
A tool based on traffic traces and stochastic monotonicity
to analyze data centers and their energy consumption

M. Bayati
LACL, Université Paris-Est

Créteil (UPEC), France
mbayati@hotmail.fr

M. Dahmoune
LACL, Université Paris-Est

Créteil (UPEC), France
mdahmoune@yahoo.fr

J.M. Fourneau
DAVID, Université de

Versailles St Quentin, France
jean-

michel.fourneau@uvsq.fr
N. Pekergin

LACL, Université Paris-Est
Créteil (UPEC), France

nihal.pekergin@u-pec.fr

D. Vekris
DAVID, Université de

Versailles St Quentin, France
dimitrios.vekris@uvsq.fr

ABSTRACT
We present a tool to study the trade-off between energy con-
sumption and performance evaluation. The tool uses real
traffic traces to model arrivals, and it allows to consider gen-
eral discrete arrival processes. Some servers are switched on
(resp. off) if the monitored QoS becomes less (resp. more)
than the up (resp. down) threshold. A set of threshold
couples and the cost function taking into account both the
performance measure and the energy consumption are pro-
vided by the user. The tool determines the best one for this
cost function among the analyzed scenarios. Our method is
numerically based but it takes into account some stochastic
properties of the model to speed up the computation.

Categories and Subject Descriptors
C.4 [Performance of Systems]; G.3 [Probability and
Statistics]; I.6 [Simulation and modelling]

Keywords
Queues, Energy Saving, Discrete Stochastic Process, Nu-
merical Analysis, Data Center

1. INTRODUCTION
Power consumption is one of the main research problems

to be considered when designing an efficient cloud computing
service [2]. One of the main difficulties is the provisioning
and the dimensioning of the service capacities in the pres-
ence of a highly fluctuating rate of job arrivals. An over
dimensioning of the servers leads to a poor system utiliza-
tion. The energy consumed by an idle server is about 65%
of the energy consumed by an operational server [5]. Hence,

one realistic way to reduce significantly the power consump-
tion of a data center is to power down some servers whenever
that can be justified by the load conditions [7].

In [8], the problem of managing a service center to keep
power consumption low is considered. The goal is to min-
imize an objective function which takes into account the
power consumption and the number of defected customers
due to long waiting times. All servers are not always pow-
ered up but managed with respect to some predefined thresh-
olds on the number of clients in the system. Some of the
servers are defined as reserve servers. If the number of clients
becomes greater than u threshold, the reserve servers are
powered up. And they are powered down when the number
of clients becomes less than d threshold.

In [6] the authors have presented a very detailed model of
a data center architecture which is analyzed through simula-
tions. However the assumptions about the traffic are rather
simple.

Our model is quite different. A very simple model is con-
sidered. However, some measurements of real traffic are used
to represent the job arrivals in an accurate manner. Our ap-
proach differs from these methods by several points. First it
is numerical rather than analytical or simulation based. We
can accommodate general arrival processes. Note that the
Markovian assumptions (Poisson arrivals, exponential ser-
vices and switching times) and the infinite buffer capacity
are mandatory in [7].

In this paper, the arrival process is assumed to be station-
ary for short periods of time and change between periods.
This allows us to represent for instance hourly variations of
the job arrivals. Real traffic traces are used to find the input
arrival process (discrete distribution) of the model. A dis-
crete time queue is considered where the time slot is equal
to the service time. The traffic traces are sampled with a
sampling period equal to this slot duration. Thus, a batch
queue is considered with constant service time where the
batch arrival process is stationary for short periods of time.
The number of servers evolves with the queue performance
so with the traffic. The buffer capacity is assumed to be
finite.

The system is analyzed for a finite time period T (let’s
say a day for instance). This time period is divided into
sub-intervals where the batch of arrivals are supposed i.i.d.

VALUETOOLS 2015, December 14-16, Berlin, Germany
Copyright © 2016 ICST
DOI 10.4108/eai.14-12-2015.2262652



and the number of servers is constant. During such an inter-
val, the system is modeled by a discrete-time Markov chain.
At the end of each interval, the arrival process or the num-
ber of servers (or both) change. This model is analyzed
numerically to compute the transient distributions for the
energy consumption and the performance evaluation. Using
stochastic monotonicity, it can be proven that the transient
distribution reaches the steady-state (it may happen if the
time interval is large enough) and the computation is simpli-
fied by using a stationary detection as in Sericola’s method
[11].

