
Extending TestelDroid to support remote control and
large-scale testing in mobile networks

Almudena Dı́az-Zayas, Álvaro M. Recio-Perez, Cesar A. Garcı́a Pérez, Pedro Merino
University of Málaga, Andalucı́a Tech, Málaga, Spain

http://morse.uma.es

[almudiaz,amrecio,garciacesaraugusto,pedro]@lcc.uma.es

ABSTRACT
This paper presents the extensions carried out in the An-
droid measurement and monitoring tool TestelDroid, in or-
der to support remote control and large-scale experimenta-
tion. The extensions includes support for Standard Com-
mands for Programmable Instruments (SCPI), cOntrol and
Management Framework (OMF) and OMF Measurement
Library (OML). SCPI is the most widespread interface for
measurement equipment control in many areas, for example,
electronics or telecommunications. On the other hand, the
support of technologies like OMF and OML provides pow-
erful orchestration framework languages which reduces the
time required for defining experiments.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Systems and
Software; K.6 [Management of computing and infor-
mation systems]: Software Management

Keywords
Mobile device, large-scale experimentation, remote control,
SCPI, OMF, OML

1. INTRODUCTION
Experimentally driven research in mobile networks demands
a high scale solution to control the execution of mobile de-
vices. The upcoming network technologies, as well as the
current increase of mobile subscribers, including machine
traffic, will be significally improved by increasing the size of
the research experiments on mobile networks.

Current Mobile Device Management standards[1] are com-
plex solutions focused on functionalities such as software
management, diagnostics and monitoring, all of them ori-
ented to mobile operators. Moreover they lack of a fine con-
trol of the applications running on the device. In this paper,
we introduce a simple solution to remote control of Android
devices which enables extensive experimentation in the field

and laboratory testing. Our approach is based on the use of
SCPI commands to control the configuration of monitoring
functionalities provided by TestelDroid [2], a measurement
and monitoring tool for Android devices, and the deploy-
ment of OMF, an experimentation framework developed in
the Global Environment for Network Innovations (GENI)1

and Future Internet Research and Experimentation (FIRE)
2 initiatives. This framework is used to coordinate the con-
figuration and execution of TestelDroid and the rest of appli-
cations running at the device. This work is a contribution of
the UMA team to the European Project Fed4FIRE, which
addressed the federation of testbeds across Europe in order
to allow for large-scale experimentation with an homoge-
neous interface for researchers.

2. SCPI COMMANDS
The Standard Commands for Programmable Instruments
(SCPI) was defined as the IEEE 488.2 specification [3] to
standardize the control of programmable instruments through
a serial interface. Originally, this standard defined all the
levels in the interface, including physical connectors and
electrical interfaces and the message exchange control. The
definition of the SCPI messages (commands and responses)
includes the format for messages and the state machine of
the protocol. SCPI deployment was led by the SCPI Con-
sortium until its integration into the Interchangeable Virtual
Instruments Foundation (IVI) in 2002.

SCPI-enabled devices reduce the complexity of integrating
measurement or control equipment in a testing laboratory
or in an industrial scenario by the use of textual commands.
The standardized way of control and measurement can be
easily translated between devices by just changing the SCPI
dialect that a particular system understands, maintaining
existing algorithms already in use. This is particularly use-
ful for the equipment vendors that can use their specialized
teams to enhance the control software for new versions of
the hardware. However, the direct use of this interface is
still complex for many final users interested in using it for
different purposes apart from the commercial one provided
by vendors. Final users need a more user-friendly interface
to automate some tasks on the devices.

The SCPI interface implemented compromise the function-
alities defined in Table 1.

1www.geni.net
2http://www.ict-fire.eu/

VALUETOOLS 2015, December 14-16, Berlin, Germany
Copyright © 2016 ICST
DOI 10.4108/eai.14-12-2015.2262658

http://morse.uma.es

*IDN? Returns a string that identifies the app.
SET:NET:REST Resets the network by switching airplane mode on and

off.
SET:MEAS:STA?: Returns “true” if there is an ongoing measurement cam-

paign, “false” otherwise.
SET:MEAS:STA Starts a new measurement campaign.
SET:MEAS:STOP?: Returns “true” if there is no ongoing measurement cam-

paign, “false” otherwise.
SET:MEAS:STOP Stops the current measurement campaign.
SET:MEAS:CONF:NET:EN?: Returns “true” if TestelDroid is configured to capture

network statistics, “false” otherwise.
SET:MEAS:CONF:NET:EN Request TestelDroid to capture network statistics.
SET:MEAS:CONF:TRAF:EN? Returns “true” if TestelDroid is configured to capture

network traffic, “false” otherwise.
SET:MEAS:CONF:TRAF:EN If called with “true”, request TestelDroid to capture net-

work traffic; if called with “false”, disable network traffic
capture.

