
GarCoSim: A Framework for Automated Memory
Management Research and Evaluation

Konstantin Nasartschuk
kons.na@unb.ca

Marcel Dombrowski
marcel.dombrowski@unb.ca

Tristan M. Basa
tbasa@unb.ca

Md. Mazder Rahman
p3sp4@unb.ca

Kenneth B. Kent
ken@unb.ca

Gerhard W. Dueck
gdueck@unb.ca

Faculty of Computer Science, University of New Brunswick, Fredericton, Canada

ABSTRACT
Many modern programming languages rely on memory man-
agement environments that are responsible for allocation
and deallocation of objects. Garbage collection phases are
used in order to detect inaccessible objects on the heap so
they can be deallocated. The performance of garbage col-
lection techniques depends heavily on the environment, im-
plementation specific parameters and the benchmark used.
The contribution of this publication is an extendable mem-
ory management simulator, which aims to assist developers
in memory management evaluation and research. The si-
mulator is capable of reading operations from a trace file
extracted from a virtual machine and simulating the mem-
ory management needed by the simulated mutator. The
framework aims to provide an isolated experimentation and
comparison platform in the field of automatic memory man-
agement. New algorithms can be added to the framework
in order to compare them to established algorithms.

CCS Concepts
•Software and its engineering → Garbage collection;
Allocation / deallocation strategies; •Computing method-
ologies → Modeling and simulation;

Keywords
garbage collection, memory management simulation, trace
file

1. INTRODUCTION
As programming languages evolved, memory management

went through many developments, including the creation of
an abstraction layer to hide the underlying complexity of
resource management and software engineering. Automated
memory management is one of the key features of many
modern programming languages.

Explicit memory allocation, as used in C or C++, requires
developers to manage all objects created on the heap explic-
itly. Objects have to be allocated when they are created and
deallocated once the application no longer references them.
Studies suggest that 20% of the time consumed by a project
is used for memory management planning and optimization
[11].

Automated memory management systems use garbage col-
lectors that manage all objects allocated on the heap and
free them once they become inaccessible. Garbage collec-
tion algorithms such as reference counting [5, 11], mark-
sweep [15], and mark-compact [10] have emerged in order to
detect unused objects. Most of these techniques are based
on a stop-the-world concept. The managed application has
to pause execution so the garbage collector can identify and
free dead objects. The count and the duration of the stop-
the-world phases are two of the main metrics indicating the
performance of a garbage collector.

Attempts to optimize these metrics include divided heap
structures, concurrency, and generational memory manage-
ment structures [11]. Research and evaluation of algorithms
used in automated memory management are implementa-
tion dependent and vary, based on the Virtual Machine
(VM) utilized, the application that is being managed by the
VM, and user defined parameters involved in the algorithm
itself.

Currently, new GC algorithms are evaluated and com-
pared using benchmark suites such as SPECjbb [6], DaCapo
[2], SPECjvm [7] and others. This paper discusses an ap-
proach of creating an evaluation framework for garbage col-
lection techniques which does not rely on a specific virtual
machine. The idea of this project is to provide a mem-
ory management simulator, which replaces the VM with a
simulation of its memory management capabilities. The ap-
plication is replaced by a trace file which is extracted from
an existing virtual machine.

In addition, the framework is developed in an extendable,
open source form, so researchers can evaluate and compare
new techniques to the results of others in an isolated envi-
ronment. The memory management toolkit (MMTK) [1],

VALUETOOLS 2015, December 14-16, Berlin, Germany
Copyright © 2016 ICST
DOI 10.4108/eai.14-12-2015.2262678



which utilizes the Jikes Research Virtual Machine (Jikes
RVM) [14], is written in Java and aims to assist researchers
in prototyping virtual environment features in a simple vir-
tual machine rather than removing the compilation of the
application (mutator) code and a complete isolation of mem-
ory management.

