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ABSTRACT
We present an average case analysis of the minimum span-
ning tree heuristic for the power assignment problem. The
worst-case approximation ratio of this heuristic is 2. We
have the following results: (a) In the one-dimensional case,
with uniform [0, 1]-distributed distances, the expected ap-
proximation ratio is bounded above by 2− 2/(p+ 2), where
p denotes the distance power gradient. (b) For the complete
graph, with uniform [0, 1] distributed edge weights, the ex-
pected approximation ratio is bounded above by 2−1/2ζ(3),
where ζ denotes the Riemann zeta function.

Categories and Subject Descriptors
G2.2.2 [Discrete Mathematics]: Graph Theory

General Terms
Theory
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1. INTRODUCTION
Ad hoc wireless networks have received significant atten-

tion due to their potential applications (see, for example
[10]). In such a network, communication takes place ei-
ther through single-hop transmission, or by relaying through
intermediate nodes. The topology (the set of communica-
tion links) depends on uncontrollable factors (node mobility)
and on controllable parameters (transmit power). We as-
sume an idealized propagation model, with omnidirectional
transceivers with adjustable transmit power. For assigning
transmit powers, two conflicting effects have to be taken into
account: if transmit powers are too low, the resulting topol-
ogy may be too sparse. On the other extreme, if transmit

powers are too high, the nodes run out of energy quickly.
The goal of the Connected Minimum Power Assignment

(CMPA-) problem is to assign transmit powers such that
the resulting network is connected and the sum of transmit
powers is minimized (see e.g. [10]). This problem is, in gen-
eral, NP-hard (for some special cases there are polynomial
solutions). The intuitive MST-heuristic is known to have
a worst-case approximation ratio of 2. This paper analyses
the average-case approximation ratio. A directional vari-
ant of this problem, the Minimum Energy Broadcast Rout-
ing (MEBR) problem is studied in [3]. A related numerical
study is carried out in [11]. The results of this work can
be used in assessing whether, in a concrete network, a given
power assignment can be further optimized.

1.1 Notation, related work and contribution
For a set of points V representing the nodes in a network, a

power assignment can be represented as a function p : V →
R+

0 . Following the notation of [10], for each ordered pair
(u, v) of transceivers, there is a transmit power threshold,
denoted by c(u, v), with the following meaning: a signal
transmitted by the transceiver u can be received by v only
when the transmit power p(u) is at least c(u, v). We assume
that for each pair of points the values c(u, v) are known and
symmetric, i.e., c(u, v) = c(v, u) for all pairs {u, v} ∈ V .
A power assignment p defines an undirected graph Gp =
(V,Ep), where e = {u, v} ∈ Ep if and only if p(u) ≥ c(u, v)
and p(v) ≥ c(u, v). Note that in the case p(v) ≥ c(u, v) >
p(u) only transmission from v to u is possible. However, in
this paper only symmetric links are considered.

This paper deals with the CMPA-problem: given a graph
G = (V,E, c), where c denotes the edge weights c : E → R+,
one asks for a power assignment p : V → R+

0 such that Gp

is connected and the total power
∑
v∈V p(v) is minimal.

When V ⊂ Rd, a power attenuation model is assumed,
assuming that the signal power decreases with the distance
r as r−p, where the distance-power gradient p ∈ R+ depends
on the wireless environment. This implies that c(u, v) = rp

if the distance between u and v is r. Therefore, in this case,
the power assignment problem corresponds to assigning a
range rv to node v. This is called the range assignment
problem.

The range assignment problem is NP-hard in all dimen-
sions d ≥ 2 for all values of the distance-power gradient p [5].
Based on these complexity results, polynomial time approx-
imation algorithms were studied. The first approximation
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algorithm to the CMPA-problem is the Minimum Spanning
Tree (MST)-algorithm (see [4], [7]). This work complements
[8] and [9], in providing a rigorous proof for the general case
with uniform edge weights (Section 4 of this paper), and in
analysing the (more complex) MST-heuristic instead of the
MST-functional.

MST Power Assignment Algorithm (V,E, c): (1)
Compute a minimum spanning tree T using c as edge costs;
(2) For each node v ∈ V assign

p(v) = max{c(e)| e incident to v in T}.

Let Tn denote a minimum spanning tree of a graph on
n vertices. In addition, let Pn denote the power assign-
ment corresponding to Tn, i.e., for each v ∈ V : Pn(v) =
max{c(e)| e ∈ Tn and e incident to v}. We define W (Tn)
to be the total weight of the spanning tree Tn, and W (Pn)
the total power of the corresponding power assignment. It
is well established (see e.g. [1], [4]) that

W (Tn) ≤W (P ) ≤W (Pn) ≤ 2W (Tn) (1)

where W (P ) denotes the total power of the optimal power
assignment P . In [1] it is shown that the factor 2 is tight.

