
Protecting Encryption Keys in Mobile Systems Against
Memory Errors

Jianing Zhao
The College of William and Mary

jzhao@cs.wm.edu

Peter Kemper
The College of William and Mary

kemper@cs.wm.edu

ABSTRACT
Beyond its use to encrypt data, an encryption key can be
used as a mean to control access to data on a mobile de-
vice by leveraging a cloud service. This implies that a key is
present in a mobile device only when it is on demand and au-
thorized by the cloud, the key is evicted when it is not in use.
CleanOS is an example system that is based on this concept.
For security reasons, keys are stored only in DRAM memory
during execution, which makes them susceptible to memory
errors. In this paper, we identify scenarios where a memory
error that damages a key can escalate to an unrecoverable
data loss in a mobile system.

Categories and Subject Descriptors
B.8.1 [PERFORMANCE AND RELIABILITY]: Re-
liability, Testing, and Fault-Tolerance

General Terms
Performance,Reliability,Measurement

Keywords
Mobile systems, encryption, fault injection, simulation, mem-
ory errors, software reliability

1. INTRODUCTION
Mobile devices such as smartphones and tablets are preva-

lent in modern societies. According to [11], there is a trend
for apps on mobile devices to even overtake PC internet
usage in the United States. People use mobile devices for
personal as well as for business purposes such that phones
process data that is sensitive. Since smartphone loss and
theft is a common problem, much research has gone into

.

the protection of sensitive data on mobile devices. Solutions
typically rely on encryption and specific ways to manage the
encryption key. A fundamental idea is that a remote key
management provides the ability to remotely control and
monitor access to otherwise encrypted data.

This leads to the classical concept of key-escrow, where
“something (e.g., a document, an encryption key) is deliv-
ered to a third person to be given to the grantee only upon
the fulfillment of a condition.” [9]. In a key-escrow archi-
tecture, a trusted third party stores an encryption key and
provides it on request (if legitimate). The concept lends it-
self to different applications including key backup and recov-
ery, monitoring and logging access to sensitive data, remote
access control and deletion of sensitive data.

The use of encryption with the key being stored at a re-
mote server heavily relies on several assumptions: a) the
remote server stores the key in a reliable manner, b) the
communication channel is dependable and secure, and c) the
use of keys and encryption on the local device is performed
in a reliable manner. The latter for instance means that the
correct key is used for encryption and decryption. In this
paper, we will focus on the last assumption in a situation
where memory errors may corrupt a key stored in memory.

Approaches presented in [15], [1], [12], use key escrow ar-
chitectures in different ways but all assume that the key in
memory is reliable, and it is correct during the encryption.
However, if this assumption does not hold, it is possible that
sensitive data is encrypted with a corrupt key so that the
sensitive data can not be decrypted with the original key,
therefore, the data is lost because of the inconsistency of
the keys. Therefore, key management software by IBM [6],
EMC [3] uses highly reliable hardware to store keys to avoid
key corruption in traditional sever based systems.

Using a key escrow architecture in a mobile system faces
additional challenges. Mobile system is a very competitive
market that evolves quickly with very short hardware and
software innovation cycles and a severe price pressure to-
wards inexpensive solutions. So, in this paper, we investi-
gate the research questions: Can memory errors impact
the correct operation of a key escrow system such
as CleanOS for sensitive data on a mobile system?
We consider the following threat model: 1)We assume that
memory content can be corrupted (single or multiple bits)
at any moment in time due to some memory error. 2)One
possible cause is seen in programming errors in kernel or
application code which accidentally overwrite content. Pro-
gramming languages such as C are infamous for the numer-
ous possibilities to make mistakes with pointer arithmetic,

VALUETOOLS 2015, December 14-16, Berlin, Germany
Copyright © 2016 ICST
DOI 10.4108/eai.14-12-2015.2262698



dangling pointers and so forth. 3)Another possible cause is
seen in hardware errors on DRAM that is unprotected with
ECC.

ECC protection for DRAM comes at a price in terms of in-
creased production costs, reduced capacity and increased en-
ergy consumption. For low end smartphones, it is currently
common that DRAM is not protected with ECC against
memory errors. Although the probability of a memory er-
ror is small, it is still quite possible that it happens and a
stored key may be corrupted by some hardware or program-
ming error. We consider the following items as the main
contributions of this paper:

• Recognizing that memory errors pose a severe risk to
encryption-based mobile Android systems

• Identifying concrete scenarios for potential loss of sen-
sitive data in the CleanOS system

