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ABSTRACT
The Internet increasingly focuses on content, as exempli-
fied by the now popular Information Centric Networking
paradigm. This means, in particular, that estimating con-
tent popularities becomes essential to manage and distribute
content pieces efficiently. In this paper, we show how to
properly estimate content popularities from a traffic trace.

Specifically, we consider the problem of the popularity in-
ference in order to tune content-level performance models,
e.g. caching models. In this context, special care must be
taken due to the fact that an observer measures only the
flow of requests, which differs from the model parameters,
though both quantities are related by the model assump-
tions. Current studies, however, ignore this difference and
use the observed data as model parameters. In this paper,
we highlight the inverse problem that consists in determining
parameters so that the flow of requests is properly predicted
by the model. We then show how such an inverse prob-
lem can be solved using Maximum Likelihood Estimation.
Based on two large traces from the Orange network and two
synthetic datasets, we eventually quantify the importance of
this inversion step for the performance evaluation accuracy.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: General

Keywords
Popularity Distribution, Mixture Model, Maximum Likeli-
hood Estimation, Performance models, Caching

1. INTRODUCTION
“Content is king”, says nowadays a popular Internet meme.

This advent of ubiquitous content is reflected on the Inter-
net, both by the importance of Content Distribution Net-
works (CDNs) and transparent caching for coping with an
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ever-increasing traffic demand, and by the emergence of the
Information Centric Networking (ICN) paradigm. Under-
standing content and, in particular, its popularity is now es-
sential to improve the Internet and its applications. Content-
level performance models are therefore a key tool in the anal-
ysis, design and dimensioning of networks.

Sparse models are particularly useful, since they capture
the salient features of the system while remaining simple
enough for analysis, depending only on a few parameters.
These parameters have a large impact on the model out-
put; yet one cannot observe them directly in measurements.
Carrying a sensible analysis using the chosen model there-
fore requires solving the inverse problem to find the best
model parameters of the system from the measurements.

Due to the rise of content, the number of available doc-
uments and their popularity distribution are now key pa-
rameters for traffic models. They have attracted significant
attention from the community in the context of user gener-
ated content [3, 9], HTTP traffic [10, 13], and peer-to-peer
networks [4, 19]. However, the measurement methods used
in these works are not suited for parameterizing a perfor-
mance model. In fact, they fail to take into account that
the request count for a given document in a given observa-
tion period, within the framework of a stochastic model, is
not a fixed value, but a random variable. In particular, they
ignore the fact that, in traffic traces, objects with no request
are not observed, being thus a zero-censored sample.

Our main objective in this paper is to provide a sound
methodology for popularity estimation, with the aim of cor-
rectly fitting performance models. This requires to take into
account the stochastic relation between the model parame-
ters and the request counts that are observed in a given
dataset. To this aim, we follow [4] in constructing Maxi-
mum Likelihood (ML) estimates. We illustrate the afore-
mentioned issues and methodologies in the case of Poisson
based traffic models in the context of caching performance.
Nonetheless, the essential paradigm that we propose is ap-
plicable to other traffic models and contexts. Note that the
choice of relevantmodels is outside the scope of this paper.

The rest of this paper is organized as follows. We first re-
view the literature in Section 2, and describe in Section 3 the
datasets we use. We then explicitly identify and formulate in
Section 4 the inverse problem that consists in correctly cal-
ibrating performance models from trace measurements. To
our knowledge, such a formulation has not been provided in
previous studies. In Section 5, we propose a ML estimation
method for this inverse problem. Section 6 provides a nu-
merical evaluation of our approach. We discuss our results
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and possible extensions in Section 7.

2. RELATED WORK
The works we here review falls into two broad categories:

content popularity estimation from traffic measurements and
statistical methods for mixtures models.

Due to the fact that popularity distributions usually ex-
hibit a power law behavior, a common method to estimate
them is to fit its rank-frequency distribution in double loga-
rithmic scale. This approach has been recently criticized by
Clauset et al. [4]. The main issue is that the rank-frequency
plot is not a reliable statistic since, for example, it can ex-
hibit power-law behavior even if the ground-truth does not.

