
Defining an Elasticity Metric for Cloud Computing
Environments

Marta Beltrán
Department of Computing, ETSII

Universidad Rey Juan Carlos
28933 Madrid, Spain

marta.beltran@urjc.es

ABSTRACT

Elasticity is a key property of cloud computing environments
and one of the features which distinguishes this paradigm
from other ones. An elasticity metric could be used to de-
fine and to monitor Service Level Agreements (SLAs), to
compare and to benchmark different cloud providers or to
improve provisioning and management decisions in real time
if it could be measured with some simple procedure, to men-
tion only some examples. Unfortunately, there are not still
standard elasticity metrics capable of easily capturing its
main components or aspects, these are, scalability, accuracy,
time and cost. This work defines a new elasticity metric
for cloud computing environments which not only captures
these four essential components but also provides a simple
procedure to analyse elasticity in cloud contexts. The ob-
tained experimental results on a real cloud environment ev-
idence that this new elasticity metric is able to quantify the
degree of elasticity obtained in different cloud scenarios and
to establish interesting comparisons and analysis.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Performance attributes

General Terms

Experimentation, Performance

Keywords

Cloud Computing, Elasticity, Performance evaluation

1. INTRODUCTION
Almost all definitions of cloud computing include features

such as on-demand self-service, ubiquitous and heteroge-
neous access, resource pooling and multi-tenancy, measured
service and billing, dynamism or elasticity. These important
properties of the paradigm offer businesses and individuals
the possibility to access to infinite resources (cloud archi-
tectures provide the illusion of infinite computing resources)
from anywhere in the world, eliminating traditional capac-
ity predictions, in-house confinement and long term commit-
ments.

The on-demand feature allows users to adapt the system
capacity to their requirements, scaling up or down the provi-
sioned resources as the workload increases or decreases. The
elasticity of a cloud system is related to this feature, refer-
ring to the capability of adapting the leased capacity to the
user’s requirements as exactly, fast and cheap as possible.
Therefore, there are four main components that should be
considered to define an elasticity metric: scalability, accu-
racy, time and cost. Scalability, at least to certain degrees,
is something guaranteed in almost all current cloud services.
But it is usual that a cloud user is not able to scale exactly
to the needed capacity at all times, for example, because the
provider only offers certain types of service instances in her
catalogue that makes impossible a perfect match. It is also
usual that the scaling of resources needed to adapt to work-
load changes involves a non-negligible delay. And finally, it
has to be considered that capacity scaling may involve costs
that make them not worthwhile in certain situations. As a
result, most of cloud users do not pay for what they exactly
need.

Although all current cloud services claim to be elastic, a
plethora of factors affect their elasticity and there is not a
simple and easy to understand and to measure metric to
quantify this performance figure. The main contribution of
this work is the definition and validation of a new elasticity
metric for cloud environments. More specifically we (a) anal-
yse the elasticity concept in cloud environments, discussing
the most important factors affecting it and determining its
main components (b) define a new elasticity metric for cloud
services keeping it simple (c) describe a simple and stan-
dard procedure to analyse this elasticity (d) validate the pro-
posed metric and procedure with experiments performed on
real cloud systems offering different services (e) identify the
main elasticity enablers observed during the performed ex-
periments. These contributions allow providers and users to
have a complete characterization of their systems behaviour
from a elasticity point of view and to optimize their designs,

VALUETOOLS 2015, December 14-16, Berlin, Germany
Copyright © 2016 ICST
DOI 10.4108/eai.14-12-2015.2262685

developments and deployments considering this important
property, often mentioned so far, but very rarely quantified
and used due to its usual complexity.

The rest of this paper is organized as follows. Section
2 analyses and discusses the elasticity concept, the related
background and its implications in cloud environments. The
new elasticity metric and the procedure proposed to analyse
it are defined and described in Sections 3 and 4 respectively.
Section 5 shows the most important experimental results
obtained to validate the new metric in real scenarios and
discusses some important observations. And finally Section
6 summarizes the conclusions of this work and the most
interesting lines for future research.

2. BACKGROUND ON ELASTICITY
Some cloud computing definitions make particular empha-

sis on the importance of elasticity as a basic property of the
paradigm, in fact, elasticity definitions emerged together
with the cloud paradigm. But these works do not define
elasticity metrics to quantify this essential property. In [17]
a simple elasticity model is proposed: if D(t) is the resource
demand function and R(t) is the provisioned resources func-
tion, perfect elasticity is achieved whenD(t) = R(t) ∀t. This
model assigns a cost to the situations in which D(t) > R(t)
(under-provisioning) and to the opposite situations in which
D(t) < R(t) (over-provisioning) and tries to quantify the
total cost caused by not having a perfect elasticity.