SET:MEAS:CONF:GPS:EN? Returns “true” if TestelDroid is configured to capture
GPS statistics, “false” otherwise.

SET:MEAS:CONF:GPS:EN If called with “true”, request TestelDroid to capture GPS
statistics; if called with “false”, disable GPS statistics;

SET:MEAS:CONF:NEIGH:EN? Returns “true” if TestelDroid is configured to capture
neighbor cells statistics, “false” otherwise.

SET:MEAS:CONF:NEIGH:EN If called with “true”, request TestelDroid to capture
neighbor cells statistics; if called with “false”, disable
neighbor cells statistics.

SET:MEAS:CONF:PROF:SCEN? Returns the current profile scenario.
SET:MEAS:CONF:PROF:SCEN Sets the capture profile scenario to the value passed as

argument (“vehicular”, “static”, “pedestrian” or “high-
speed”).

SET:MEAS:CONF:PROF:TECH? Returns the current profile technology.
SET:MEAS:CONF:PROF:TECH Sets the capture profile technology to the value passed

as argument (“GSM”, “HSPA”, “LTE”, “UMTS” or
“WIFI”).

SET:MEAS:CONF:PROF:CONF? Returns the current profile configuration.
SET:MEAS:CONF:PROF:CONF Sets the capture profile configuration to the value

passed as argument (“Fixed-Fixed”, “Mobile-Mobile” or
“Mobile-Fixed”).

SET:MEAS:CONF:PROF:SUBID? Returns the current profile SubID.
SET:MEAS:CONF:PROF:SUBID Sets the capture profile SubID to the value passed as

argument.
SET:MEAS:CONF:PROF:PEERID? Returns the current profile PeerID.
SET:MEAS:CONF:PROF:PEERID Sets the capture profile PeerID to the value passed as

argument (“1” or “2”).
SET:MEAS:CONF:PROF:COMMENTS? Returns the current profile comments.
SET:MEAS:CONF:PROF:COMMENTS: Sets the capture profile comments to the value passed as

argument.
RET:MEAS:BATTERY? Returns the captured battery statistics.
RET:MEAS:NEIGH? Returns the captured neighbor cells statistics.
RET:MEAS:PROF? Returns the captured profile statistics.
RET:MEAS:TRAFFIC? Returns the captured network traffic.

Table 1: SCPI interface provides by TestelDroid

SCPI commands can be used to configure TestelDroid. How-
ever, their usage in conjunction with OMF framework offers
a more powerful solution to orchestrate and control exten-
sive experimentation in a repeatable and programmatic way.

3. GENI/FIRE EXPERIMENTATION TECH-
NOLOGY

GENI and FIRE are two initiatives for creating a research
environment, fostering innovations in networking technolo-
gies, the former originating in the United States and the
latter in the European Union. Interestingly, both projects
are based on the same idea: experimental evaluation is a
must in order to produce meaningful research that can be
applied to the real world. Thus, the concept of experimen-
tal testbeds is central to the implementation of GENI and
FIRE. It is worth noting that although GENI and FIRE
started as two independent initiatives, Fed4FIRE, a project
which is part of FIRE, has adopted GENI technologies, thus
making them compatible with each other. The rest of the
paper will treat the concepts pertaining to these projects as
interchangeable.

Experimentally driven research demands the ability to per-
form experiments in an easy and repeatable manner. Test-
beds have adopted OMF and OML as the solutions for pro-
viding experiment control and measurement, and experi-
ment management, respectively. An experiment is defined
as a file written in the OMF Experiment Description Lan-
guage (OEDL). An OEDL file declares the resources that
the experiment will use, the events to which it will react,
and what actions to perform in response to those events.

The Experiment Controller (EC) interprets OEDL scripts
and coordinates the execution of the experiment. Each
testbed resource is managed by a Resource Controller (RC),
which may be hosted on its own computer or on the resource
itself. The RCs and the EC exchange control information us-
ing the Federated Resource Control Protocol (FRCP), which
may be transported over the Extensible Messaging Presence
Protocol (XMPP) or the Advanced Message Queuing Pro-
tocol (AMQP).