As the model is solved numerically, it is much faster and
more accurate than stochastic simulation. However, it is not
possible to obtain a proof of optimality for a control policy
of the number of operational servers. In the tool, threshold
based policies have been implemented. First, some perfor-
mance distributions such as number of losses or queue size
are computed. A decision is taken on the number of servers
to be switched on or off based on these distributions and
some thresholds provided by the modeler. Two thresholds
are needed: one to switch on more servers when the perfor-
mances are too weak (u), and one to switch off some servers
when the energy consumption is too large (d). The mod-
eler can combine the performance measures and the energy
consumption in a global index. A set of threshold couples is
given by the modeler and the analysis is performed for each
couple in this set to find the best one among the analyzed
scenarios.

The technical part of the paper is organized as follows.
Section 2 describes the queuing model and the control for
the number of operational servers. Some theoretical results
are also presented to simplify the numerical algorithms. The
tool description is given in Section 3. Section 4 is devoted
to a detailed example and to the corresponding numerical
results.

2. MODEL AND ASSUMPTIONS
First the queuing model is given. Then, the threshold-

based policy to manage the number of servers to obtain
a trade-off between the QoS measure and the energy con-
sumption is described. Finally, the numerical analysis of the
model for each time interval during which the arrival pro-
cess is stationary and the number of servers is constant is
explained. Some theoretical results based on the stochastic
monotonicity which are used to improve the numerical anal-
ysis are presented. The stochastic ordering will be denoted
as ≤st while the equality in distribution will be denoted by
=st.

2.1 Queuing model
A discrete time model is considered. The service time

is assumed to be constant. The slot time is equal to the
service time for a job. The arrival traces are sampled with a
time interval equal to this slot duration. Thus, the queuing
model is a batch arrival queue with constant services and
finite capacity buffer.

The number of jobs arriving to the data center during the
kth slot will be denoted by A(k) which is a discrete distri-
bution. Q(k) (resp. D(k)) denotes the distribution of the
buffer length (resp. the number of jobs served) during the
kth slot. For any distribution X, X[i] is the probability of
item i. There are smax identical servers. The service capac-
ity during slot k is denoted by s(k), and s(0) is the initial

number of operational servers. The buffer size is denoted
by b. The distribution of the performance measures can be
computed by induction on k with the following operators:

• δv is the Dirac function with v ∈ N. It is defined by:

δv[i] = 1 if i = v and δv[i] = 0 otherwise.

• ⊗ is the convolution of distributions.

• Y = SUBv(X) is the distribution X translated by
constant v. This function corresponds to a subtraction
on the random variable. It is defined by:

Y [i] = X[i− v] if i > v > 0 and Y [0] =
Pv

i=0X[i].

• Y = MINb(X) is the distribution X bounded by con-
stant b. This function corresponds to a minimum on
the random variable. It is defined by:

Y [i] = X[i] if i < b and Y [b] =
P∞

i=b X[i].

As a discrete-time model is considered, the exact sequence
of events during a slot have to be described. The arrivals
occur first and they are followed immediately by services.
The admission is performed per job according to the Tail
Drop policy: a job is accepted if there is a place in the
buffer, otherwise it is rejected. Thus, the buffer length for
k ≥ 1,

Q(k) = MINb(SUBs(k)(Q(k − 1)⊗A(k))). (1)

From now it is assumed that Q(0) = δ0.
Similarly, the distribution of the number of jobs served

D(k) can be described as follows:

D(k) = MINs(k)(Q(k − 1)⊗A(k)). (2)

The distribution of the number of the lost jobs during slot
k is:

L(k) = SUB(s(k)+b)(Q(k − 1)⊗A(k)). (3)

It is assumed that the input arrivals are independent of the
current queue state and the past of the arrival process. Un-
der these assumptions, the model of the queue is a time-
inhomogeneous Discrete Time Markov Chains.