A goal of the presented framework is to be simple. Each
virtual machine offers a number of optimizations on a vari-
ety of levels, such as garbage collection, allocation, just in
time compilation and object modelling. Comparing differ-
ent techniques having such a vast number of parameters can
be quite difficult and the search for the source of benefits or
causes for disadvantages can take significant time.

The paper is divided into four sections. Section 2 provides
a short introduction of automated memory management. To
test the memory management simulator, trace files of real
world applications were extracted from a JVM. The experi-
mental setup used for this paper is described in Section 3.
The extraction process and resulting trace files are topics
of Section 4. The design and development of the memory
management simulator that allows developers to implement
garbage collection techniques is described in Section 5. Re-
sults achieved using the combination of trace files and the
simulator are presented and discussed in Section 6.

2. BACKGROUND
As Java and other virtual machine-based languages con-

tinue to become more popular, the performance of those
languages becomes more important. One major drawback
of garbage collected languages is still inefficiency, especially
for computationally intensive scientific applications [13].

Four memory management techniques build the core of the
standard repertoire of virtual machines: Reference counting,
Mark-sweep, Mark-compact, and Copying collection. The
techniques, excluding reference counting, are introduced in
this section.

2.1 Mark-sweep and mark-compact
The mark-sweep garbage collection policy treats the heap

structure as a directed graph. Objects are connected using
their references to each other. The roots of the graph are
represented by pointers in registers, global variables, and
variables existing on the stack.

The algorithm is divided into a marking and a sweeping
stage. The policy requires a stop-the-world stage—at least
for the marking stage [15]. Marking describes the traversal
of the object graph and marking all objects reached as alive.
Once the traversal is done, the sweeping stage can free the
space used by dead objects. One downside of the policy is
the stop-the-world phase itself, as the mutator is stopped
completely and the time is used for memory management.
The main problem of this policy is the fragmentation that
occurs when objects are freed.

This drawback can be handled by replacing the sweep
stage by a more complex compaction phase. Once all live
objects are marked, the objects are compacted to remove all
fragmentation from the heap. The space located after the
last memory location used is marked as free. Compared to
the sweep phase, the compaction requires more time. How-
ever, the benefit of not having fragmentation has a large
impact on the number of garbage collections required in or-
der to accommodate the mutator. The compaction phase

can be initiated for every garbage collection or when the
fragmentation becomes too high.

2.2 Copying collection
The natural extension of the mark-compact collection is

represented by the copying collector [9, 4]. The idea behind
this policy is to remove the marking stage and to only use a
compaction phase. In order to accomplish this, live objects
have to be copied during traversal. As it is not certain how
much space and which addresses will be freed during the
process, objects have to be copied into an entirely separate
address space. This requires the heap space to be divided
into two halves. One, where new objects are allocated and
the second space where live objects will be copied during a
garbage collection. The benefits are a very short stop-the-
world time and the fact that no fragmentation is possible.
The largest disadvantage is the fact that the effectively avail-
able heap space is half of the physical memory space.

2.3 Combination of policies
Mixed policies appeared that use the knowledge of com-

mon application behaviour. An example is the knowledge
that many objects are small and die after a short time while
large and old objects have the tendency to survive even
longer. In order to use this knowledge, the generational
garbage collection technique was introduced. The idea be-
hind it is to divide the heap into a young and an old space or
spaces. The space of allocation is therefore collected more
often than the old space. In exchange, the allocation space is
usually only a small part of the heap, keeping the stop-the-
world times very short. Objects surviving long enough are
promoted into the old space as they are expected to survive
even longer.

3. EXPERIMENTAL SETUP
Measuring improvements in automated memory manage-

ment (MM) performance requires at least the simulation of
basic MM operations of a virtual machine (VM). An online
simulation is considered expensive as it requires a copy of
the VM and an actual run of the benchmark. An alterna-
tive approach is to run the simulation off-line using trace
files. Trace files offer the flexibility of being able to develop
a tailored simulator that focuses only on the basic MM op-
erations and at the same time, be portable to be compiled
and run on different platforms.