This approach has been improved later in [10], using more
sophisticated models and data obtained with real workloads
executing on public clouds to assign costs to under-provisioning
and over-provisioning situations. This new model consid-
ers a penalty for provisioning resources that are not really
needed but also for releasing resources that may be needed
again soon. The figure of merit defined to perform compar-
isons of elasticity among different cloud services is related to
these penalties. In [3] an elasticity model is proposed too,
in this case in order to understand the elasticity require-
ments of a given application and if the elasticity provided
by a cloud provider is able to meet those requirements. This
work is focused on evaluating and comparing IaaS providers.

On one hand, these definitions and models do not provide
a general elasticity metric definition, but they all identify
the aforementioned components (scalability, accuracy, time
and cost), quantifying, considering and weighting them in
different ways. On the other hand, some works have tried to
define specific elasticity metrics. In [13] elasticity is defined
as the degree a cloud layer autonomously adapts capacity
to workload over time. This work presents a systematic lit-
erature review of definitions and metrics for elasticity, but
this is not the scope of our research. Anyway, some signif-
icant examples are introduced in the following paragraphs
because they were proposed with a ”keep-it-simple” philoso-
phy similar to the one considered in our research.

In [14] the elasticity is considered an economic aspect of
a cloud service besides cost. Elasticity is defined as the
capability of both adding and removing resources rapidly
in a fine-grain manner. In other words, an elastic cloud
service concerns both growth and reduction of workload, and
particularly emphasizes the speed of response to changed
workload. Due to this essential relationship with the speed,
the metrics proposed to quantify elasticity are the Provision
(or Deployment) Time and the Boot Time (these two times
as components of the Total Acquisition Time) as well as the

Suspend Time and the Delete Time (as components of the
Total Release Time). Therefore, elasticity is quantified in
time units, from 0 to ∞.

In [5] authors claim that cloud users need to know whether
a reduced load leads to a reduced bill. They propose to mea-
sure elasticity by running a varying workload and comparing
the resulting price with the price for the full load. In this
case elasticity is measured in monetary units, going from 0
to ∞.

In [8] elasticity is defined as the degree to which a system
is able to adapt to workload changes by provisioning and de-
provisioning resources in an autonomic manner, such that at
each time the available resources match the current demand
as closely as possible. Again accuracy and time are con-
sidered. Being θ the average time to switch from a system
configuration to another and µ be the average percentage of
under-provisioned resources during the scaling process, the
elasticity (El) is defined as:

El =
1

θ · µ
(1)

Elasticity is in this case a metric measured in time units−1

from 0 to ∞. This definition has been also used in [9] to
evaluate and to benchmark cloud elasticity.

Finally, in [1] an elasticity metric is supposed to answer
these two questions: how often does the system violate its
requirements? and once these requirements are violated,
how long does it take before the system recovers to a state in
which requirements are met again? In this work two metrics
are defined to answer these questions, the number of SLO
(Service Level Objectives) violations per time unit (from 0
to ∞) and the Mean Time To Quality Repair or MTTQR
(in time units, from 0 to ∞).

As it can be seen, although elasticity definitions and mod-
els use to consider that scalability, accuracy, time and cost
are its essential components, the previously defined elasticity
metrics use to focus almost completely on time or cost as-
pects. The elasticity quantified with these available metrics
is usually completed with scalability, accuracy, efficiency,
time or cost measurements and information in order to make
evaluations, comparisons or decisions. As a result, current
cloud users and providers need to handle complex sets of
performance metrics when they are interested in elasticity.

In fact, there are multiple challenges related to defining a
general elasticity metric in this context. First, no assump-
tions about the cloud infrastructure, about the provision-
ing and management mechanisms or about the application
should be made. Second, the elasticity measurement has
to be kept simple in order to avoid overheads and signifi-
cant costs when it has to be performed frequently. Third,
the four aforementioned components should be considered in
a unique metric: scalability, accuracy, time and cost. And
fourth, all the aspects affecting a service elasticity [6] should
be determined and analysed to capture them in a proper
way with the proposed metric, we will call them elasticity
enablers the rest of this paper.