The problem we have to deal with is related to the nature
of the arrival process. Typically, the job arrivals cannot be
assumed to be stationary. The data center adapts to the
fluctuation of the process by changing the number of opera-
tional servers. Such a policy leads to a trade-off between the
performance measure and the energy consumption. But, as
the number of servers changes with time, the model becomes
more complex to analyze.

The main property used in the analysis is the stochastic
monotonicity of the queuing model. Such a property al-
lows to derive stochastic bounds. It also helps to prove the
convergence of the numerical algorithms used to solve the
model.

2.2 Control of the number of servers
The number of servers may vary according to the traffic

and performance indices. More precisely, distributions Q(k)
and L(k) are monitored and then some decisions are taken
according to some threshold values provided by the mod-
eler. Let k be the current time instant and M be the last
time instant in which the number of servers changes. More
precisely, the following expectations are monitored:



• E(Q(k)),
1

k

kX
i=1

E(A(i)),

• 1

k

kX
i=1

E(L(i)),
1

k −M + 1

kX
i=M

E(L(i)),

•
X

j

rjQ(k)[j], where rj is an arbitrary function which

represents the reward in state j. Note that if rj = j,
E(Q(k)) is obtained.

One of these expectations is chosen to compare with the
threshold values d and u given by the user. If the chosen ex-
pectation is larger than u, the number of operational servers
is increased by c1. If the expectation is smaller than d, the
number of operational servers is decreased by c2. In general
c1 = c2 but it is not mandatory.

The latency to switch on a server is l1 and the latency
to switch off a server is l2. They are discrete non negative
integer values. It is assumed that during a latency period,
a new decision cannot be taken.

2.3 Models for energy consumption
The energy consumption takes into account the number

of operational servers and the decision to switch on servers:

• e0 units of energy per time unit when a server is oper-
ational but idle.

• e1 units of energy per time unit when a server is oper-
ational and busy.

• eon units needed to switch on a server. Typically e0
and e1 are expressed in Joule per time unit while eon

is in Joule.

These parameters are given by the modeler. It is assumed
that a non operational server does not consume energy. Let
i be the number of jobs, the number of busy servers is
min(i, s(k)). Similarly the number of idle servers is (s(k)−
i)+. Thus, the average energy used at time k by the opera-
tional servers is:

bX
i=0

Q(k)[i](e0(s(k)− i)+ + e1 min(i, s(k))).

The cost to switch on c1 servers at time k is:

Ψ(k)× c1 × eon

where Ψ(k) is a 0− 1 random variable which is equal to 1 if
one decides to switch on c1 servers at time k. By convention,
the energy used to switch on a set of servers is consumed at
slot k when the decision is taken although the servers become
available only at time k+l1 due to the latency. Remark that
all switched off servers will be switched on if their number
is less than c1.

The total energy used is the sum of these quantities along
the sample path.

2.4 Time interval analysis
Until now, it has been assumed that the arrivals may de-

pend on k to give the most general description of the system.
Now a more detailed description of the temporal properties
of the arrivals will be given. A weak stationarity of the ar-
rival process is assumed: on short time scale the traffic is

stationary, while for longer period it is not. The arrival pro-
cess in that case is piecewise stationary. Such an assumption
is consistent with the night and day evolution of job arrivals
observed by long traces. Thus, the approach is based on two
steps:

1. The time period T is decomposed into time intervals
such that during these time intervals, the traffic is sta-
tionary and the number of operational servers is con-
stant. Note that these intervals cannot be computed
before the analysis is completed. Indeed the number of
operational servers may depend on the traffic and the
size of the queues or the number of losses. Thus, the
boundary of the time intervals cannot be known before
the computation of all the distributions. However, the
time instants where the traffic changes are supposed
to be exogenous and fixed by the modeler. The main
assumption here is that the modeler has an expertise
on the statistical analysis of traffic measurements. The
time instants at which the number of servers changes
have to be computed during the analysis. For each
time interval, we must to know the arrival distribution
and the number of operational servers.

2. During a time interval, since the arrivals are station-
ary, i.i.d. and the number of servers is constant, the
underlying model is a time-homogeneous DTMC tak-
ing values in a totally ordered state space (i.e. 0 · · · b).
Thus, theoretical results and algorithms related to the
stochastic monotonicity can be used [3, 4, 9] to im-
prove the analysis. Without loss of generality, in the
following, it is supposed that the considered DTMC
models are ergodic.