Trace files were acquired by instrumenting a Java Vir-
tual Machine (JVM), particularly the memory management
module. Instrumentation is done by inserting hooks in the
JVM code that handle memory-related operations. For each
of the operations, a line containing relevant information is
written to a file. This output file is post-processed to con-
form to the standard format specified in Section 4.2. The
post-processed file, or trace file, serves as input to the mem-
ory management simulator (MMS). It treats the trace file
lines as mutator memory operations, allocates space, man-
ages references and performs garbage collections in order to
accommodate the requirements of the application.

4. JVM INSTRUMENTATION & TRACE
The JVM’s C/C++ code was modified to log all basic

memory management operations into trace files. In this sec-
tion the MM operations that are captured at JVM runtime
are discussed, followed by post-processing of trace files.



4.1 Basic Memory Management Operations
A real life JVM was instrumented to trace four basic MM

operations that are described as follows:

4.1.1 Allocation
Most objects allocated by Java applications are short-lived

[3]. Given the overhead of allocating an object from the
general heap, also known as the slow-path allocation, this
becomes a bottle-neck in system performance. To circum-
vent this, performance-oriented JVMs have provisions for
assigning regions of memory for exclusive use of a thread.
Objects that are identified as being short-lived are allocated
from these exclusive regions, also known as fast-path alloca-
tion, thereby avoiding the need for expensive synchroniza-
tion operations. Within both the slow-path and fast-path
allocations, it is distinguished between single and indexable
(arrays) objects. With fast-path indexable objects, it is dis-
tinguished between contiguous and discontiguous arrays. All
in all, five types of allocation are identified. For every allo-
cation, the information traced includes the names of threads
handling the object allocation, the object id, the size of the
object, the number of object reference slots, the class name
of the object, the total instance size of the class, and the
number of static fields of the class.

4.1.2 Store Access
Four different store accesses are as follows:

1. Store primitives into an object: This operation
is performed when a variable of an object field is as-
signed/changed to/with data of a primitive type. The
recorded data are thread name, object id, field size,
field offset, and field type (volatile/non-volatile).

2. Store references into an object: This operation
happens when an object references another object. Rel-
evant information needed for this operation includes
the object IDs of both the parent object and the child
object, and the reference slot number. The JVM has
implemented a write barrier whenever fields are going
to be stored into. Hooks were added in these barriers
to output relevant information such as the thread, the
parent and the child object, and the object reference
slot where the child object will be pointed from.

3. Store primitives into a class: This operation is
performed when a static variable of a class field is as-
signed/changed to/with data of a primitive type. The
recorded data are thread name, class name, field size,
field offset and field type (volatile/non-volatile).

4. Store references into a class: This operation is sim-
ilar to object-to-object referencing except that the ob-
ject reference slot is a static field. The recorded infor-
mation is thread name, class name, field offset/index,
object id, field size and field type (volatile/non-volatile).

4.1.3 Read Access
An object is also instrumented whenever it (or one of its

fields) is accessed. Information from this operation can be
used for analyzing the effects of caching.

MM Operations Notation

Allocation a Ti Oj Sk Nl Cj
Add to rootset + Ti Oj
Store primitive into an object s Ti Oj Ix(/Fm) Sn Vo

Store object reference into an object w Ti Pj #k Ol Fm Sn Vo

Store primitive into a class s Ti Oj Ix(/Fm) Sn Vo

Store object reference into a class c Ti Cj #k Ol Fm Sn Vo

Read primitive or reference from an object r Ti Oj Ix(/Fm) Sn Vo

Read primitive or reference from a class object r Ti Cj Ix(/Fm) Sn Vo

Delete from a root set - Ti Oj

Ti: Thread id (i ≥ 0)
Oj : Object id (j ≥ 1)

Cj : Class id (j ≥ 1)

Sk: Size of object in bytes
Nl: Number of reference slots in an object
Ix(/Fm): Field index(/offset)
Sn: Field size
Vo: Field type (volatile or non-volatile)
Pj : Parent object id

Ol: Child object id

#k: kth slot of reference fields

Table 1: The trace file format.