Despite these problems, the use of the latter method is still
pervasive in performance evaluation [8, 11] and traffic char-
acterization studies [12, 13, 2]. Authors try to improve these
methods by means of various adjustments. In [13], for exam-
ple, authors separate in three parts the rank-frequency plot
adjusting different curves in each piece and in [12], authors
adjust “stretched exponential” curves instead of power-laws.

The latter adjustments indeed solve some of the fitting
issues. In previous studies [11, 17], we have noted another
issue in the context of performance models, which arises
from the fact that it is permitted to objects to have zero re-
quest. In consequence, from the point of view of the network
operator, objects with no request are not observed in traces.
In the statistical jargon, this is called zero-censored and not
taking this fact into account leads one to underestimate the
catalog size, which has an impact on the conclusions drawn
from the fitted model (see Section 6).

In the present work, we address the previous issues by
using ML estimates. This method allows us to seamlessly
handle the zero-censored case and it is proposed by Clauset
et al. [4] as a robust method to fit heavy tailed data, which
is a common property in popularity distributions. Maxi-
mum likelihood methods have already been in use for flow
size estimation [16] and call center modeling [18]. The latter
work uses an approach similar to ours, but it is limited to a
specific parametric model for non-censored data. More im-
portantly, our work highlights the fact that the assumptions
of the performance model must be taken into account for a
proper popularity estimation.

The statistical basis of our methods is the estimation of
mixed discrete distributions, a subject that has been exten-
sively studied in the literature. The non-parametric case
has been addressed from two points of view: the first one
searches the mixing density in the space generated by La-
guerre polynomials with an exponential cut-off; the estima-
tor is then obtained by a projection on the latter space [20,
5]. It, however, converges slowly with the sample size un-
less the density belongs to the aforementioned space. We
therefore base our methodology on the second point of view,
which assumes the mixing distribution to be a sum of Dirac
masses. The estimation methods are then similar to an
Expectation-Maximization scheme (EM) [15]. As regards
the parametric case, EM schemes for finding the parameters
of the mixing distribution are provided for many families
in [14]. In both parametric and non-parametric cases, the
estimation algorithms do not handle the case of censored
data, and thus we simply use an all-purpose nonlinear opti-
mization solver to obtain our results.

3. DATASETS

We base our analysis on two real-traffic datasets, called
#yt and #vod respectively. Dataset #yt comes from the
YouTube traffic delivered for three months in 2013 by the
Orange Network in Tunisia, while #vod comes from the Video-
on-Demand Orange service in France for 3.5 years. The
traffic consists in 46 000 000 (resp. 3 400 000) requests to
6 300 000 (resp. 120 000) videos in the #yt (resp. #vod) set.
More details on the collection and processing of these two
datasets can be found in [17].

We also use two synthetic datasets, called #prt and #delta.
This allows us to highlight in a more clear way some of our
findings and, more importantly, to validate the results with
controlled experiments when the ground-truth is not avail-
able. The set #prt (resp. #delta) is generated by first draw-
ing 10 000 000 (resp. 100 000) random samples with distri-
bution Pareto (1.6, 0.1) (resp. Dirac delta at 4.0) represent-
ing the popularity (see section 5.1 for a model description).
The number of requests for each document is then drawn
according to the Poisson distribution with mean equal to
the document popularity. After discarding the documents
with zero request, this results into 2 600 000 (resp. 400 000)
requests to 1 900 000 (resp. 98 000) documents.

4. PROBLEM DEFINITION
In the following, we are given a stochastic object-level

model predicting some performance indicator. The pre-
dicted performance explicitly depends on a few parameters
which characterize each object (e.g., document popularities,
lifespans, sizes). It also strongly depends, however, on some
implicit assumptions about the traffic or request process.

An example of such a situation is the evaluation of the
hit ratio of a Least Recently Used (LRU) Cache, which is
typically performed using the Independent Reference Model
(IRM). In this context, users request documents among a
catalog of K documents. These requests are intercepted by
a cache server, which can store and serve only an evolving
subset of the catalog. The IRM assumes that the sequence of
requests for document 1 ≤ k ≤ K is a Poisson process with
intensity λk, where λk is proportional to the popularity of
document k; all such processes are mutually independent
and their superposition build up the total request process.
In this model, the number Nk of requests for document k in a
time window W is an independent Poisson random variable
P(λkW ) of mean λkW . Up to a time normalization, we
assume in the following that W = 1.