For the MST algorithm, (1) shows that the worst-case
performance ratio is 2. Other approximation algorithms
are studied in [1], where a polynomial time approximation
scheme with a worst-case performance ratio approaching 5/3
as well as a more practical approximation algorithm with a
worst-case approximation factor of 11/6 are given.

While the worst-case performance ratio of 2 might dis-
courage use of the MST algorithm in practice, numerical re-
sults indicate that the MST algorithm is often rather close
to the optimal solution [12]. This motivates an average case
analysis.

Statement of contribution. This paper presents an
analysis of the function W (Pn)/W (Tn), in the average case,
for n → ∞, which provides a general upper bound to the
average case performance ratio W (Pn)/W (P ). Here, we in-
vestigate the 1-dimensional situation, as a stepping stone for
similar analysis in higer dimensions. Then, we investigate
the situation for the complete graph with independent uni-
form edge weights, where the expected approximation ratio
turns out to have a closed form upper bound well below the
worst-case upper bound.

The paper is organized as follows. Section 2 provides pre-
liminary results. Section 3 analyzes the 1-dimensional case.
Section 4 shows a result on the average case performance
for complete graphs with independent uniformly distributed
[0, 1] edge weights. Finally, Section 5 presents concluding
remarks.

2. PRELIMINARIES ON MINIMUM SPAN-
NING TREES

Let G = (V,E) be a graph with |V | = n and a cost func-
tion c : E → R+. Furthermore, for a vertex v, let G\{v}
denote the graph arising from G by deleting v and all edges
incident to v, for an edge e, G\{e} denotes the graph aris-
ing from G by deleting edge e. Suppose F = (V,EF ) is
a forest on G (i.e., a graph with no cycles) with EF =
{e1, . . . , em} ⊂ E. We assume c(e1) ≤ c(e2) ≤ . . . ≤ c(em)
and let Sk(F ) =

∑m
j=m−k+1 c(ej) denote the sum of the k

heaviest edges of F , for k ∈ {1, . . . ,m}. If m = n− 1, then

F is a spanning tree, which we denote by T . For a given tree
T , we say that an edge e incident to v covers v, if (a) e ∈ T ,
i.e., e = ei for some i ∈ {1, . . . , n − 1}, and (b) the index
i is maximal among the edges e incident to v. Note that
condition (b) ensures that each vertex is covered by exactly
one edge and that c(ei) ≥ c(ej) for all edges ej ∈ T incident
to v.

Let Tn be a minimum spanning tree and let f(e) denote
the number of nodes covered by e ∈ Tn, called the covering
number of e ∈ E. Note that f(e) ∈ {0, 1, 2}. We imme-
diately see that

∑
e∈E f(e) = n as each vertex is covered

exactly once. Moreover, W (Pn) =
∑
e∈Tn

f(e)c(e).
The following observation strengthens (1).

Lemma 1. Let the edges e1, . . . , en−1 of a minimum span-
ning tree Tn be sorted such that c(e1) ≤ . . . ≤ c(en−1). Then

c(en−1) + Sn−1(Tn) ≤W (Pn) (2)

and,

W (Pn) ≤

{
c(ebn/2c) + 2 Sbn/2c(Tn) if n is odd,

2 Sn/2(Tn) if n is even.
(3)

Proof. Inequality (2) can be inferred by induction on n,
using the fact that each tree contains at least 2 vertices of
degree 1. The inequalities of (3) follow from the fact that
f(e) ∈ {0, 1, 2} and

∑
e∈E f(e) = n. Therefore W (Pn) =∑n−1

i=1 f(ei)c(ei) takes its maximum, when f takes maximum
values for the edges with the highest weights.

The following example shows that the bounds for the in-
equalities (2) and (3) are tight.

Example 1. Let G = (V,E) be a path e1, . . . , en such
that c(ej) = 1 if j is odd, and c(ej) = ε < 1 if j is even.
G has only one spanning tree T which is equal to the graph
itself: T = G. Sorting the edges according to increasing
costs we first obtain d(n − 1)/2e edges of cost ε, followed
by b(n − 1)/2c edges of cost 1. Moreover, W (T ) = d(n −
1)/2e+b(n−1)/2cε. Clearly, all edges with an odd index have
covering number 2, and, if n is odd, say n = 2m+1, there is
only one edge (being e2m) with covering number 1, incident
to the last vertex. So W (PT ) = 2m+ε, which is a tight bound
for the right hand side of (3). If n is even, say n = 2m then
W (PT ) = 2m, which is a tight bound for the right hand side
of (3). An example for tightness of the left hand side of (3)
is obtained by considering a graph G = (V,E) where all costs
c(e) are 1. In this case W (T ) = n− 1 and W (PT ) = n.