4.1.4 Rootset Dump
Rootset dumps are a way of inspecting the thread’s root-

set. Since this should be done in a stop-the-world fashion,
an asynchronous-handler is signaled whenever allocation is
done. The timing of the actual dump depends entirely on
the JVM. Rootset additions and rootset deletions are in-
ferred between two rootset dumps in the next phase.

4.2 Post-Processing and Trace File Format
The instrumented JVM produces a file that contains raw

information captured during the execution of an application.
Some of this information can be converted to a format that is
more simulator-friendly (e.g. conversion of unique identifiers
from string to integer). In addition, rootset dumps need to
be converted to a series of operations (denoted by ’+’ and
’-’) in as much as the trace file is interpreted as a sequence
of operations.

Another purpose of post-processing is to defer rootset
deletions. At some point, some objects become garbage in
the trace file but somehow manage to appear again at some
later operations. These objects are allocated by the native
code and are not captured in the JVM C++ code. Some
approaches move them into what is called zombie regions to
be resurrected again at some later time [8]. The deletion
is deferred from the rootset of its allocating thread until its
last access. This prevents it from being collected at least
until its last access. Table 1 shows the format of the trace
files used in the experiments. Some attributes of classes are
captured in class lists. Attributes of a class are denoted by
Ci Ij #k className, where, i, j and k represent the class
id, class object size in bytes, and number of static references.

4.3 Results of Trace Files
Experiments are performed with both DaCapo [2] and

SPECjvm2008 [7] benchmark suites. When running the in-
strumented JVM, the Just-in-time (JIT) compiler as well
as the packed object feature were disabled. The optthruput
GC policy was used to disable concurrent GC, and specify
only a maximum of one GC thread to run. The heap size
was set to 16GB. The output is referred to as a raw trace
file that contains operations with relevant information about
threads, classes as well as root set dumps. Post-processing
results in a trace file with the standard format as specified in
Section 4.2. Trace files for eight workloads of DaCapo and
for 20 workloads of SPECjvm2008 benchmark suite were



Memory Operations
Ben Workloads #O(m)#T #C #Alloc w #So←o c #Sc←o

luindex 829.24 6 685 198,526 8,574,950 1,517
batik 1,015.73 17 1,653 1,070,877 7,693,402 14,980

DaC avrora 2,706.08 15 887 1,950,313 22,851,625 1,677
fop 283.52 10 1,492 2,951,921 6,351,197 2,748
pmd 816.61 14 1,029 7,059,936 33,691,819 1,890
jython 4,351.83 10 2,592 42,827,144 133,321,284 6509
lusearch 3,203.79 21 639 13325559 56945210 1448
xalan 2,872.67 21 920 6,623,561 41,836,363 7,506
*.sunflow 233.57 20 1360 334,032 597,619 4,111
*.compiler.sunflow 235.04 15 1418 333,354 646,308 4,086
*.crypto.rsa 234.16 20 1420 330,947 618,608 3,987
*.crypto.aes 234.38 20 1420 331,363 625,008 3,999
*.compress 233.46 20 1419 332,047 595,687 4,035
*.crypto.signverify 234.21 20 1420 331,266 619,195 3,991
*.mpegaudio 233.41 20 1419 331,414 594,022 4,011
*.scimark.fft 233.98 20 1420 330,387 613,605 3,987
*.scimark.lu 233.43 20 1420 331,174 595,948 4,027