Figure 1 illustrates those two stages, both for an arbitrary
performance model and the IRM case. The first stage con-
sists in mapping the model parameters to a request flow (or
a request flow distribution). The second step of the model
computes the performance indicator, based on this request
flow. In order to keep this paper concise, we now limit our-
selves to the IRM model (see Section 7.1 for extensions).

Assume now that an observer has access to a sample of the
actual request flow, e.g., a trace dataset or server logs. In
the case of IRM, a sufficient statistics of the request process
is the request counts n1, n2, . . . , nK0 for all observed docu-
ment, where K0 is the number of observed documents in the
sample. Following the point of view of an Internet Service
Provider (ISP), we here assume that objects with zero re-
quest are not observable in the sample. Our main objective
is to solve the following inverse problem: estimate the popu-
larity distribution such that the request flow predicted by the
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Figure 1: Schematic view of a performance model (left);
example in the IRM case (right)

model using these parameters represents the data at best.
A simple solution, henceforth called the naive method, is

to estimate the popularity of a document by its request count
and the catalog size by the number of observed objects, that
is: K̂nv = K0 and λ̂nv

k = nk, for 1 ≤ k ≤ K̂nv.
We identify two problems at this stage. First, since the

trace is zero-censored, with high probability the observed
number of documents K0 is strictly smaller than the cata-
log size K. Second, each document popularity λk is esti-
mated by a single sample nk of the random count Nk. This
last limitation is well illustrated in the case of the #delta

dataset. By definition, the ground-truth (real) popularities
are λk = 4. In the dataset, however, the counts of docu-
ment requests are Poisson random variables of mean 4, hence
λ̂nv
k = P(4) and the naive estimation “dilutes” the mass of

popularities over the set of positive integers. In Figure 2, we
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Figure 2: Hit ratio of a cache fed by #prt trace: ground-
truth (GT) and prediction by the naive estimation. The
cache size is normalized with respect to that of the GT.

show the impact of these limitations for the hit ratio estima-
tion, based on the #prt trace. The first curve is our ground-
truth. It is obtained via simulation of a LRU cache starting
from an empty cache; the cache is fed by the traffic trace
that is randomly shuffled to enforce the IRM assumption.
The second curve is the prediction of the IRM model, when
fed by the real popularities in the trace (see Section 8.1 for
a quick derivation of the transient hit ratio for the IRM).
As expected, it perfectly fits the ground-truth. The third
curve shows the results obtained by the IRM model when
fed by the parameters K̂nv and λ̂nv

k , 1 ≤ k ≤ K̂nv, from the
naive estimation. The hit ratio curves are seen to clearly dif-
fer, and the naive method proves inaccurate for estimating
document popularities when fitting a performance model.

In the absence of any prior knowledge about the popular-
ity distribution, the only available data for the estimation of
each document popularity is a single request count, which
limits the accuracy of this approach. To overcome this lack
of information, we thus aim at jointly estimating the set of

popularities, from the joint set of request counts. The latter
approach allows us to use all the information contained in
the joint Poisson distribution rather than just the mean.

Our problem can therefore be stated as follows:

Problem Statement: Given the measured request counts
{n1, n2, . . . , nK0}, determine the parameters K̂ and λ̂1, λ̂2,

. . . , λ̂K̂ so that the set of random variables {N1, N2, . . . , NK̂},
where Nk = P(λ̂k) for 1 ≤ k ≤ K̂, is the “closest” to the set

{n1, n2, . . . , nK0 , 0, . . . , 0}, with K̂ −K0 zeros at the tail.

5. MAXIMUM LIKELIHOOD ESTIMATION
In this section, we show how to solve the latter inverse

problem via the Maximum Likelihood method.
In the IRM setting, the parameters (λ1, λ2, . . . , λK ,K)

are not ordered, and thus every request count could cor-
respond to any of the popularities. The likelihood given
observations n = (n1, n2, . . . , nK) thus runs through ev-
ery permutation σ of size K. Specifically the likelihood
L = L (λ1, λ2, . . . , λK ,K; n) is given by

L =
1

K!