Lemma 1 implies,

W (Pn) ≤ 2Sdn/2e(Tn). (4)

3. ONE DIMENSION: SPANNING TREE IS
PATH

We consider the situation where G = (V,E) is a path
of length n, X1 ≤ . . . ≤ Xn+1 ∈ R1 where the transmit
power thresholds Di = Xi+1 − Xi to connect neighboring
vertices are i.i.d. nonnegative random variables with finite
expectation.

Theorem 1. Let G = (V,E) be a path as defined above.
Then

W (Pn)

W (Tn)

a.s.−→ E[max{D1, D2}]
E[D1]

. (5)



Proof. First we split the sum in odd and even terms:

W (Pn) = D1 +

n−1∑
i=1

max{Di, Di+1}+Dn (6)

= D1 +

bn/2c∑
i=1

max{D2i−1, D2i}

+

b(n−1)/2c∑
i=1

max{D2i, D2i+1}+Dn.

Since, by splitting the odd and even terms, in both sums
the random variables are i.i.d., it follows by the strong law
of large numbers, that

W (Pn)

n

a.s.−→ E [max{D1, D2}] .

Being the sum of i.i.d. r.v.’s, W (Tn) also satisfies the strong
law of large numbers, and we obtain:

W (Tn)

n

a.s.−→ E [D1] ,

implying almost sure convergence of W (Pn)
W (Tn)

.

Since, W (Pn) and W (Tn) are sequences of r.v.’s, with
bounded ratio, the above theorem implies that these ratios
also converge in mean and that E[W (Pn)/W (Tn)] converges.
So we have:

Corrollary 1.

lim
n→∞

E
[
W (Pn)

W (Tn)

]
=

E [max{D1, D2}]
E [D1]

Next, we consider the specific situation of n vertices in R1

with transmit power threshold Di ∼ Upi , with Ui ∼ U [0, 1],
where U [0, 1] denotes the uniform distribution, and p models
the distance-power gradient.

Corrollary 2. If in the situation of Theorem 1, we have
for i = 1, . . . , n, Di ∼ Upi , with Ui ∼ U [0, 1] then

W (Pn)

W (Tn)

a.s.−→ 2− 2

p+ 2
.

Proof. We have: E [D1] = 1
p+1

, and E [max{D1, D2}] =
2
p+2

.

4. COMPLETE GRAPH, UNIFORM WEIGHTS
Often there is no simple relation between power and dis-

tance, due to obstacles, reflections and interferences. In the
extreme case, the power needed for a successful transmission
is fully unrelated to the node positions. In this section, we
consider a stylized version of this situation, namely the case
where we have a complete graph G = (V,E, X̃) with uni-
formly distributed edge weights. So V = {1, 2, . . . , n} and

X̃ = {Xij : 1 ≤ i < j ≤ n} is a sample of size
(
n
2

)
with

Xij ∼ U [0, 1], denoting the edge weights.
As before, we denote with Tn = Tn(G) a minimum span-

ning tree of G. Let Yn = Yn(G) denote the set of dn/2e most
expensive, and Un = Un(G) the set of bn/2c least expensive
edges of Tn, and W (Yn), W (Un) the weight of Yn, Un. Note
that W (Yn) = Sdn/2e(Tn).

In order to analyze W (Yn) and W (Un), we follow the ex-
position of Frieze’s result (Theorem 2) of [2]. Let X(1) ≤

X(2) ≤ . . . ≤ X((n2)) denote the order statistics of the sam-

ple X̃ = (Xij). With probability 1 we have X(1) < X(2) <
. . . < X((n2)), implying uniqueness of the minimum spanning

tree Tn. Now X̃ = (Xij) defines a graph process Gt in a
natural way, in which edges are added over time, where the
edge set of Gt, 0 ≤ t ≤

(
n
2

)
, is given by the t least expensive

edges of G:

{{i, j} : Xij = X(k) for some k ≤ t}.

Given Gt, define the r.v. ψ(·) as:

ψ(k) = min{t : w(Gt) = n− k}, k = 1, 2, . . . , n− 1, (7)

where w(Gt) denotes the number of components of Gt. Then
ψ(1) = 1, ψ(2) = 2 and ψ(n− 1) is the first time t when the
graph Gt is connected. Clearly ψ(k) ≥ k. By the greedy
algorithm of Kruskal, Tn is formed by the edges of Gt ap-
pearing at times ψ(1), ψ(2), . . . , ψ(n− 1), i.e.,

W (Tn) =

n−1∑
k=1

X(ψ(k)).

By a theorem of Frieze [6] we have:

Theorem 2 ([6]). Let G = (V,E, X̃) be a complete
graph, with uniformly distributed edge weights. Then the
weight of the minimum spanning tree Tn satisfies,

W (Tn)
P→ ζ(3), (8)

where ζ(·) denotes the Riemann zeta function.

