitrary weights allows the automated algorithm in figure/[I]
to improve existing work; previously, either all @; weights
were equal, as with Chis and Harrison’s work [17], or differ-
ent weights were used to approximate response time for up
to two moments only, as with Kim and Kim’s work [/7]].

Table 3: Class 1 response time moments from TCP dataset 2.
E[T] E[(T-EITDA  EI(T-EITD? ELT-EITHY
A 1.68 6.30 64.88 1286.8

S 1.69+1e-03 6.37 +4e-03 65.73+0.04 1305.5+0.74

Table 4: Class 2 response time moments from TCP dataset 2.
E[T] E[(T-E[T)Y E[T-E[TD* E[(T-E[THY
A 2.00 7.27 71.40 1394.6

S 2.02+1e-03 7.35+4e-03 72.34+0.04 1414.8+0.80

5.2 GRID network

For the second experiment, we parametrize an M/M/1-
DPS queue with values obtained directly from a GRID net-
work application [13] as follows: A4; = 22.1, 4, = 7.16,
ur = 50,1, = 20, @y = 0.25 and a, = 0.75. We obtain
response time moments for two job classes in M/M/1-DPS
queues presented in tables[5]and [f], respectively.

Table 5: Class 1 response time moments from GRID dataset.
E[T] E[(T-E[T)Y E[T-EITD* E[(T-EITDHY
A 0.15 0.06 0.06 0.14

S 0.15+8e-05 0.06+3e-05 0.07 +4e-05 0.14+8e-05

Table 6: Class 2 response time moments from GRID dataset.
E[T] E[(T-B[T)Y E[(T-E[T)? EBIT-E[T)*
A 0.18 0.07 0.07 0.14

S 0.18+1e-04 0.07 +4e-05 0.07 +4e-05 0.14+8e-05

6. CONCLUSION

We provide an automated algorithm to yield higher re-
sponse time moments in M/M/1-DPS queues with multi-
ple job classes. The results reveal that analytical approx-
imations match simulated moments well. Applications in-
clude modeling multi-class Internet traffic, where delay ad-
dresses SLA constraints, and spatiotemporal resource allo-
cation in networks. Extensions of this work include general-
izing job arrivals to MAPs and, hence, finding response time
moments in MAP/M/1-DPS queues. Alternatively, multi-
ple streams of TCP packets can be modeled as job arrival
processes using variations of the Markov-modulated Pois-
son process (MMPP), which is a special case of MAP. Dis-
cretized MMPPs (or hidden Markov models) replicate the
burstiness of TCP packet traces, which can be clustered in

groups, and, hence, allow model parameters to converge on
multiple traces simultaneously at reduced computational com-
plexity [10]. Further, arrival parameters of queueing models
can be updated incrementally via online EM learning algo-
rithms [2} |6} |14], which are suitable for live systems.
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