∑
σ

(
K0∏
j=1

e−λσ(j)λ
nj
σ(j)

nj !
×

K∏
j=K0+1

e−λσ(j)

)
.

This combinatorial explosion for large K makes the ML
method intractable for the IRM model. We thus propose
in the following a slightly modified model, which is simulta-
neously tractable for ML estimations and simple to analyze.

5.1 IRM Mixture Model (IRM-M)
In order to succinctly describe the popularity parameters

λ1, λ2, . . . , λK and to ease their estimation, we slightly mod-
ify the IRM model by considering them as random variables.
Specifically, we assume that λ1, λ2, . . . , λK are an i.i.d. sam-
ple from an unknown mixing distribution with density g.
Given the value of λk, the request process to the kth doc-
ument remains a Poisson process of intensity λk, and thus
the counts of each document follow a mixed Poisson distri-
bution with mixing distribution g. In particular, the number
of requests N for any document satisfies

P[N = j] = Eg

[
e−λλj

j!

]
=

∫ ∞
0

e−λλj

j!
g(λ)dλ (1)

for j ∈ N, where the operator Eg[·] represents the expecta-
tion under the mixing distribution g.

5.2 ML estimation on IRM-M
By modifying the model, we have changed the problem of

estimating the static parameters λ1, λ2, . . . , λK , to that of
estimating the mixing distribution g.

Problem Statement (IRM-M): Given the measured re-

quest counts {n1, n2, . . . , nK0}, determine the catalog size K̂
and the mixing density ĝ such that an i.i.d. mixed Poisson
sample {N1, N2, . . . , NK̂} is the “closest” to the set

{n1, n2, . . . , nK0 , 0, . . . , 0}, with K̂ −K0 zeros at the tail.

We now show how this problem can be solved via a ML
method. Let J = maxK0

k=1{nk} be the maximum number of
requests over all documents, and let

µj =
1

K0

K0∑
k=1

1{nk = j}



0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

P
ro

b
a
b
il
it

y

Popularity

GT

Naive

NP

10−8

10−6

10−4

10−2

10−1 100 101 102 103

P
ro

b
a
b
il
it

y

Popularity

GT

NP

Naive

Figure 3: Mixing distribution obtained via the non-parametric methods for the #delta (left) and #prt (right) traces

be the proportion of documents with j requests, 1≤j≤J .
Using (1), the log-likelihood ` (g; µ) of the popularity distri-
bution g for the observations µ = (µj)j≥1 reads as

` (g; µ) =

J∑
j=1

µj logP[N = j |N > 0]

=

J∑
j=1

µj logEg

[
e−λλj

j!

]
− logEg

[
1− e−λ

]
.

We remark that in this setting, the catalog size K is decou-
pled from the popularity distribution. Thus, we can first
obtain an estimator ĝ of the mixing distribution g, and then
approximate K by

K̂ml =
K0

Eĝ[1− e−λ]
(2)

which is asymptotically close to the ML estimator.
We now proceed with the detailed form of the likelihood

function for the parametric and non-parametric estimation
procedures. In both approaches, we numerically solve the
problems with a generic non-linear optimization solver in
MATLAB based on an interior point algorithm. Our code
is freely available online.1 We discuss the use of specialized
algorithms in Section 7.

5.2.1 Parametric Estimation
In this setting, we determine the mixing distribution g

within a parametric family of density functions. The choice
of that parametric family relies on an a-priori knowledge.
The computation of the ML estimator obviously depends
on this choice, and due to space restriction, we here limit
ourselves to the two-parameter Pareto family with densities
g(x) = αxαm/x

α+1 for x > xm, with α, xm the shape and
scale parameters, respectively. The log-likelihood function
` = ` (α, xm; µ) then reads

` =

J∑
j=1

µj log
Γ(j − α, xm)

j!
− log (αxαm − Γ(−α, xm)) .