2.5 Theoretical results
The main property used to speed up the numerical anal-

ysis is the stochastic monotonicity of the queuing model.
Such a property allows to derive stochastic bounds. It also
helps to prove the convergence of the numerical algorithms.
Let G = {1, 2, . . . , n} be a state space endowed with a total
order denoted as ≤.

Definition 1. Discrete distributionQ1 is said to be stochas-
tically smaller than Q2 (denoted as Q1 ≤st Q2) if

∀i, 1 ≤ i ≤ n,
nX

p=i

Q1[p] ≤
nX

p=i

Q2[p]. (4)

Definition 2. A DTMC {X(n), n ≥ 0} is stochastically
monotone if

X(0) ≤st X
(1) =⇒ X(n) ≤st X

(n+1), ∀n.

Theorem 1. The queuing model is stochastically mono-
tone (see [1]) for a proof).

Here, these results are used to prove the convergence of the
transient distributions to the steady-state. Let gmin and
gmax be two transient distributions of probability represent-
ing two realizations of the stochastic process of the queue
size with two initial values equal respectively to the Dirac
distribution in 0 and b. gcur is the current distribution ini-
tialized to the Dirac distribution in 0 at time 0.



Corollary 1. For all k:

g
(k−1)
min ≤st g

(k)
min ≤st g

(k)
cur ≤st g

(k)
max ≤st g

(k−1)
max .

Therefore the convergence can be detected by computing the

norm of (g
(k)
min − g

(k)
max) [3].

Assume that in time interval [ti, ti+1), the traffic is station-
ary and the number of servers is constant. Thus, the tran-
sient distribution of a homogeneous Markov chain has to be
analyzed during each time interval. By taking into account
the monotonicity of the system and the coupling detection
algorithm, unnecessary computations are avoided as stated

in Corollary 1 and depicted in Figure 1. When (g
(k)
min and

g
(t)
max) become equal, they couple and they will stay equal

for the remaining life of the process.

Algorithm 1 Computation with coupling detection

1: gcur = δ0
2: for all time intervals [ti, ti+1) do
3: gmin = δ0, gmax = δb

4: for all time instant k in this time interval do
5: compute new g

(k)
min from g

(k−1)
min , g

(k)
max from g

(k−1)
max

and g
(k)
cur from g

(k−1)
cur using Equation 1

6: if g
(k)
min =st g

(k)
max then

7: Jump to ti+1 without any new computation of

the distributions g
(k)
min, g

(k)
max, et g

(k)
cur which are

now all equal.
8: exit internal loop due to the COUPLING
9: end if

10: end for
11: end for

Two cases may occur: one may observe the convergence
due to the coupling before the end of the time interval (i.e.
ti+1) or the boundary is reached before the occurrence of
the coupling. If the first case, we jump to ti+1 as soon as we
have detected the coupling without any computation of the
distribution. Indeed, as the two distributions have coupled,
the steady-state distribution is reached thus it is not neces-
sary to continue the numerical analysis until ti+1. Of course,
as the traffic is not stationary after the end of the time pe-
riod, the obtained distribution is not really the steady-state
distribution (but we still call it steady-state to explain that
the distribution does not change until ti+1). This numerical
procedure has strong connections with the stationarity de-
tection heuristic proposed by Sericola in [11] for the efficient
computation of reliability. Here, the stationarity is proved
by the coupling while it was only numerically checked in
[11]. Note that the tool uses the infinite norm to check the
equality in distributions mentioned in Instruction 6.

3. THE TOOL
The tool is based on the numerical simulation of Equa-

tions 1, 2 and 3 associated with a controller defined in Sec-
tion 2.2.