3. DEFINITION OF A NEW ELASTICITY

METRIC
The context considered in this work involves a unique ser-

vice provider, private or public, offering a cloud service. The
elasticity of this cloud service (E) is defined as its ability to

Figure 1: Inaccuracy (∆) and reconfiguration time
(R) concepts

scale responding to the user needs fulfilling the QoS com-
mitted in the SLA with optimum accuracy, speed and cost.
And this elasticity of a cloud service should be quantified
as:

E = f(scalability, accuracy, time, cost) (2)

Let us rely on a scalability metric ψ capable of consider-
ing cost in its definition. Figure 1 illustrates the definition of
the service inaccuracy ∆ and of the service reconfiguration
time R considered in this work, being the inaccuracy the
absolute value of the difference between the exact capacity
needed by the cloud user (demanded capacity or DC) and
the actual provisioned capacity (provisioned capacity or PC)
and the reconfiguration time the provisioning delay, there-
fore, the time needed to reconfigure the service responding
to the user’s needs. Notice that ∆ = |PC −DC|, with ab-
solute value, because the service inaccuracy may cause an
over-provisioning or an under-provisioning situation.

The higher the scalability value is, the higher must be the
service elasticity; while the higher the ∆ and R values are,
the lower must be the service elasticity. Therefore, trying to
keep a simple definition, the elasticity metric could be:

E = ψ · g(1/∆) · h(1/R) (3)

In this work the following definition is proposed:

E =

{

ψ · Rmin

R
if∆ = 0

ψ · ∆min

∆
· Rmin

R
otherwise

(4)

Where, ψ is the service scalability with a definition of scal-
ability able to consider cost, ∆ is service inaccuracy, ∆min is
the minimum service inaccuracy, R is the service reconfigu-
ration time andRmin is the minimum service reconfiguration
time.

The minimum service inaccuracy (∆min) and minimum
service reconfiguration time (Rmin) are needed to quan-
tify elasticity. In the first case, this minimum inaccuracy
depends on the service granularity allowed by the service
provider. Even relying on perfect elasticity mechanisms
(mainly management and provisioning mechanisms), this

granularity may avoid a perfect match between demanded
capacity and provisioned capacity. In the best case, g(∆)=1
because elasticity mechanisms achieve the minimum inaccu-
racy. Otherwise, g(∆) < 1 because the observed inaccuracy
is greater than ∆min. A special case has to be considered to
avoid dividing by zero: the case in which ∆=0. This situa-
tion is very unlikely, it only happens if full personalization of
instances, containers, machine images, etc. is allowed and if
perfect elasticity mechanisms are available. In this case we
have always the perfect situation for elasticity and g(∆)=1.

Regarding reconfiguration time, similar reasoning can be
applied. The value for Rmin can be specified by the provider
in the SLA, can be computed from other times (resource ac-
quisition time metrics such as provision time, boot time,
startup time, spin up time, etc.) or it can be obtained with
historic data. In this case, the function h(R) is defined as
the ratio between the minimum reconfiguration time and
the actual reconfiguration time. In the best case, h(R)=1
because elasticity mechanisms achieve the minimum recon-
figuration time. Otherwise, h(R) < 1 because the observed
reconfiguration time is greater than Rmin. There are not
special cases because there are not instantaneous reconfig-
urations (even using proactive techniques, reconfiguring the
service always involves a non-negligible latency) and the re-
configuration time is always greater than zero.

With the provided definition, in the best case E = ψ be-
cause the accuracy and the reconfiguration times are the
best possible (g(∆) = 1 and h(R) = 1). But this would
not be a perfect elasticity case, because a minimum inac-
curacy and/or a minimum reconfiguration time are always
considered. Remember that the scalability is a necessary
condition for elasticity, but not sufficient. To associate a
meaning to the numerical value of elasticity, the scalability
metric selection must be considered.

3.1 Discussing the scalability metric selection
Rather than having a definition of scalability which is uni-

versally accepted, it is possible to find a number of scalability
models that have been proposed during the last years. The
main difference between all these models is in the selection
of the performance metric used to characterize the system’s
behaviour. Intuitively, a parallel or distributed system is
scalable if its performance continues improving as the system
size is increased. But, how this performance is quantified?
A variety of metrics have been proposed: speedup [7, 15],
efficiency [12], latency [18], power [11], average speed [16].
Other important differences are if they take into account or
not the cost, how the system size is considered, and if they
are able to support or not heterogeneous environments.

In this research the P-scalability definition provided in
[11], based on the power performance metric, has been cho-
sen to quantify the scalability inside the elasticity definition
due to a number of reasons:

• It takes into consideration the service cost, very im-
portant for the elasticity definition.