5.2.2 Non-Parametric Family
In the absence of a-priori knowledge about the distribution

g, the non-parametric (NP) approach provides a method to
obtain an estimator. In this setting, we determine a discrete
distribution g of the form P[λ = xi] = θi for 1 < i < I. The

1Code : http://www.olmos.cl/code/mixed_poisson.tgz

log-likelihood correspondingly reads

` (θ; µ) =

J∑
j=1

µj log

I∑
i=1

θi
e−xixji
j!

− log

I∑
i=1

θi(1− e−xi).

5.3 Hit Ratio Analysis
As detailed in the Appendix 8, the IRM-M model proves

to be tractable for evaluating the performance of an LRU
cache. In particular, the so-called “Che approximation” is
easily adapted to the IRM-M case; furthermore, we are able
to derive formulas for the transient analysis of the hit ratio,
when starting from an empty cache.

6. NUMERICAL EVALUATION
The accuracy of the parameter estimation can be evalu-

ated at three different levels, as expressed by the following
questions: (1) Is the estimated popularity density close to
the actual popularity density? (2) Is the request flow pre-
dicted by the model statistically similar to the actual request
flow? (3) Is the performance indicator of the fitted model,
e.g., the hit ratio, accurately predicted?

Throughout this section, we assess the precision of a curve
estimate by computing the so-called mean absolute percent-
age error (MAPE). More precisely, the MAPE between a
reference sequence of points (xi)1≤i≤N and an estimate se-
quence (yi)1≤i≤N is defined by

MAPE(X,Y ) =
1

N

N∑
i=1

|yi − xi|
|xi|

.

6.1 Estimation of popularity distribution
First, we start with the most general question, that is,

the estimation of the mixing distribution. Such an inverse
problem is known to be ill-posed.

For the NP estimation, we obtain an estimate ĝnp of the
popularity density by applying the NP method, using a
support with 0.01 as lower bound, exponentially increas-
ing spacings and an upper bound slightly larger than the
maximum of observed requests (e.g., 2 400 for #prt and 16
for #delta). The naive fitting corresponds to the empirical
measure of the request counts, that is, the mixture of Dirac
measures 1

K0

∑K0
k=1 δnk (.).

We observe in Figure 3 the NP estimator of the mix-
ing distribution for the #delta and #prt datasets. In the
#delta case, the ground-truth is a Dirac measure at λ = 4,
and the naive method fails at correctly estimating its shape,
whereas the ML estimator concentrates its mass around the

http://www.olmos.cl/code/mixed_poisson.tgz
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Figure 4: Rank frequency distribution for the #prt trace

value λ = 4. In the #prt case, the estimated distribution
is irregular, tending to accumulate mass at certain points
(see Section 7.2 for possible regularization solutions). This
concentration is no surprise, since in the non-censored case
the ML estimator is discrete probability distribution [15].
The peaks, nevertheless, capture the power law trend, as
reflected by the good estimation quality of the mixture dis-
tribution. In contrast, the naive method fails at correctly
estimating both the trend of distribution body and its tail.

Using Equation (2), we also calculate the catalog size,

giving K̂ ≈ 11 600 000 (resp. 105 278) for the #prt (resp.
#delta) case. This represents a relative error of 11.6% and
5.2%, respectively. Following Equation (2), it shows that es-
timating the probability that a document receives no request
for the duration of the trace, based on the very same trace,
is a difficult task. As a consequence, this error is not negli-
gible. It is, however, smaller, and even more significantly in
the #prt case, than the relative error of the naive method

(recall that K̂nv = K0 = 1 900 000 and K̂nv = 92 046 for the
#prt and #delta traces, respectively).

When some a priori knowledge about the distribution shape
is available, the estimates can be improved via the paramet-
ric approach. In the #prt case, the resulting Pareto fit gives
the estimates α̂ = 1.597 and x̂m = 0.099 that are very close
to the original parameters α = 1.6 and xm = 0.1. We com-
pare these results to that of the “log-log” approach, which
consists in estimating the tail index by fitting a least square
approximation to the log-log rank-frequency plot, as shown
in Figure 4. The rank frequency plot roughly decays as 1/α.
Using the first 20 000 objects to compute the regression, the
estimation gives 1.704, which is worse than the ML estimate.