SPEC*.scimark.monte carlo 234.16 20 1419 330,363 619,607 3,991
*.scimark.sor 233.44 20 1420 331,407 595,314 4,043
*.scimark.sparse 234.54 20 1420 331,893 631,234 4,035
*.serial 233.45 20 1419 332,044 595,440 4,035
*.xml.transform 233.49 20 1419 331,907 596,337 4,011
*.xml.validation 233.63 20 1419 334,109 598,955 4,115
compress 3,736.55 16 1,366 331,802 589,686 3,889
scimark.sor.small 4,816.08 16 1359 329,379 587,526 3,858
scimark.fft.small 2,434.52 16 1,359 334,936 59,0631 3,889
scimark.lu.small 6,563.88 16 1,358 367,559 718,042 3,848
xml.validation 1,023.26 16 1,594 2,419,200 28,176,696 4,406

Ben: Benchmark
Dac: DaCapo
SPEC: SPECjvm2008
*: startup
#O(m): No. of memory management operations in million
#T : No. of threads
#C: No. of classes
#Alloc: No. of objects allocated
#So←o: No. of operations for storing a non-static object reference into an object
#Sc←o: No. of operations for writing a static object reference into a class

Table 2: Metrics of the generated trace files.

generated. Metrics of the generated trace files are shown in
Table 2. Column 3 shows the total number of memory man-
agement operations captured in each workload running in
the JVM. The number of operations that are most relevant
to the GC simulator, such as allocations, stores of object
references into other objects and stores of object references
into class objects are shown in column 6, 7 and 8 respec-
tively. Empirical results show that 98% of all operations are
read access operations that can be used in further research
to simulate cache misses, object cache locality, etc.

5. MEMORY MANAGEMENT SIMULATOR
In order to isolate the memory management aspect of a

virtual machine from the mutator execution for evaluation
purposes, part of this project was the development of a mem-
ory management simulator. The input of the simulator is a
trace file containing object allocations and reference opera-
tions.

The memory management simulator, developed in C++,
utilizes an object-oriented and iteration-based approach. The
goal of this development process was to ensure a high exten-
sibility of the framework. At the core of the model are classes
representing objects, a memory manager, a garbage collector
and the allocator. Even though the memory management
simulator was created with a monolithic heap structure in
mind, the structure allows developers to create divided heap
policies. The framework, including the simulator, the trace
generator and their source code are publicly available on
GitHub [12].

5.1 Simulator Structure
Figure 1 shows the basic class structure of the memory

management simulator. The MemoryManager uses the Allocator
module for object allocation and keeps track of all existing
objects in order to create and maintain references between

Figure 1: Garbage Collector architecture consisting
of MemoryManager, Allocator, Collectors.

them. If an allocation fails or another metric signals that
a garbage collection should be initiated, the MemoryManager

commands the Collector to do so. The specific implemen-
tation of the Collector determines which objects are not
referenced any longer and requests a free operation by the
allocator.

Only the MemoryManager class can allocate and only the
Collector deallocate objects. The mutator can never re-
quest the deletion of an object and the garbage collector
can never allocate a new object. The only exception to this
is the moving process of existing objects during the copying
or compacting stage of different collection policies.

A dynamic object container keeps track of all objects that
exist on the heap. This includes active and used objects as
well as dead objects, which are not yet freed. The root set
is used to initiate an object traversal algorithm to locate
all live objects. The container can be iterated afterwards
in order to find dead objects and to free them, depending
on the collection policy. Alternatively, collections and heap
organization can be performed without the use of an object
list but rather by iterating over the objects on the heap itself
using a base pointer and object sizes.

The classes Allocator and Collector are interfaces which
can be specified using one of the specific policy implemen-
tations developed for it. Allocator implementations include
first fit and next fit allocation. GC policies available are
mark-sweep, mark-compact, and copying collection.

Additional Allocator and Collector classes can be in-
troduced by implementing the interface calls defined by the
parent classes. Examples for both cases are included in the
repository. If a changed heap structure is being investigated,
changes to the MemoryManager class might be necessary.