• The P-scalability allows us to use as a performance
metric a general aspect called Quality of Service (QoS)
which can be selected depending on the evaluated sys-
tem. It can be used any measure of the goodness of
a service and this is very important to adapt the elas-
ticity metric to the different service models, kinds of
SLAs, user’s requirements, etc.

• This metric can be used in homogeneous and hetero-
geneous contexts.

• And finally, the strategy considered for scaling up the
system is not only based on adding more processors
or computing power, it can be much more complex
considering another system resources and scaling paths
(i.e. ways to increase the system size).

In [11], the scalability from configuration 1 to configura-
tion 2 is defined as:

ψ =

P2

C2

P1

C1

(5)

In our case, P is the service power and C is the service
cost (usually quantified as a cost per time unit). Therefore,
with the P-scalability definition a service is scalable from
configuration 1 to configuration 2 if the additional cost in-
troduced by the service scaling is worthwhile considering the
power gain.

The service cost of the target service configuration, C2
must always include the cost of the reconfiguration process.
Therefore, it is not only the cost of the leased resources
with configuration 2 but also of the scaling process needed
to change the service from configuration 1 to configuration 2.
This total cost should be divided by R, the reconfiguration
time or provisioning delay, therefore, the time needed to
reconfigure the service responding to the user’s needs. With
this ratio, the cost per time unit can be computed.

C1 = cost of the service per time unit in

the initial configuration 1 (6)

C2 = cost of the service per time unit in

the target configuration 2 + reconfiguration cost / R (7)

To consider the billing model in the new elasticity metric,
financial measurements of this cost should be used. Re-
member that provisioned resources are not always equal to
charged resources, therefore, the typical cost metrics based
on the quantity of provisioned or used resources do not al-
ways capture the real cost of a service configuration. On the
other hand the power definition P selected for the scalability
metric in this work is:

P = λ · f
(

QoS,QoS
)

(8)

Where λ is the service admission throughput (accepted
service requests per time unit), QoS is the observed quality
of service quantified with the metric chosen by the user and
the provider in the committed SLA and QoS is the expected
or desired quality of service. It has to be pointed that this
last value is not a mathematical expectation or average; it
is a constant specified by the service user.

A typical example of the QoS metric is the average appli-
cation response time (T) for software as a service. The most
simple function f in cloud environments is:

f
(

T, T
)

=
T

T
(9)

With this definition, the service power is high when its
admission throughput is high and when the T value is close
to its expected value, T .

But suppose that the user is running a parallel application
on a HPC as a service context. In this case, the QoS may
be the efficiency (ε). A different f needs to be used, since
a high response time value and a high efficiency value have
opposite effects on the power figure. This function for the
efficiency could be:

f (ε, ε) =
ε

ε
(10)

The two showed quality of service figures and f functions
are very simple and very frequently used, but if another
measure of this quality is needed in any context or a new f
function have to be defined by the service user to compute
the system power with equation 8, it would be immediate to
compute elasticity with these modifications.

4. ELASTICITY ANALYSIS PROCEDURE
The elasticity quantification has a number of applications

and it can be taken into consideration by cloud users and
providers to define and to monitor the SLA or to make punc-
tual provisioning decisions, for example. But another key
idea in describing services elasticity is to perform an anal-
ysis on a complete service scaling path controlled by a se-
lected scaling factor (i.e. the aspect which is being modified
to increase the system size) from a reference configuration
rather on taking into account only the elasticity between two
configurations. As it has been mentioned before, with the
P-scalability the scaling factor is completely general. There-
fore a deep analysis of all the aspects affecting the elasticity
of a service could be performed. This analysis may be very
useful, for example, in a provider selection context. But also
in service design, development or deployment stages.

First of all, a benchmark must be selected to perform the
service analysis. This benchmark should include workloads
that are representative of the user patterns of load variation
and scaling (although for generic elasticity evaluations, sinu-
soidal workloads, exponentially bursting workloads, linearly
growing workloads or random workloads could be used, [10]).
The typical scaling paths for cloud services are: increasing
the number of provisioned instances, increasing the size of
provisioned instances or increasing the number of users per
application instance, the number of tasks per server image,
etc.

At each scale factor the service can be optimally tuned
(variable scaling strategy) by adjusting all its elasticity en-
ablers, which are the parameters that can improve the ser-
vice performance after its scaling, or it can be let unchanged
(fixed scaling strategy). Then, the elasticity at this scale
factor is computed comparing its value at this configuration
with the elasticity of the reference case.

For example, if the selected scaling factor for the elastic-
ity analysis is the number of provisioned instances, N , the
proposed elasticity analysis should be performed following
these steps:

1. Obtain the minimum and maximum configuration for
the evaluated service estimating the minimum and the
maximum number of instances (N0 and Nmax) allowed
by the provider and the committed quota.