6.2 Request flow estimation
In this section, we specify the discussion by estimating the

zero-censored request count distribution (or mixture distri-
bution in statistical terms) P[N = j |N > 0], j ≥ 1.

For the naive approach, we generate 50 000 IRM traces
using the estimated parameters. We then calculate the av-
erage empirical distribution of the request per document.
The number of generated traces ensures a coefficient of vari-
ation lower that 10−4 for all points of the distribution. As
regards the ML approach, using the ĝnp density, we compute
the associated zero-censored request distribution using (1).

In Figure 5, we show the resulting zero-censored request
distribution estimated by each method. For comparison, we
include the real mixture distribution for the #prt dataset,
which can be calculated explicitly. For the #yt and #vod

datasets, we show instead the observed request distribution.
Two issues are raised by the naive approach, that are not

present in the maximum likelihood estimation:
– first, at the head of the distribution, where most of the
mass is concentrated, large estimation errors are produced
by the naive approach. Such errors produce a mass shift to-
wards the tail of the distribution. On the contrary, the NP
estimation matches perfectly the head of the distribution;
– second, the naive method over-fits the tail of the distribu-
tion. We observe in Figure 5d that the naive estimate shows
a “horizontal branch” at the tail, and differs significantly
from the ground-truth that is approximately a straight “di-
agonal” line. This horizontal branch is in fact a few isolated
masses, though they look as a line on the figure. The naive
estimation therefore concentrates the mass of the ground-
truth distribution on a few points. On the other side, the
ML estimation correctly estimates the trend of the distri-
bution at all scales, though noise inaccuracies appear at the
tail. This is quantified by the MAPE of 1.67 for the ML esti-
mation, whereas the naive method leads to a MAPE of 668,
for the full range distribution. As regards the #yt and #vod

cases in Figures 5e and 5f, we similarly observe the same
horizontal branch at the tail for the naive distribution. In
the absence of available ground-truth, we do not compute
the MAPE, but the similarity of behavior hints that the ML
method also performs better on these traces.

6.3 Hit Ratio Estimation
We finally compare the hit ratios predicted by the IRM-

M model with popularity distributions fitted using the naive
and the ML methods, both for the #prt and #yt traces.

Figure 6 shows the obtained hit ratio curve in each case.
The ground-truth curves are obtained by simulation of a
LRU cache fed by the shuffled traces. The Naive (resp. NP)
curves are obtained when using Formula (6) (resp. (9)) with
the parameters obtained by the naive (resp. NP) method.
Finally, the Zipf curve, for the #prt trace, corresponds to
the hit ratio prediction when using the “log-log” parametric
fitting method detailed in Section 6.1.

The naive approach leads to small inaccuracy for the #yt

trace and large errors for the #prt trace, with respective
MAPE of 0.06 and 1.44. This difference in estimation ac-
curacy can be explained by the variability of the random
variable N . Indeed, in the #yt dataset, documents receive
an average of 7.3 requests per document, whereas this aver-
age decreases to 1.4 in the #prt trace. It follows that the
coefficient of variation of the request count distribution is
greater in the #prt trace than in the #yt trace. As expected,
the inaccuracy of the naive method is greater for the former
than for the latter. Note also that from an operational point
of view, the focus is on the miss ratio, which determines the
dimensioning requirements upstream of the cache. The in-
accuracy of the naive hit ratio prediction for the #yt dataset
becomes relatively significant in this context. As shown by
the Zipf curve, the knowledge of a relevant parametric fam-
ily allows us to improve the hit-ratio estimation. The error,
however, remains significant with a MAPE of 0.96. In con-
trast, the non-parametric ML curves match perfectly the
original ones, as shown by the MAPE of 0.002 for the #yt

trace and 0.005 for the #prt trace. We conclude that, as re-
gards hit ratio, our estimation method accurately estimates
the model parameters. In contrast, in the Zipf case, a seem-
ingly small error of 0.1 in the estimation of the tail exponent
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Figure 5: Censored mixture distribution estimations obtained with the non-parametric method
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Figure 6: Hit ratio for #yt and #prt datasets. The cache
size is normalized with respect to that of the ground-truth in
the #prt case and with respect to K̂ml in the #yt case.

leads to a significant error in the hit ratio estimation.