Let σ0 = 0 and n ∈ N. Stationary traffic arrivals is con-
sidered during interval [σi−1, σi) for i ∈ 1..n. Thus, the
tool takes as input a sequence of instants σ1, . . . , σn = T
and the corresponding arrival traffic distribution A1, . . . , An.
Ai, i ∈ 1..n refers to the traffic during [σi−1, σi). The data
center is described by its parameters: b, c1, c2, l1, l2, s(0),
smax, e0, e1 and eon. The modeler has to provide the QoS

first time interval0 t tsecond time interval

coupling

coupling

time

probability distribution

1 2

Figure 1: Coupling and stationarity detection. The
bounds are plotted in dotted lines while the exact
distribution is drawn as a plain red line.

measure that will be monitored to control the number of
servers (see Section 2.2).

The tool’s main function is called for each stationary traf-
fic period [σi−1, σi). Under the i.i.d. stationary traffic spec-
ified by distribution Ai, the function computes the chosen
QoS measure for every time slot. For a given slot, if the QoS
measure exceeds the upper threshold u then c1 servers will
be switched on after l1 time units and if the QoS measure
becomes less than the lower threshold d then c2 servers will
be switched off after a latency of l2 time units.

The tool will return the overall energy consumption:

TX
k=0

bX
j=0

Q(k)[j](e0(s(k)− j)+ + e1 min(j, s(k))) + Ψ(k)c1eon

and the expected number of losses:

TX
k=0

E(L(k))

for the period [0, σn) for every threshold couple (d, u) such
that 0 ≤ d ≤ u ≤ b. Depending on the outputs for the
performance and the energy consumption, the modeler can
choose the best thresholds for his requirements. Algorithm 2
shows the core control function of the tool in a simplified
way. Note that the tool is written in C/C++ and uses the
coupling detection algorithm under a sophisticated and op-
timized implementation.

4. APPLICATION EXAMPLE
This section presents an analysis to find the best thresh-

olds u and d to control the number of servers with respect
to the average queue size.

We use the open clusterdata-2011-2 trace [12, 10], and we
focus on the part that contains the job events corresponding
to the requests destined to a specific Google data center for
the whole month of May 2011. The job events are organized
as a table of eight attributes; we only use the column times-
tamps that refer to the arrival times of requests expressed
in µ-sec.

We consider frames of one minute to sample the trace
and construct two empirical distributions (histograms) one
corresponding to arrivals during daytime and the other dur-
ing nighttime. These distributions have different statistical
properties reflecting the fluctuation of traffic between day
and night (see Figure 2). For instance, we observe an aver-



Algorithm 2 Tool’s main function

Require: n ∈ N, Instants σ1, . . . , σn

Require: Distributions A1, . . . , An

Require: b, c1, c2, l1, l2, s(0), smax, u, d ∈ N
Require: e0, e1, eon ∈ R+

Ensure: Energy, Loss.
1: σ0 ← 0, Q← δ0, s← s(0)
2: Energy← 0, Loss← 0
3: for all time intervals σi−1, σi do
4: if not in latency period then
5: if E(Q) ≥ u then
6: increase s by c1 after l1 time units
7: Energy←Energy+c1eon

8: end if
9: if E(Q) < d then

10: decrease s by c2 after l2 time units
11: end if
12: end if
13: L← SUB(s+b)(Q⊗Ai)
14: Loss←Loss+E(L)

15: Energy←Energy+
Pb

j=0Q[j](e0(s−j)++e1 min(j, s))

16: Q←MINb(SUBs(Q⊗Ai))
17: end for
18: return (Energy, Loss)

age of 46 jobs per minute during daytime against an average
of 50 jobs per minute during nighttime. However the vari-
ance of the daytime traffic is higher than the variance of the
nighttime traffic. The tool was used to do the analysis for
one day under the following configuration:

n b c1 c2 l1 l2 s(0) smax e0 e1 eon

2 256 1 1 1 0 50 100 13 20 30

The daytime distribution A1 was considered between σ0 =
0 and σ1 = 720 minute, and the nighttime distribution A2

was considered between σ1 = 720 and σ2 = 1440 minute.
The couple (d, u) are defined on the average queue length
(E(Q(k))).

The analysis was done on an Intel(R) Core(TM) i7-4800MQ
CPU @ 2.70GHz computer in 49 minutes. Our experimen-
tal results showed that the computation becomes 42% faster
with the coupling detection.

In Figure 3, for all integer values of u and d, 0 ≤ d < u ≤ b
the energy consumption is given. Note that the energy scale
is divided by 1000 for the sake of readability.