2. CLEANOS: AN ENCRYPTION-BASED MO-
BILE OPERATING SYSTEMS

The CleanOS system is particularly designed to rigorously
“manage sensitive data and maintain a clean environment at
all times in anticipation of data theft”[14]. It is not focussing
on malware, as its main focus is device theft or loss. It does
so by defining sensitive data objects (SDOs), a logical collec-
tion of Java objects, files and database items that applica-
tions create and use to manage sensitive data. Such objects
are identified and tracked with the help of TaintDroid [4].
The crucial step is to have a modified garbage collector for
the Dalvik virtual machine that identifies SDOs that have
not been accessed for some time, encrypts the data-bearing
fields with a key that is escrowed in the cloud (idle eviction).
Since the key is not stored on the mobile device, access to
the sensitive and encrypted data results relies on a cloud ser-
vice to provide the key. This provides ample opportunities
for logging, monitoring and access control. So it is funda-
mental that a) keys are not stored locally and b) sensitive
data in memory or on persistent storage is always encrypted
(unless in memory and in use). Since mobile apps tend to
use SQLite to store data, sensitive data and other data are
mixed within tables and CleanOS replaces individual table
entries that carry sensitive data with the corresponding ci-
pher text and vice versa. The otherwise common granu-
larity of a file for encryption is considered much too coarse
for Android apps. The actual system includes further fea-
tures to make sure that applications and operating system
do not retain additional clear text copies in caches and that
deletion operations securely erase content. It is an impres-
sive demonstration of efforts necessary to secure data in a
system design that is optimized for performance, e.g., by
extensive use of caching and avoidance of unnecessary oper-
ations such as overwriting data for deletion. As evidenced
by experiments, CleanOS manages to achieve its goals while
retaining an acceptable performance. This is partly due to
the fact that SDOs are a small minority of all objects, partly
due to the concept of buckets. Its target application is one
like an email client or online banking application that oper-
ates with sensitive data but is used in a bursty manner with
long time intervals between periods of usage such that the
idle eviction is effective and has only a marginal impact on
performance and network traffic.

Figure 1: CleanOS communication between phone
and cloud for the one time, initial registration of an
SDO (top part) and subsequent, frequent, regular
data access and key eviction (bottom)

Note that SDOs can vary substantially in size and con-
tent. While individual apps may induce very small scale
and specific SDOs, the authors of [14] also establish coarse
grain default SDOs at the kernel level such that apps can
benefit from the CleanOS encryption with no changes to
the application code. Examples for large default SDOs are
a User Input SDO for all input a user types into the key-
pad or a SSL SDO for all objects read from incoming SSL
connections. Obviously, loosing data of a large SDO can be
very difficult to recover and go far beyond the inconvenience
to retype a password or credit card number.

As an SDO is a collection of entities, which may have
very different access patterns, CleanOS groups entities in
so-called buckets and allows for different keys for individ-
ual buckets that are derived from a single key KSDO that
is SDO specific and stored in the cloud. According to [14],
an KSDO is obtained when an encrypted data field is ac-
cessed and then “cached onto the device and securely re-
moved when the SDO as a whole is again evicted.” Addition
and removal of entities to and from an SDO is possible in
a dynamic manner at runtime. This supports fine-grained
eviction with coarse-grained SDOs. With bucketing, bucket
keys are cached instead of SDO keys on the device.

Critical pieces of information: 1)The key: The SDO key
is stored remotely for a particular SDO and fetched on de-
mand. Bucket keys are derived from it locally on the phone.
2)The descriptor: The taint id contains an SDO id and a
bucket id in a 32 bit field and serves as the descriptor for
key and data. 3)The data: The sensitive data of an SDO
object or in case of buckets all elements of a bucket.

To avoid a situation where encrypted data can not be de-
crypted again, there are some obvious necessary conditions
that need to be satisfied:

1. Descriptor consistency (DC) condition. For a partic-
ular SDO, its descriptor in the cloud service and its
descriptor on the phone must match.



2. Key consistency (KC) condition. For a particular SDO,
its key stored in the cloud service and the key used for
encryption of its data must match.

3. Unique descriptor (UD) condition. For a particular
SDO, its descriptor is not allowed to match with the
descriptor of another SDO.

Figure 1 illustrates the communication between phone
and cloud service. There are three basic operations for the
CleanOS communication protocol.

1. registerSDO(sdoID,appName, description, key): If a
new SDO is identified, a key is generated on the phone
and the SDO is registered in the cloud with the de-
scriptor (the app name and SDO id), the key, and a
plaintext explanation (description).

2. fetchKey(appName,sdoID,bucketID): If the key is not
available at the phone and needed, it is fetched from
the cloud with a method fetchkey that takes the de-
scriptor information as its argument.