The flow of the program starts with the Simulator class,
which is responsible for simulation control and input han-
dling. Its main task is to read in memory instructions from
the trace file and to advice the MemoryManager which action
is currently requested by the mutator. The MemoryManager

class represents the orchestration module of the application
and routes requests to instances of Allocator or Collector
classes depending on metrics, trace file request and the suc-
cess or failure of allocations. The Object class includes met-
rics and information about one specific object on the heap.



It includes the address, object id, creation time and other
values, which could be of interest when researching auto-
matic memory management. Additional information can be
added if needed.

6. EXPERIMENTAL RESULTS
In order to evaluate the simulator, ten trace files extracted

from the JVM were processed using the collection policies
included in the current version of the simulator. The main
metrics for the evaluation of the simulator were the count
of garbage collections, the average collection time, and the
execution time of the full benchmarks.

As each benchmark has an individual heap structure, the
heap size for each run of the benchmarks was increased in
25MB steps and the change in execution time was recorded.
A watermark metric, which triggers a GC before the heap is
filled, was not used in any of the tests in order to stress the
allocator and garbage collection policies. The machine used
for the benchmarks utilized an Intel Core i7-2600 processor
and had 8 GB of RAM.

Table 3 shows the total execution time for each bench-
mark. All combinations of heap size and collection policy
are listed. It can be observed that in general, the mark-
compact policy requires the smallest heap as it does not
suffer from fragmentation and does not divide the heap into
two separate parts. The copying collection requires the sec-
ond largest heap and almost always, mark-sweep requires
the largest heap in order to be able to run. An extreme case
for this metric was the pmd benchmark, which executed suc-
cessfully using a 100 MB heap when using mark-compact or
the copying policy, but required a 250 MB heap in order to
finish utilizing mark-sweep garbage collection.

Benchmarks such as compress show the cost of garbage
collection. While stop-the-world phases are required, the
execution time of the simulation is 25 seconds slower com-
pared to a heap which never becomes full during run time.
In addition, this particular case shows once again, that this
point is reached with a much larger heap when the copying
policy is used.

As described in literature, copying collection was observed
to deliver the fastest execution results due to small average
collection times [11]. Mark-sweep (when a run finished suc-
cessfully) had the second fastest results. The compaction
phase of the mark-compact policy slowed down garbage col-
lections.

The number of garbage collections for each policy were
collected using a 100 MB heap as the heap size allowed for
all but two tests to finish while the heap was still small
enough to require stop-the-world phases. The last column
in Table 3 lists the average garbage collection time for each
benchmark when using a heap size of 100MB. The average
collection count is listed in parentheses. Those two metrics
can be used in order to determine the raw garbage collection
time of the benchmark.

An example of garbage collection times and their compar-
ison is the scimark.lu.small benchmark. Even though the
collection policy required two collections in order to accom-
modate the memory needs of the benchmark, the stop-the-
world phases were only about 3 seconds on average. The
mark-sweep policy had to halt the application for 9.6 sec-
onds and the mark-compact phase due to its compaction
phase 12.2 seconds.

Figure 2: GC start during runtime and its duration
when running xml.validation with a heap of 75MB.

The simulator presented is capable of not only comparing
different runs using different parameters, but can also be
used in order to investigate a single simulation process in
more detail. An example would be the investigation of GCs
when using the same heap size. In particular the time when
a GC happens and how long it takes during the execution
process. Using the result log files of the simulator, it is
possible to retrieve this data and visualize the information
as shown in Figure 2.

The results Figure 2 are as expected. As the copying
collector splits the heap in two, the active heap part fills
up quickly and collections are required earlier compared to
other techniques. On the flipside, the time needed for each
collection is constant no matter how many live objects re-
main on the heap. This is not the case when looking at the
graphs of the mark-sweep and mark-compact policies. As
the number of live objects and therefore the heap size usu-
ally increases, the stop-the-world times of mark-sweep and
mark-compact increase as well. This underlines the state-
ment, that a frequently filled heap usually benefits from a
copying collection [11].