The OML server collects and stores measurements from the
experiment. Each instrument, or an RC on behalf of an in-
strument, can send measurement data using the OML client
library. Measurements are collected per experiment and can
be queried using standard SQL tools.

Once the experiment script have been defined it is sent to
the EC. The EC interacts with the Android RC to execute
in the terminal actions defined in the script. During the
experiment the OML collection server will collect all the
measurements defined at the script.

4. REMOTE CONTROL OF ANDROID DE-
VICES

As introduced in the previous section, a resource controller
is needed to control, via OMF, resources available at the
experiment. The University of Thesaly has implemented a
resource controller for android devices [4].

Listing 1: TestelDroid configuration through an
OEDL script

#TestelDroid configuration

after 10. seconds do

group("Android").exec (’su -c am

broadcast -a com.ad.testel.COMMAND

-e com.ad.testel.EXTRA_COMMAND

SET:MEAS:CONF:PROF:EN -e com.ad.

testel.EXTRA_PARAM "true"’)

group("Android").exec (’su -c am

broadcast -a com.ad.testel.COMMAND

-e com.ad.testel.EXTRA_COMMAND

SET:MEAS:CONF:PROF:SCEN -e com.ad.

testel.EXTRA_PARAM "1"’)

group("Android").exec (’su -c am

broadcast -a com.ad.testel.COMMAND

-e com.ad.testel.EXTRA_COMMAND

SET:MEAS:CONF:PROF:TRAF:EN -e com.

ad.testel.EXTRA_PARAM "true"’)

group("Android").exec (’su -c am

broadcast -a com.ad.testel.COMMAND

-e com.ad.testel.EXTRA_COMMAND

SET:MEAS:CONF:PROF:COMMENTS -e com

.ad.testel.EXTRA_PARAM "TEST"’)

group("Android").exec (’su -c am

broadcast -a com.ad.testel.COMMAND

-e com.ad.testel.EXTRA_COMMAND

SET:MEAS:CONF:PROF:NET:EN -e com.

ad.testel.EXTRA_PARAM "true"’)

end

#Start monitoring

after 60. seconds do

group("Android").exec ("su -c am

broadcast -a com.ad.testel.COMMAND

-e com.ad.testel.EXTRA_COMMAND

SET:MEAS:STA")

end

#Start VoIP application

after 120. seconds do

group("Android").exec("su -c am start

-n com.csipsimple/com.csipsimple.

ui.SipHome")

end

#Init a call

after 180. seconds do

g.exec("su -c am start -a android.

intent.action.CALL -d sip :2000")

end

To control mobile devices and applications running on them
we use the functionality of executing ADB (Android Debug
Bridge) shell commands provided by this RC. ADB provides
a Unix shell that you can use to run a variety of commands
on mobile device. In particular we use the activity man-
ager (am) tool to perform system actions, such as start an
activity, force-stop a process and broadcast an intent. At
the same time TestelDroid have been extended to respond
to a series of configuration actions issued by the delivery of
intents. According to the official Android documentation an

intent is a messaging object you can use to request an action
from an app component. These intents contains the SCPI
commands implemented by TestelDroid and the actions to
start the execution of applications.

The code excerpt provided in Listing 1 is part of an ex-
periment defined using OEDL, it shows how TestelDroid is
configured and how applications and actions running on the
devices are issued by the delivery of intents. You can find
more details about the definition of a experiment using An-
droid devices in [5].

Listing 2: OML measurement point definition

Define the OML2 measurement point that

TestelDroid provides. Here we

have only one measurement point (MP)

named ’network ’.

app.defMeasurement(’network ’) do |m|

m.defMetric(’timestamp ’,:string)

m.defMetric(’networkType ’,:int32)

m.defMetric(’cellId ’,:int32)

m.defMetric(’lacId’,:int32)

m.defMetric(’rssi’,:int32)

m.defMetric(’networkId ’,:int32)

m.defMetric(’cellPsc ’,:string)

m.defMetric(’rsrp’,:string)

m.defMetric(’snr’,:string)

m.defMetric(’cqi’,:string)

m.defMetric(’rsrq’,:string)

end

Request the TestelDroid application to

collect measurement samples from the

’network ’ measurement point (as defined

above), and send them # to an OML2

collection point

app.measure(’network ’, :samples => 1)

5. MEASUREMENT COLLECTION USING
OML

OML provides a programming library for easy application
instrumentation and a collection point, a server which stores
measurements in an experiment database. The OML library
[6] is available for Ruby, Python, C and Java. Java version,
OML4J, can be used within an Android Application. A first
approach has been implemented for TestelDroid application.
Network information has been successfully sent to an OML
collection server.