7. DISCUSSION AND CONCLUSION

7.1 Other Applications and Extensions
Since our methodology requires only the statistics about

the number of requests per document, the presented estima-
tion method for content popularity can be readily applied in
use-cases other than caching performance. For example, the

estimations can be used for dimensioning the bandwidth in
the access network for VoD or TV multicast services or even
predicting the demand for content in marketing studies.

Additionally, the wide applicability of the ML estimators
makes our method a viable option for other traffic models. In
particular, our framework can be extended to to renewal [6,
1] and cluster processes [17, 21]. In these cases new chal-
lenges arises, due the reformulation of the ML method. For
example, the randomized parameter in other traffic models
is not univariate, but multivariate [17] or even an stochastic
process [6]. Another factor to consider is time censure, due
the greater impact of the time variable in stochastic models
other than IRM-M.

7.2 Maximization techniques
The main current limitation of our maximization approach

is that the estimated mixing density exhibits a lot of peaks,
which is consistent with the results of Lindsay [15]. This
might be a problem when one aims at understanding the
nature of the popularity distribution.

A possible solution to enforce smoothness in the mix-
ing density estimation is to introduce a penalization for
the irregularities. Classical candidates for such a penal-
ization are the L2-penalization or a logarithmic penaliza-
tion R(θ) =

∑I
i=1(θi+1 − θi)(log θi+1 − log θi)/(xi+1 − xi).

One then maximizes ` (θ; µ) − ρR(θ), where ρ represents
the trade-off factor between fitness and smoothness. Regu-
larization here comes at the price of choosing the right pe-
nalization function R(·) and the right value of ρ and in our
case, the results have been satisfactory only for concentrated
mixing distributions.



Another possibility is to exploit the fact that the peaks
conserve the overall trend of the distribution. We thus ex-
tract the peak locations. A second ML optimization is then
performed using these peak locations as the new support.
Though non-standard, this gives satisfactory results for the
#prt dataset (not shown here due to lack of space).

7.3 Summary of results
In this paper, we have presented and solved the inverse

problem that consists in estimating from a trace the popular-
ity parameters for a performance model. A key point in our
approach is that we consider the probability that a document
receives a given number of requests, rather than the proba-
bility that a request is directed to a given document. This
representation is consistent with recently developed caching
models [17, 21, 6]. Moreover, it allows us to avoid the fit-
ting of a rank-frequency plot, which is in essence an order
statistic and exhibits over-fitting. Our second contribution
on the modeling aspects is that we consider popularities as
random variables, rather than parameters, leading to a mix-
ture model tractable via ML methods. We have illustrated
our method in the case of cache performance evaluation but
our framework is applicable and extensible to other settings.

The inverse problem stems from the random nature of the
requests count N for a given document. In particular, a traf-
fic trace contains a single sample of these requests counts.
The accuracy of any method that aims at fitting indepen-
dently the popularity of each document is therefore limited
by the inherent variability of the random variable N . The
importance of using a sound methodology correspondingly
increases when the variability of the request counts is large,
which is typically the case when N is small.

Determining the parameters of the model allows one to use
the performance for diverse objectives, including the dimen-
sioning of operational networks or the design of new mecha-
nisms. More importantly, in contrast with simulation-based
analysis, it enables one to more easily explore what-if sce-
narios, by keeping some parameters at their current value
and modifying others to reflect future or possible changes.

8. APPENDIX
We here detail the derivation of hit ratio formulas for the

IRM-M model.

8.1 IRM Model
For comprehension purposes, we first briefly review the

“Che approximation” method for the hit ratio estimation
in the IRM model (additional details can be found in [7]).
Given popularities λ1, λ2, . . . , λK , let Xk(t) denote the num-
ber of different documents, apart from the k-th, requested
in a time window [0, t], that is,

Xk(t) =

K∑
i=1;i6=k

1{Ni[0, t] ≥ 1}.