2. Define the scaling strategy, from the reference case
(N0) to the maximum service size (Nmax). The fol-
lowed scaling path can be:

• Fixed: When the scaling is performed only in-
creasing the number of provisioned instances.

• Variable: When the scaling takes advantage of
the elasticity enablers, tuning the service as best
as possible for each N value (for example, increas-
ing the problem size, the grain size or adapting
the load balancing and the virtual provisioning
mechanisms as needed).

3. Select the quality of service metric interesting for the
evaluated service, and define the corresponding f func-
tion.

4. Obtain ∆min and Rmin for all the considered N values.

5. Measure C, λ, QoS, ∆ and R for all the considered N
values.

6. Compute the elasticity for each N value comparing it
with the reference case, N0:

E(N0 → N) =

{

ψ(N0 → N) · Rmin

R
if∆ = 0

ψ(N0 → N) · ∆min

∆
· Rmin

R
otherwise

(11)

With:

ψ(N0 → N) =

PN

CN

PN0

CN0

(12)

5. EXPERIMENTAL VALIDATION
In order to validate the new elasticity metric and the use-

fulness of the procedure proposed to analyse it a private
HPC-cloud has been used and two very different benchmarks
at the application level have been selected. Specifically, we
are interested in assessing the behaviour of the elasticity
metric (reliability, repeatability, consistency, independence,
etc.) and in verifying the utility of the proposed analysis
procedure evaluating different elasticity enablers. Due to
space restrictions only the most important and illustrative
results will be summarized in this section.

5.1 Experimental setup
LazarusCloud is a private cloud providing IaaS, PaaS and

SaaS for HPC applications. It is built with commodity hard-
ware, 16 heterogeneous machines with Xen/Linux compose
the cloud infrastructure. These 16 machines are connected
by a Gigabit Ethernet network and a different server has
been used during the experiments to emulate users and to
generate all service requests.

In all the performed experiments two different scientific
applications usually executed on LazarusCloud with three
different problem sizes (class A, B and C from smaller to
larger, 4X size increase going from one class to the next)
have been selected as benchmarks for our experiments, a
MonteCarlo simulation and a fluid physics simulation. The
service request rate has been fixed in 5 requests per minute
in our experiments for the two selected benchmarks, being
this value set attending to the observations obtained from

real scenarios on LazarusCloud not detailed here for space
restrictions.

LazarusCloud includes an additional machine used to run
the AutoMAP mechanism proposed in [2]. AutoMAP (Au-
tomatic Multi-tier Applications Provisioning) is a general
(application and provider independent) application provi-
sioning solution, it can be implemented with different archi-
tectures from centralized to distributed and it is able to deal
automatically with both batch and interactive applications
allowing horizontal and vertical scaling (based on replication
and on resizing respectively). As part of a research labora-
tory one of the main goals of LazarusCloud is being able
to avoid scientists the troubleshooting and decision-making
related to service management, therefore the AutoMAP so-
lution provides flexible and general mechanisms to automat-
ically determine how much virtual resources need to be allo-
cated to the application minimizing resources consumption
and meeting the service level agreement. Only horizontal
scaling has been used in our experiments.

For simplicity one instance type has been offered to end
users to run their service requests based on a virtual machine
with 2 virtual CPUs, 4 GB of memory and 80 GB of storage
capacity. End users and the application cloud provider agree
on a probabilistic application-SLA based on the maximum
average response time allowed for the application (T). The
application cloud provider can reject an end user’s request if
the response time for this request is predicted to fail in meet-
ing the SLA. The admission control considers the Acceptable
Risk Level (ARL) to make decisions, defined as the proba-
bility of having insufficient capacity to satisfy an end user’s
SLA. In these experiments the value of ARL has been 0.05.
And considering all the information and knowledge about
the provisioning and management mechanisms, the SLA for
LazarusCloud specifies that the service efficiency may vary
from 0.75 to 0.98. The service efficiency is widely used by
cloud providers and users and it can be easily measured as:

ε =
VMminutes actually running user’s application

VMminutes
(13)

Therefore, it allows us to quantify the degree of over-
provisioning running user’s applications and it can be used
to estimate ∆min. In these experiments the SLA specifies
that Rmin=25 s. In public cloud services this value usually
would be in the range of minutes, but for these experiments
we have a small private and very controlled infrastructure.
This is a minimum (optimum) value, not the exact value for
all service reconfigurations (reconfiguration time depends on
the executed application, on the cloud infrastructure and
platform, etc.), if more accurate estimations are needed the
Rmin value could be better quantified after a number of ap-
plication runs. Finally, a straightforward scheduling strat-
egy has been used, with all the physical hosts running all
the time and creating new VMs always on the physical host
with fewer running machines.