OML4J made the implementation relatively straightforward.
OML support was embedded in the logging service of Testel-
Droid. When this service is started, it defines a measure-
ment point for each logging category in TestelDroid and it
tries to connect to the OML server, which is should be con-
figure to our OML server. If the connection is successful,
data is sent to the server each time it is written to the log
files.

Listing 2 shows the definition in a OEDL script of a mea-
surement point ’network’ supported by TestelDroid and the
request to collect these measurements.

6. CONCLUSIONS
In this paper we introduce the need for large-scale experi-
mentally research driven in mobile network. We provide a
solution based on TestelDroid as a monitoring and measure-
ment tool and OMF/OML technology as the experiment co-
ordination framework. The proposed architecture is in-line
with current tools promoted by Fed4Fire project and FIRE
community: OMF, OML and OEDL. Future work will in-
clude the use of jFed tool [7] to design the topology design
and the reservation of the resources.

Currently the PerformLTE testbed [8] offers the access to
mobile devices connected to commercial mobile networks
available at Spain. Reference experiments can be down-
loaded at http://www.lcc.uma.es/~pedro/mobile/Software/
testeldroid.html

7. ACKNOWLEDGMENTS
This work has been funded by the Government of Andalusia
under grant P11-TIC-7659, by the Spanish Ministry of Econ-
omy and Competitiveness under project TIN2012-35669, Eu-
ropean Regional Development Fund (EDRF) from the Eu-
ropean Commission and with the support of the Fed4FIRE-
project (Federation for FIRE), an Integrated project re-
ceiving funding from the European Union’s Seventh Frame-
work Programme for research, technological development
and demonstration under grant agreement no 318389.

8. REFERENCES
[1] OMA, “OMA Device Management,” Tech. Rep. V2.0,

Open Mobile Alliance (UMA), Jan. 2015.

[2] A. Alvarez, A. Diaz, P. Merino, and F. Rivas, “Field
measurements of mobile services with android
smartphones,” in Consumer Communications and
Networking Conference (CCNC), 2012 IEEE,
pp. 105–109, Jan 2012.

[3] IEEE, “IEEE standard serial interface for
programmable instrumentation,” IEEE Std 1174-2000,
pp. i–30, 2001.

[4] D. Stavropoulos, G. Kazdaridis, N. Makris, H. Niavis,
I. Igoumenos, T. Korakis, and L. Tassiulas, “Enabling
experimentation in mobile sensing scenarios through 4g
networks: The nitos approach,” in Networks and
Communications (EuCNC), 2015 European Conference
on, pp. 502–506, June 2015.

[5] “Running OMF 6 on the android platform.” https:

//omf.mytestbed.net/projects/omf/wiki/Android.

[6] “OML library.” http://oml.mytestbed.net/doc/oml/

latest/doxygen/files.html.

[7] “jFed is a java-based framework for testbed
federation.” http://jfed.iminds.be/.

[8] C. A. Garcia-Perez, A. M. Recio-Perez, A. Diaz-Zayas,
and P. Merino-Gomez, “PerformLTE: a testbed for
LTE testing in the Future Internet,” in Wired/Wireless
Internet Communications, WWIC 2015, LNCS 9071,
pp. 313–326, 2015.

http://www.lcc.uma.es/~pedro/mobile/Software/testeldroid.html
http://www.lcc.uma.es/~pedro/mobile/Software/testeldroid.html
https://omf.mytestbed.net/projects/omf/wiki/Android
https://omf.mytestbed.net/projects/omf/wiki/Android
http://oml.mytestbed.net/doc/oml/latest/doxygen/files.html
http://oml.mytestbed.net/doc/oml/latest/doxygen/files.html
http://jfed.iminds.be/

	Introduction
	SCPI commands
	GENI/FIRE experimentation technology
	Remote control of Android devices
	Measurement collection using OML
	Conclusions
	Acknowledgments
	References