Let T kC = inf{t > 0 : Xk(t) ≥ C} be the exit time to
level C for process Xk; T kC represents the eviction time for
content k in a LRU cache of size C, given that it is not
requested during this time period. Now, the core of the
“Che approximation” consists in the two following steps:

1. all T kC have the same distribution, i.e., ∀k, T kC
d
= TC ;

2. the random variable TC is well approximated by a con-
stant tC called the “characteristic time”. The time tC

is implicitly defined by the equation

K∑
k=1

E[1{Nk[0, tC ] ≥ 1}] =

K∑
k=1

1− e−λktC = C. (3)

Intuitively, tC is the time when, on average, C different ob-
jects have been requested.

In the stationary case, the hit ratio H can then be derived
as follows. Using the PASTA property, the hit ratio of doc-
ument k for a cache of size C is equal to 1− eλktC , and by
averaging on all documents, it follows that

H ≈ 1

Λ

K∑
k=1

λk(1− e−λktC ) . (4)

In the transient case, we simply assume that T kC ≤ W
(the hit ratio does not increase with T kC when T kC > W ).
By independence, it can be shown (see Proposition 3, [17])
that the average number of hits for the k-th document in
a time window of size W , starting from an empty cache, is
E
[
h(λk, T

k
C)
]

where the expectation carries on T kC and the
function h(λ, t) is defined by

h(λ, t) = (λW − 1)(1− e−λt) + λte−λt, t < W. (5)

In consequence, setting Λ =
∑K
k=1 λk, the transient hit ratio

H(W ) is given by

H(W ) =
1

ΛW

K∑
k=1

E
[
h(λk, T

k
C)
]
.

Applying the “Che approximation”, we then obtain the fol-
lowing formula for the hit ratio H = H(W ):

H ≈ 1

Λ

K∑
k=1

λk(1−e−λtC )+
1

ΛW

(
K∑
k=1

λktCe
−λktC − C

)
. (6)

The second term of (6) vanishes as W → ∞, leading to
equality (4) for the stationary hit ratio.

8.2 IRM-M Model
We now address the IRM-M case. We first show how to

derive the hit ratio in this setting; we further prove formally
the validity of the “Che approximation” in the case where
C = δK and K tends to infinity.
• Given the popularities λ1, λ2, . . . , λK , let us define Xk,

T kC as in the previous section, and let δ = C/K be the
proportion of stored documents. As the popularities are
here an i.i.d. sample, and since Xk and T kC are independent
of λk, the previous quantities do not consequently depend
on the document index k. In consequence, this validates the
first step of the “Che approximation”.

For the second step, define the characteristic time tδ as

tδ = r−1 (δ) with r(t) = E
[
1− e−λt

]
, (7)

which is equivalent to dividing both sides of (3) by K. Fol-
lowing the same steps as in the previous section, it is easy
to derive the following hit ratio formulas:

H ≈
E
[
λ(1− e−λtδ )

]
E[λ]

, (8)

H(W ) ≈
E
[
λ(1− e−λtδ )

]
E[λ]

+
E
[
λtδe

−λtδ
]
− δ

E[λ]W
. (9)



Equations (8) and (9) are the IRM-M analogs of (4) and (6).
• We show that the second step of the Che approxima-

tion is asymptotically exact, that is, the random variable
TC can be replaced by the associated characteristic time tδ.
Consider the case where the cache size scales with the cata-
log size, that is, δ remains constant, and C and K grow to
infinity. Recall that the distribution of TC is given by

P[TC > t] = P

[
K∑
k=1

1{Nk[0, t] ≥ 1} < C

]
for t ≥ 0, which can be rewritten as

P[TδK > t] = P

[
1

K

K∑
k=1

1{Nk[0, t] ≥ 1} < δ

]
. (10)

An application of the law of large numbers shows that

lim
K→∞

1

K

K∑
k=1

1{Nk[0, t] ≥ 1} = r(t)

almost surely; using (10), TδK thus converges in probability
to the constant tδ, for δ ∈ [0, r(W )], with r(W ) = E[K0] /K.
By the conditioning argument of Proposition 3 in [17], it
can be shown that the expectation of the number of hits
HC = HδK satisfies the identity

E[HδK ] = E[h(λ, TδK)] ;

applying then the bounded convergence theorem (Section
13.6, [22]) to the latter identity and dividing by the expected
number of requests E[λ] leads to formulas (8) and (9), as
claimed.
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