7. CONCLUSIONS AND FUTURE WORK
This paper presented the design and evaluation of a garbage

collection simulator which aims to be used for automated
memory management research. The structure of the simu-
lator and the process of extracting real application input files
for the framework from a JVM was described in detail and
the execution and results gathered were discussed in order
to show possible applications for the framework.

The simulator is under heavy development. Future work
in this project include the development of a trace file gen-
erator. It can be used to mimic the memory requirement
behaviour of real life applications and to create trace files of
any size without the need of extracting them from a virtual
machine.

Another field of research is the implementation of ad-
ditional garbage collection techniques. This includes split
heap structures such as generational garbage collection, thread
local garbage collection, and others.



Benchmark Policy 50M 75M 100M 125M 150M 175M 200M 225M 250M

Avg GC
time (count),

100M

avrora
C 121.28 114.193 126.047 120.397 110.032 104.892 103.865 78.715 74.651 12.466 (2)
MC 228.448 161.843 175.648 86.414 78.216 75.481 80.642 81.417 89.291 86.082 (1)
MS 278.804 75.462 77.671 78.51 79.369 78.688 73.21 91.274 (2)

batik
C 87.864 74.575 72.282 64.501 58.467 59.14 60.998 59.906 7.751 (3)
MC 164.921 136.528 80.491 100.637 41.526 33.3 33.425 34.083 36.259 37.363 (1)
MS 70.516 38.794 33.575 35.104 33.486 34.582

compress
C 32.752 28.223 22.838 24.648 26.661 10.266 10.748 10.921 4.671 (2)
MC 46.14 35.093 9.193 9.331 9.795 9.942 9.847 10.625 11.045 0 (0)
MS 32.199 23.594 8.943 8.426 9.765 10.14 10.262 9.801 10.916 0 (0)

fop
C 116.718 102.432 98.09 82.571 80.282 87.989 88.514 80.876 82.417 6.524 (4)
MC 245.933 225.998 171.13 93.13 110.713 117.605 127.162 45.862 45.412 52.806 (2)
MS 351.722 178.896 143.116 93.408 93.838 100.419 112.677 45.674 45.949 43.985 (2)

luindex
C 30.358 25.596 23.609 26.655 26.076 28.095 26.549 21.981 29.355 0 (0)
MC 22.848 27.86 27.248 26.615 27.029 26.912 26.421 27.676 28.042 0 (0)
MS 28.29 26.515 20.535 26.243 27.041 27.272 35.583 26.566 27.578 0 (0)

pmd
C 408.8 292.74 334.743 314.149 291.701 239.141 209.069 216.057 4.975 (17)
MC 818.403 718.756 735.743 574.013 341.939 368.925 392.716 107.926 (6)
MS 343.782

scimark.fft.small
C 27.707 23.477 19.78 21.572 23.541 25.303 10.131 10.487 10.768 6.295 (1)
MC 22.656 28.955 9.147 9.232 9.531 9.807 10.18 10.454 10.831 0 (0)
MS 19.187 23.735 9.119 9.182 9.458 10.002 10.125 10.432 10.803 0 (0)

scimark.lu.small
C 24.434 22.062 20.075 18.661 19.149 19.416 20.676 22.302 8.623 3.266 (2)
MC 32.042 20.913 25.298 11.349 8.095 7.941 8.483 8.59 8.623 12.2 (1)
MS 26.038 18.606 20.08 7.154 10.422 8.236 8.323 9.402 8.716 9.599 (1)

scimark.sor.small
C 11.753 10.391 11.374 5.124 5.413 5.518 5.782 6.004 6.324 3.286 (1)
MC 15.061 4.657 4.973 5.308 5.376 5.559 5.823 6.06 6.468 0 (0)
MS 12.125 4.951 4.948 5.386 5.364 5.589 5.753 6 6.184 0 (0)

xml.validation
C 180.149 135.206 132.794 158.282 169.955 161.932 127.563 153.944 139.763 3.643 (6)
MC 735.03 330.131 273.436 338.09 227.003 280.423 203.744 193.258 199.035 83.621 (2)
MS 502.177 325.567 315.409 223.821 222.375 221.177 179.534 186.048 76.743 (3)