In our experiments the application provider owns the pri-
vate physical infrastructure, therefore, the simplest billing
model is based on VM minutes, the sum of the wall clock
time of each instantiated application from its creation to its
destruction. This metric has been used before [4] as a metric
for VM utilization and cost. The user is charged a total cost
C= VM minutes · 0.01/60, because the cost of the avail-
able VM type is 0.01 euros/hour and the additional services

(storage, provisioning, monitoring, etc.) are provided free of
any charge.

5.2 Validating the elasticity metric and the anal-
ysis procedure

This validation has been performed using the two con-
sidered benchmarks, each experiment has been conducted
twenty times to report the average for each output metric.
The values for the main components of elasticity and the
elasticity value itself have been derived from equations 5
(ψ), 6 (C1), 7 (C2), 8 (P1 and P2) and 4 (E) taking into
account that:

• The QoS based on the average response time T has
been considered. The expected values for the aver-
age response time (T) are 110 s for MCA (Montecarlo
benchmark, size A), 190 s for MCB , 320 s for MCC ,
300 s for SIMA (fluid physics simulation benchmark,
size A), 400 s for SIMB and 530 s for SIMC .

• The inaccuracy (∆) has been estimated from the mea-
sured ε value:

∆ = |(1− ε) · VMminutes| (14)

• The minimum inaccuracy (∆min) has been estimated
from the maximum value for ε specified in the SLA:

∆min = |(1− εmax) · VMminutes| (15)

• The reconfiguration cost have been assumed to be the
same that VM cost, therefore, the reconfiguration time
has been charged as 0.01 euros/hour.

The elasticity analysis has been performed following the
proposed steps. The reference case (the minimum config-
uration) has been set at N = 1 (one provisioned virtual
machine), while the maximum service size has been deter-
mined to be Nmax=80 (due to the available infrastructure
in the LazarusCloud and to the provided instance type).
Two scaling paths have been followed: a fixed scaling path
(when the scaling is performed only increasing the number
of provisioned instances) and a variable scaling path (when
the scaling takes advantage of the elasticity enablers, tuning
the service as best as possible for each N value, in our case,
mainly increasing the data size).

Figures 2 and 3 summarize the results obtained with our
experiments. First of all, the defined elasticity metric can
be validated. The proposed metric is able to dynamically
capture the four considered elasticity components (scalabil-
ity, accuracy, time and cost) increasing its value when the
analysed service is capable to increase its size keeping a bal-
ance between performance and cost and making this adap-
tation accurate and fast. And decreasing its value when
the balance between performance and cost, the accuracy or
the speed of the adaptation have worse behaviour. There-
fore, the defined metric is reliable. But it is also easy to
measure, repeatable (this has been demonstrated repeating
each experiment twenty times and obtaining always similar
elasticity values) and consistent (it can be applied in differ-
ent contexts having always the same meaning and allowing
therefore to establish comparisons and to draw conclusions).

The performed analysis allows us to draw other interest-
ing conclusions. Figure 2 illustrates the elasticity analysis
of the MonteCarlo benchmark. In figure 2(a) the elasticity
analysis with the fixed scaling path has been performed for
the three available data sizes (remember that with a fixed
scaling path only the value of N in increased at every step of
the procedure). This figure shows a better initial behaviour
of elasticity with data size A because in this case we have
a more manageable data size in only one virtual instance,
obtaining better values for P (due to better response times)
than with data sizes B and C. But it can be observed how as
N is increased a plateau is reached in the elasticity value for
the three considered benchmarks, this plateau arrives later
(for larger N values) for the larger data sizes, able to effi-
ciently take advantage of the available resources to a higher
degree. And this plateau can be sustained longer, being ob-
served on higher elasticity values in the case of the data size
C. It has to be considered that at this point of the elastic-
ity curve the scalability and accuracy terms are dominant
for the elasticity figure. However, after this plateau the ser-
vice elasticity decreases with N in the three analysed cases
until values near 0 are reached, because the scalability and
the g(∆) values constantly decrease at every stage of the
analysis (summarizing, there is too little workload for too
many resources, as service size is increased from here the
HPC service experiences severe effects of inaccuracy). Even
more, when configurations with a larger number of virtual
machines are handled, h(R) shows a worse performance be-
cause service reconfigurations are more difficult to manage.