With W (Un) =
∑bn/2c
k=1 X(ψ(k)), we show:

Lemma 2. Let G = (V,E, X̃) be a complete graph, with
uniformly distributed edge weights. Then :

W (Un)
P→ 1/4. (9)

Proof. The idea behind the proof of statement (9) is
that, for large n and 1 ≤ k ≤ n/2, ψ(k) is ‘close’ to k. In
other words: the least expensive edges of large graphs with
uniformly distributed edge weights do not contain a circuit.
First we show limn→∞ E[W (Un)] = 1/4, and then we show
convergence in probability. Clearly, as E[X(i)] = i/(

(
n
2

)
+1),

we have

E[W (Un)] =

bn/2c∑
k=1

E[ψ(k)]/(

(
n

2

)
+ 1).

Since ψ(k) ≥ k, one easily finds E[W (Un)] ≥ 1/4. We will
show equality.

First we note:

P(k ≤ ψ(k) ≤ k + n8/9) = 1− o(n−1/4). (10)

We show (10) by combining the inequality ψ(k) ≥ k with

(6.18) in [2] which states that, with probability 1−o(n−1/4),

ψ0(k)− n8/9 ≤ ψ(k) ≤ ψ0(k) + n8/9, for k = 1, . . . , bn/2c,
(11)

where ψ0(k) is defined by:

u(
2ψ0(k)

n
) = 1− k

n
, (12)



where

u(x) =

∞∑
k=1

kk−2

k!
xk−1e−kx.

Now, from the fact that u is a one-to-one mapping from R+

to (0, 1], and (see [2], page 109) the fact that for 0 ≤ x ≤ 1:
u(x) = 1− x/2 it follows that: ψ0(k) = k, for 0 ≤ k ≤ n/2,
which shows (10).

Next, from (10) and (6.14) in [2] which states, P(ψ(n−1) ≤
2n logn) = 1−O(n−3), it follows that

k ≤ E[ψ(k)] ≤ (k + n8/9)P(k ≤ ψ(k) ≤ k + n8/9)

+ 2n lognP(k + n8/9 ≤ ψ(k) ≤ 2n logn)

+

(
n

2

)
P(2n logn ≤ ψ(k) ≤

(
n

2

)
),

which implies k ≤ E[ψ(k)] ≤ k + n8/9 + o(n3/4 logn) +
O(n−1), whence,

lim
n→∞

E[W (Un)] = lim
n→∞

1(
n
2

)
+ 1

bn/2c∑
k=1

E[ψ(k)] =
1

4
, (13)

completing the first step of the proof. Next, to see conver-
gence in probability, we remark that in [6] equation (15) it
is shown that for 1 ≤ k ≤ ` ≤ n/2:

E[X(ψ(k))X(ψ(`))] =
E[ψ(k)ψ(`)] + E[ψ(k)]

(
(
n
2

)
+ 1)(

(
n
2

)
+ 2)

,

so in order to show that Var[W (Un)]→ 0 it suffices to show
that

bn/2c∑
k=1

bn/2c∑
`=1

E[ψ(k)ψ(`)] ≤ (1 + o(1))

bn/2c∑
k=1

bn/2c∑
`=1

E[ψ(k)]E[ψ(`)]

This follows from [6] equation (17) which implies that for
some constant c, and 1 ≤ k ≤ ` ≤ n/2:

E[ψ(k)ψ(`)] ≤ E[ψ(k)]E[ψ(`)] + cn11/6(logn)2

Now, we obtain (9) from Chebyshev’s inequality.

This leads to the following theorem for power assignments.

Theorem 3. Let G = (V,E, X̃) be a complete graph, with
uniformly distributed edge weights. Then,

lim sup
n→∞

E
[
W (Pn)

W (Tn)

]
≤ 2(ζ(3)− 1/4)

ζ(3)
≈ 1.58... (14)

Proof. As W (Tn) ≤ W (Pn) ≤ 2W (Yn), and W (Tn) =
W (Un) + W (Yn), it follows from Theorem 2 and Lemma 2
that ζ(3) ≤ lim supn→∞ E[W (Pn)] ≤ 2(ζ(3)− 1/4).

5. CONCLUDING REMARKS
Worst-case, the approximation of the MST heuristic for

the power assignment problem can be strengthened to two
times the weight of the heavier half of the edges (instead of
two times the whole MST). Moreover, in the one-dimensional
case, with uniform distributed distances between neighbor-
ing vertices, and a distance power gradient of p, the ex-
pected approximation ratio is bounded above by 2−2/(p+2).
For the complete graph with uniform [0, 1]-distributed edge
weights, the expected approximation ratio is asymptotically
bounded above by 2 − 1/2ζ(3) ≈ 1.58.... Heuristics as pre-
sented in [1] are interesting for further analysis.
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