3. sdoEvicted(appName,sdoID) If an SDO is evicted, the
cloud service is notified with a method sdoEvicted that
takes the descriptor information as its argument. Evic-
tion implies that on the phone, the key information is
destroyed after encrypting the sensitive data.

So, if the DC or UD condition is violated, then the fetch
key operation can not succeed. If the KC condition is vio-
lated, then the decryption operation on the encrypted data
will fail when the key is fetched from the cloud service.

In the following, we investigate the impact of memory er-
rors on basic CleanOS functionality by following the lifecycle
of an SDO. We assume that a memory error could modify
the content of a particular memory location in DRAM at
any moment in time.

SDO creation Upon creation, a key and an SDO iden-
tifier are generated on the phone and the SDO is registered
with the cloud service (method registerSDO). If a memory
error modifies key or descriptor before registration, KC and
DC conditions would not be violated as keys/descriptors
match, however, there is a risk that key or descriptor are
not functioning. With regard to AES encryption, we did
not find any particular requirements for a key that would be
violated by modifying its bit pattern in memory. The same
holds for SDO and bucket ids that are a set of bits set in
the Taint id. The only risk is to destroy the uniqueness of
the descriptor such that two SDOs have the same id. It is
reasonable to expect that the cloud service should fail the
registration operation if the descriptor already exists.

Read access to SDO If the SDO has the requested con-
tent as clear text, then only memory errors in the data part
may have an impact. If the requested content is encrypted,
then the key need to be obtained. If the SDO or bucket key
is cached, it can be obtained locally, otherwise it is fetched
from the cloud service. The encrypted data is decrypted and
accessed, the key is cached till eviction.

Vulnerability I.
The time between fetching the key and finishing decryp-

tion creates an opportunity for a memory error to corrupt
the key. Caching the key substantially increases this time
window. Using a corrupted key makes the decryption fail

to reproduce the clear text data. If this goes undetected (as
the decryption method transforms one bit pattern into an-
other), the invalid clear text data will not allow the current
application to perform. Even worse, if the invalid clear text
data is used to overwrite the encrypted data, then this leads
to a data loss. It is our understanding that CleanOS re-
places encrypted data with clear text data on the spot (e.g.
a specific SQLite data table entry) for a seamless integration
of this concept into an existing Android architecture.

Vulnerability II.
A memory error that corrupts the descriptor of an SDO

will make an operation to fetch the key from the cloud fail,
which leads to data loss after idle eviction. The descriptor
resides on the phone all the time and can not be recovered
from the cloud. The time between the creation of the de-
scriptor and its use in a fetch key operation is particularly
long.

Write access to SDO Regardless of the data being in
clear text or encrypted form, a write access will replace the
current data with new data with no encryption or decryption
involved. This will not allow memory errors on the key or
descriptor to have an immediate effect on the newly written
data.

Idle eviction of SDO If an SDO is not accessed for a
sufficient amount of time, the Dalvik virtual machine in the
CleanOS will perform an idle eviction. This means that the
key is either obtained from a local cache or fetched from the
cloud, the data is encrypted, and finally the key is evicted,
i.e. its local copy is destroyed. As the local copy of the key is
assumed to be consistent with the key stored on the remote
server, the key is not communicated back to the server.

Vulnerability III.
The time distance between obtaining a key and using the

key creates a time window for a memory error to corrupt the
key before the encryption. If the key is cached, then that
time window can be significant. If the key is fetched, that
time window is expected to be very short. Encryption is not
instantaneous, so the time during encryption also creates
a time window for corrupting the key. If the encryption
operation relies solely on a (good) copy of the key in a CPU
cache, then a memory corruption in DRAM may have no
effect. In general, if the key is corrupted between obtaining
the key and finishing encryption, the encrypted data will be
damaged and a subsequent decryption with the registered
key will not succeed. As the encrypted data replaces the
clear text data, this creates a vulnerability for data loss.

The destruction of an SDO completes its lifecycle. Be-
sides, a notification to the cloud service may fail due to a
corrupted descriptor, we do not expect any further activity
than rigidly destroying the sensitive content. This does not
create an opportunity for a memory error to destroy sensi-
tive data.

In summary, we identify three scenarios where memory
errors that corrupt a key or descriptor can lead to data loss
in the CleanOS system.

3. SOURCE OF ERRORS
Hardware faults are one source of memory errors. For

DRAM used in large scale data centers, studies by Hwang
et al [5] and Schroeder et al [13] show that there is a rising



rate in of memory error occurrences despite efforts in qual-
ity control of DRAM production and error-tolerance mecha-
nisms. There are many causes such as environmental factors
for memory error as shown in [8], [7], [10]. For mobile mem-
ory, we did not find corresponding numbers being published,
however, as the high density and low cost design, we assume
it is less reliable than PC DRAMs.