Figure 4 illustrates losses for all integer values of u and d,
0 ≤ d < u ≤ b. It can be seen from these figures that when
the energy consumption is high, the number of lost jobs is
low and vice versa.

The modeler can combine the loss and the energy in a
global index to find the best thresholds.

Note that the tool can be used to analyze the case when
the behavior of the system is not stationary along all the
considered periods (see Figure 5). For this experience, b =
1000, c1 = 10, l1 = 1 and the other parameters are the same
as the previous one.

5. CONCLUSION
We advocate that our numerical method, which is based

on the stochastic monotonicity of the model, has many ad-
vantages compared with simulation and analytical techniques.

0 50 100 150 200 250

5e
-0
5

2e
-0
4

5e
-0
4

2e
-0
3

5e
-0
3

2e
-0
2

0 50 100 150 200 250

5e
-0
5

2e
-0
4

5e
-0
4

2e
-0
3

5e
-0
3

2e
-0
2

Size

P
ro
ba
bi
lit
y

Figure 2: Comparison between daytime (A1 in red)
and nighttime (A2 in blue) arrival distributions.

Figure 3: Energy for different values of u and d.



Figure 4: Loss for different values of u and d.

Figure 5: The evolution of the number of oper-
ational servers (blue) and the average queue size
(red).

We hope that such an idea could be used in many other tools
for performance or reliability analysis.

6. ACKNOWLEDGMENTS
The authors are supported by grant ANR MARMOTE:

ANR-12-MONU-00019.

7. REFERENCES
[1] F. Aı̈t-Salaht, H. Castel-Taleb, J. Fourneau, and

N. Pekergin. Stochastic bounds and histograms for
network performance analysis. In Computer
Performance Engineering - 10th EPEW Italy, volume
8168 of LNCS, pages 13–27. Springer, 2013.

[2] A. Berl, E. Gelenbe, M. D. Girolamo, G. Giuliani,
H. de Meer, D. M. Quan, and K. Pentikousis.
Energy-efficient cloud computing. Comput. J.,
53(7):1045–1051, 2010.

[3] A. Busic and J.-M. Fourneau. Monotonicity and
performance evaluation: applications to high speed
and mobile networks. Cluster Computing,
15(4):401–414, 2012.

[4] J.-M. Fourneau and N. Pekergin. An algorithmic
approach to stochastic bounds. In Performance
Evaluation of Complex Systems: Techniques and
Tools, Performance 2002, Tutorial Lectures, volume
2459 of LNCS, pages 64–88. Springer, 2002.

[5] A. G. Greenberg, J. R. Hamilton, D. A. Maltz, and
P. Patel. The cost of a cloud: research problems in
data center networks. Computer Communication
Review, 39(1):68–73, 2009.

[6] A. Malik, K. Bilal, K. Aziz, D. Kliazovich, N. Ghani,
S. Khan, and R. Buyya. Cloudnetsim++: A toolkit
for data center simulations in omnet++. In 11th
Annual Conference on High-capacity Optical Networks
and Emerging/Enabling Technologies (HONET),,
pages 104–108, Dec 2014.

[7] I. Mitrani. Service center trade-offs between customer
impatience and power consumption. Perform. Eval.,
68(11):1222–1231, 2011.

[8] I. Mitrani. Managing performance and power
consumption in a server farm. Annals OR,
202(1):121–134, 2013.

[9] A. Muller and D. Stoyan. Comparison Methods for
Stochastic Models and Risks. Wiley, New York, NY,
2002.

[10] C. Reiss, J. Wilkes, and J. L. Hellerstein. Google
cluster-usage traces: format + schema. Technical
report, Google Inc., Mountain View, CA, USA, Nov.
2011. Revised 2012.03.20. Posted at
http://code.google.com/p/googleclusterdata/

wiki/TraceVersion2.

[11] B. Sericola. Availability analysis of repairable
computer systems and stationarity detection. IEEE
Trans. Computers, 48(11):1166–1172, 1999.

[12] J. Wilkes. More Google cluster data. Google research
blog, Nov. 2011. Posted at
http://googleresearch.blogspot.com/2011/11/

more-google-cluster-data.html.