Figure 2(b) shows the elasticity analysis with the variable
scaling path, using the data size as a elasticity enabler dur-
ing the evaluation procedure. With the data size increase
during the analysis (beginning in the data size A and final-
izing with a size equivalent to 8X data size C), the service
scalability and accuracy terms are able to be almost constant
at every stage. As the reconfiguration times do not worsen
significantly, the elasticity can be significantly improved if
it is compared to the values obtained with the fixed scaling
path. Yet it should be noted that from N = 56 the value of
g(∆) begins to drop and the decrease of this term begins to
have a great influence on the elasticity values. Above this
value of N , h(R) shows a worse performance too and some
service requests begin to be rejected (worsening the λ val-
ues and therefore, the service scalability), having all these
factors a negative influence on the elasticity values.

Figure 3 shows a similar behaviour for the fluid physics
simulation benchmark but being more difficult to obtain a
sustained elasticity plateau and having it at lower elastic-
ity values due to the limitations intrinsic to the considered
HPC service: the evaluated application is tightly-coupled,
therefore, synchronous and communication sensitive due to
frequent inter-processor communications. The limitations
imposed by the communications’ pattern affect the elastic-
ity values, mainly through ψ (due to the measured P values)
and h(R) (because the service reconfigurations are more dif-
ficult to carry out).

5.3 Discussion
Four challenges related to defining a general elasticity

metric were identified previously in this paper, and the ex-
perimental evaluation conducted so far allows us to say that
we have overcome them with reasonable success.

Figure 2: Montecarlo simulation service elasticity analysis with the two considered scaling paths

Figure 3: Fluid physics simulation service elasticity analysis with the two considered scaling paths

First, no assumptions about the cloud infrastructure, about
the provisioning and management mechanisms or about the
application are needed to quantify a service elasticity with
the proposed metric. Only the ability to measure and/or
to determine few easy parameters that the user knows or
that are available through the service’s API or SLA is re-
quired. Second, the elasticity definition has been kept sim-
ple to avoid measurement and analysis overheads. Perhaps
more accurate elasticity models could be defined, but many
users and providers may not adopt them to make real-time
decisions (as it is currently happening with complex and
weighted sets of scalability, accuracy, speed and cost met-
rics).

Third, the four essential components of elasticity have
been considered in a single metric. And fourth, all the
aspects affecting a service elasticity can be captured in a
proper way through the proposed metric, we are now work-
ing in evaluating the different importance of identified elas-
ticity enablers:

• On the end user’s side:

1. Problem size: It is well known that the problem
size affects scalability, therefore, this enabler may
affect the ψ value.

2. Virtual and Application provisioning mechanisms:
These mechanisms are essential on cloud architec-
tures to deploy and to manage users’ applications
meeting the required level of elasticity. This en-
abler may affect P , C, ∆ and R.

• On the provider’s side:

1. Resources granularity: The instance types, con-
tainers, machine images or server types offered
by providers in their service catalogues have a
great influence on elasticity. The most important
aspect to consider is if these types are fixed (pre-
defined by the the provider) or if cloud users have
certain degree of personalization to lease exactly
the resources they need. This enabler may affect
∆.

2. Management mechanisms: In this case there are
three important aspects to take into account. The
first is the use of quotas. Almost all providers im-
pose restrictions to the amount of resources that
a single user can lease at each moment, therefore
the infinite resources premise is false and elastic-
ity has always a limit. The second is the startup
of spin-up time. Even using perfectly elastic pro-

visioning mechanisms in an infinite resources con-
text, once new resources are provisioned for a user
they need a time to be ready to use and actu-
ally available to work. And the third is the Re-
source Provisioning mechanism used to allocate
virtual machines or instances to physical hosts in
the provider data center. All these enablers may
affect λ and R.

3. Billing model: In this case, the most important
issues are the billing quantum, slice or period and
the latencies used to upgrade the billing basis for
a user. This enabler may affect C.