Table 3: Execution time of the simulation in seconds. Each benchmark was run with different heap sizes
and different collection policies (Copying, Mark-Compact, and Mark-Sweep). An empty cell stands for an
insufficiently large heap. The last column lists average GC times when using a heap size of 100 MB. The
times are listed in seconds.

8. ACKNOWLEDGMENTS
The authors would like to acknowledge the funding sup-

port provided by the Atlantic Canada Opportunities Agency
(ACOA) through the Atlantic Innovation Fund (AIF) pro-
gram. Furthermore, we would also like to thank the New
Brunswick Innovation Fund for contributing to this project.
Finally, we would like to thank the Centre for Advanced
Studies—Atlantic for access to the resources for conducting
our research.

9. REFERENCES

[1] S. Blackburn, R. Garner, and D. Frampton. Mmtk:
The memory management toolkit, 2006.

[2] S. M. Blackburn, R. Garner, C. Hoffmann, A. M.
Khang, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, et al. The
dacapo benchmarks: Java benchmarking development
and analysis. In ACM Sigplan Notices, volume 41,
pages 169–190. ACM, 2006.

[3] S. M. Blackburn, R. Jones, K. S. McKinley, and
J. E. B. Moss. Beltway: Getting around garbage
collection gridlock. In L. J. Hendren, editor,
Proceedings of PLDI’02 Programming Language
Design and Implementation, pages 182–196, Berlin,
June 2002. ACM Press.

[4] C. J. Cheney. A nonrecursive list compacting
algorithm. Communications of the ACM,
13(11):677–678, 1970.

[5] G. E. Collins. A method for overlapping and erasure
of lists. Communications of the ACM, 3(12):655–657,
1960.

[6] S. P. E. Corporation. SPECjbb2013.
https://www.spec.org/jbb2013/ [Online. Last
accessed: 2015-06-08], 2015.

[7] S. P. E. Corporation. SPECjvm2008.
https://www.spec.org/jvm2008/ [Online. Last
accessed: 2015-06-08], 2015.

[8] S. Dieckmann and U. Hoelzle. A study of the
allocation behavior of the specjvm98 java benchmarks.
Technical report, Santa Barbara, CA, USA, 1998.

[9] R. R. Fenichel and J. C. Yochelson. A lisp
garbage-collector for virtual-memory computer
systems. Communications of the ACM,
12(11):611–612, 1969.

[10] C. H. Flood, D. Detlefs, N. Shavit, and X. Zhang.
Parallel garbage collection for shared memory
multiprocessors. In Java Virtual Machine Research
and Technology Symposium, 2001.

[11] R. Jones, A. Hosking, and E. Moss. The Garbage
Collection Handbook: The Art of Automatic Memory
Management. Chapman & Hall/CRC, 2011.

[12] K. B. K. K. Nasartschuk, M. Dombrowski and
G. Dueck. GarCoSim repository website.
https://github.com/GarCoSim [Online: last accessed:
2015-06-08], 2015.

[13] J. Mathew, P. D. Coddington, and K. A. Hawick.
Analysis and development of java grande benchmarks.
In Proceedings of the ACM 1999 conference on Java
Grande, pages 72–80. ACM, 1999.

[14] J. RVM. Jikes RVM Home. http://www.jikesrvm.org
[Online. Last accessed: 2015-06-08], 2015.

[15] R. A. Saunders. The lisp system for the q-32
computer. The Programming Language LISP: Its
Operation and Applications, pages 220–231, 1974.