A second source of memory errors result from program-
ming errors such as buffer overflow in software developed in
languages such as C and C++.

4. RELIABILITY EVALUATION
In this section we present findings from a simulation study

to demonstrate how vulnerable the handling of keys in a
CleanOS system is to memory errors.

4.1 Evaluation using Mobius
We use Mobius [2] to establish and simulate the CleanOS

system using SAN models. We use one submodel for CleanOS
and one submodel for fault injection. We use an exponential
distribution to model the time between memory faults, de-
noted as fault injection rate. The mean time between faults
ranges between 0.87 and 2.4 hours. For the other activities,
we assume a deterministic distribution for simplicity and use
published average values from [14]. Idle time denotes the
time between phases of active usage of an SDO, its param-
eter value was estimated from measurements of app usage
for two volunteers in a period of two weeks. Measurements
were recorded with the QualityTime app. We set the exper-
iment time interval to 5000 hours as we assume the phone
is used 14 hours per day. We do not describe details of the
Mobius model for space limitations. We conducted simula-
tions for different rates of fault injections, namely for a mean
time between faults in [0.87,2.4] such that for an exponential
distribution, λ ∈ [0.4, 2.0]. All simulations were performed
with the Mobius simulator for a terminating simulation, con-
fidence level setting of 95% and confidence interval setting
of 0.1.

In Figure 2, we observe several measures as a function of
the fault injection rate. Red lines show results for an av-
erage idle time of 6 minutes, blue lines for an idle time of
12 minutes between active phases for an SDO. A longer idle
time reduces the number of times the system can go through
a decryption, SDO active usage, SDO inactive timeout, en-
cryption, key eviction cycle (a CleanOS cycle) in a fixed time
horizon of 5000 hours. For sanity checks, we observed that
the total number of cycles (correct or failed) being indepen-
dent of the fault injection rate and that shorter idle times
yield more CleanOS cycles.

Figure 2 shows that the basic CleanOS model experiences
failures that increase with the fault injection rate and that
the more CleanOS cycles are performed the higher the num-
ber of failures (difference between red line and blue line).

5. CONCLUSION
In this paper, we looked into CleanOS, an encryption-

based Android OS that minimizes exposure of sensitive data
in case of theft, to see how memory errors can affect its op-
eration. We identified several scenarios where corruption of
a key that is used for encryption can lead to loss of sensi-
tive data. In the future work, we will detect the memory
errors using hash tables and recover the keys by refetching

Figure 2: Failed cycles

the keys.

6. REFERENCES
[1] D. Boneh and R. J. Lipton. A revocable backup

system. In USENIX Security Symposium 1996.

[2] T. Courtney, D. Daly, S. Derisavi, V. Lam, W. H.
Sanders, and W. H. S. The mobius modeling
environment.

[3] EMC. Rsa key recovery manager.

[4] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI 2010.

[5] A. A. Hwang, I. A. Stefanovici, and B. Schroeder.
Cosmic rays don’t strike twice: Understanding the
nature of dram errors and the implications for system
design. In ASPLOS 2012.

[6] IBM. Managing encryption.

[7] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen,
C. Wilkerson, and O. Mutlu. The efficacy of error
mitigation techniques for dram retention failures: A
comparative experimental study. In SIGMETRICS
2014.

[8] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu. Flipping bits in
memory without accessing them: An experimental
study of dram disturbance errors. In ISCA 2014.

[9] R. D. Labati and F. Scotti. In Encyclopedia of
Cryptography and Security (2nd ed.).

[10] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and
O. Mutlu. An experimental study of data retention
behavior in modern dram devices: Implications for
retention time profiling mechanisms. In ISCA 2013.

[11] J. O’Toole. Mobile apps overtake pc internet usage in
u.s. http://money.cnn.com/2014/02/28/technology/
mobile/mobile-apps-internet/, 2014.

[12] R. Perlman. File system design with assured delete. In
SISW 2005.

[13] B. Schroeder, E. Pinheiro, and W.-D. Weber. Dram
errors in the wild: A large-scale field study. In
SIGMETRICS 2009.

[14] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani,
R. Geambasu, and N. Sarda. Cleanos: Limiting mobile
data exposure with idle eviction. In OSDI 2012.

[15] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman.
Secure overlay cloud storage with access control and
assured deletion.

http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet/
http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet/

	Introduction
	CleanOS: an Encryption-based Mobile Operating Systems
	Source of errors
	Reliability Evaluation
	Evaluation using Mobius

	Conclusion
	References