6. CONCLUSIONS AND FUTURE WORK
Elasticity is an essential property of cloud computing but

there is a lack of standard and simple elasticity metrics and
analysis procedures. This lack of a single general elastic-
ity metric makes difficult to consider elasticity as a service
level objective in SLAs, to compare and to select cloud ser-
vices or to optimize provisioning decisions and management
mechanisms in terms of elasticity to mention only some ex-
amples. This paper has introduced a new elasticity metric
capable of considering its four main components and the
most important aspects influencing elasticity in most cur-
rent cloud services avoiding evaluating complex models and
equations. Although a single metric could be a too extreme
synthesis in complex environments such as those related to
cloud computing, our experiments performed on a private
HPC cloud providing two different kinds of services demon-
strate the suitability of this metric in cloud contexts. The
proposed metric allows cloud users and providers to easily
quantify and understand services elasticity in order to make
their decisions, and this was our main goal when defining
the new metric. This along with the fact that the proposed
metric allows flexibility and personalization through the use
of the f

(

QoS,QoS
)

function and a deep analysis of the elas-
ticity of a cloud service, not only its punctual quantification,
increases the chance for the adoption of our approach.

Currently we are extending our experiments to larger,
less controlled and more complex architectures (using public
cloud services) in order to perform an exhaustive validation
of the proposed metric and analysis procedure and to better
understand the identified elasticity enablers and their real
influence on elasticity.

7. REFERENCES

[1] M. Becker, S. Lehrigy, and S. Becker. Systematically
deriving quality metrics for cloud computing systems.
In Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering, 2015.

[2] M. Beltran. Automatic provisioning of multi-tier
applications in cloud computing environments. The
Journal of Supercomputing, 71(6):2221–2250, 2015.

[3] P. C. Brebner. Is your cloud elastic enough?:
Performance modelling the elasticity of infrastructure
as a service (IaaS) cloud applications. In Proceedings
of the 3rd ACM/SPEC International Conference on
Performance Engineering, pages 263–266, 2012.

[4] R. N. Calheiros, R. Ranjan, and R. Buyya. Virtual
machine provisioning based on analytical performance
and QoS in cloud computing environments. In

Proceedings of the 40th International Conference on
Parallel Processing, pages 295–304, 2011.

[5] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup,
V. Markl, and C. Tosun. Benchmarking in the cloud:
What it should, can, and cannot be. In Selected Topics
in Performance Evaluation and Benchmarking Lecture
Notes in Computer Science, volume 7755, pages
173–188, 2013.

[6] G. Galante and L. C. E. de Bona. A survey on cloud
computing elasticity. In Proceedings of the IEEE/ACM
6th International Conference on Utility and Cloud
Computing, pages 263–270, 2012.

[7] J. L. Gustafson. Reevaluating Amdahl’s law.
Communications of the ACM, 31(5):532–533, 1988.

[8] S. Herbst, N. Kounev and R. Reussner. Elasticity in
cloud computing: What it is, and what it is not. In
Proceedings of the 10th International Conference on
Autonomic Computing, pages 23–27, 2013.

[9] K. Hwang, X. Bai, Y. Shi, M. Li, W.-G. Chen, and
Y. Wu. Cloud performance modeling and benchmark
evaluation of elastic scaling strategies. IEEE
Transactions on Parallel and Distributed Systems,
pages 1–1, 2015.

[10] S. Islam, K. Lee, A. Fekete, and A. Liu. How a
consumer can measure elasticity for cloud platforms.
In Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering, pages 85–96,
2012.

[11] P. Jogalekar and M. Woodside. Evaluating the
scalability of distributed systems. IEEE Transactions
on Parallel and Distributed Systems, 11(6):589–603,
2000.

[12] V. Kumar and V. N. Rao. Parallel depth first search.
Part II: Analysis. International Journal on Parallel
Programming, 16(6):501–519, 1987.

[13] S. Lehrig, H. Eikerling, and S. Becker. Scalability,
elasticity, and efficiency in cloud computing: A
systematic literature review of definitions and metrics.
In Proceedings of the 11th International ACM
SIGSOFT Conference on Quality of Software
Architectures, pages 83–92, 2015.

[14] Z. Li, L. OBrien, H. Zhang, and R. Cai. On a
catalogue of metrics for evaluating commercial cloud
services. In Proceedings of the ACM/IEEE 13th
International Conference on Grid Computing, pages
164–173, 2012.

[15] D. Nussbaum and A. Agarwal. Scalability of parallel
machines. Communications of the ACM, 34(3):57–61,
1991.

[16] X. Sun, Y. Chen, and M. Wu. Scalability of
heterogeneous computing. In Proceedings of the 34th
International Conference on Parallel Processing, pages
557–564, 2005.

[17] J. Weinman. Time is money: The value of on-demand.
Technical report, Hewlett-Packard, 2011.

[18] X. Zhang, Y. Yan, and K. He. Latency metric: An
experimental method for measuring and evaluating
parallel program and architecture scalability. Journal
on Parallel and Distributed Computing, 22(3):392–410,
1994.

