
Combining profiling and monitoring to analyze test
coverage and identify performance problems

Nico Beierle
Berner&Mattner Systemtechnik GmbH

Berlin, Germany
nico.beierle@berner-mattner.com

Peter M. Kruse
Berner&Mattner Systemtechnik GmbH

Berlin, Germany
peter.kruse@berner-mattner.com

ABSTRACT
The use of profilers is a common approach for locating bot-
tlenecks in software performance. Existing profilers typically
generalize memory consumption and CPU usage. This work
is dedicated to profiling-based identification of performance
problems for specific moments of program execution. By
combining conventional profiling with monitoring of user ac-
tions (e.g. mouse and keyboard inputs), a more fine-grained
analysis of program behavior is possible. The calculation
of coverage levels for GUI tests will also be available. The
current state of this work describes a proposed solution. Re-
alization of a prototype implementing the approach is cur-
rently ongoing.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Performance Measures, Monitoring

1. INTRODUCTION
When improving the performance of a program, it is neces-
sary to initially locate its bottlenecks. The use of profilers
is a common practice and a helpful approach. These mostly
extensive analysis tools monitor various system properties,
such as memory or CPU usage, as well as information from
the current program, such as method calls. In the subse-
quent evaluation phase, the previously collected measured
values are combined to give the user a statistical picture.
Part of this overview are statistics about data types and
method calls, but also diagrams illustrating the use of re-
sources over time. However, this deliberately generalized il-
lustration also leads to a loss of information, since the state
information of the program at a particular time can not be
considered further. Nevertheless, this information would be
helpful. Thus, in some cases it would be good to know, for

example, which method calls or which user actions at a given
time have led to the increase in resource consumption. In
particular, with regard to automatic test execution, when
the program execution is not observed by the user, this in-
formation would be useful in order to easily identify error
sources.

This work should therefore be dedicated to the question of
how to identify, based on profiling mechanisms, performance
problems as precisely as possible in a specific scenario.

2. GOALS
The aim of this work is to implement a profiling tool for
recording the actual program flow, especially the interplay
of actions and reactions in order to later be able to identify
parts of the program with potential performance issues as
precisely as possible. Actions considered here are all events
that provoke the invocation of methods, so as user input,
but also the method calls itself. Reactions typically would
be the called methods. The use of resources (memory usage
and processor load) is of particular interest. Figure 1 illus-
trates the results of recording in a graphical representation.
The graph shows the CPU usage as a function of time. The
markings Button1 and Button2 are intended to easily iden-
tify user input at a certain time. This approach helps to
easily identify performance issues from the user’s view. It
also allows to analyze the program flow from top-down with-
out initially taking the code base into consideration, which
might lead to confusion because of too many additional in-
formation.

5 10 15 20 25 30

20

40

60

80

CPU

RAM

Button1 Button2

Time

Figure 1: Resources

VALUETOOLS 2015, December 14-16, Berlin, Germany
Copyright © 2016 ICST
DOI 10.4108/eai.14-12-2015.2262590



5 10 15 20 25 30

20

40

60

80

Total

Button1 Button2

Time

Figure 2: Code Coverage

Furthermore, the combined reporting of user activities and
method calls allows a detailed monitoring of the code cov-
erage during test execution. Figure 2 shows the result of
such coverage analysis. The coverage rate for method calls
can be determined separately for each user action. The to-
tal coverage (e.g. of elements in the graphical user interface
(GUI)) can also be reported (Figure 3).

Looking at test environments, this would allow to assess
the effectiveness of each test step within a test case, or the
effectiveness of the test suite as a whole.

3. WORK BREAKDOWN
To complete the above-mentioned objectives, several log-
ging mechanisms has to be implemented. These include the
tracking of system characteristics such as memory usage and
CPU utilization, the program flow (method calls) and the
logging of user interactions. In the second step, the data
needs further processing and synchronization. Part of this
step is the measurement of the GUI coverage as well as the
code coverage. Finally a user interface must be implemented
for the graphic representation of the results. Future tasks
can involve further data analyzes like the comparison of dif-
ferent measurements or the identification of memory leaks.

4. RELATED WORK
For conventional profiling, there is broad body of tools avail-
able [3]. The combination with user interaction at the GUI is
out of focus. There is some existing work on combining pro-
filing and monitoring [5]. Jovic et al. describe an approach
for the automation of performance testing of interactive java
applications [4].

While conventional capture and replay (C&R) testing also
focuses on monitoring user actions [7, 2], the intention is
different. In C&R the user actions are recorded for later re-
play only. There is no analysis on coverage levels of GUI ele-
ments. Since C&R targets GUI testing only, the underlying
code remains hidden from the testing process. While this is
in accordance to black-box testing procedures, it might not
be very beneficial for performance testing, esp. for identify-
ing and analyzing bottlenecks.

While there are approaches for monitoring GUI coverage [8]
and also structured test design for GUI testing [6], the per-

5 10 15 20 25 30

20

40

60

80

Button1 Button2 Button3

Time

Figure 3: GUI Coverage

formance dimension has not yet been fully explored. For
approaches targeting the GUI performance [1], coverage is
out of focus.

5. CONCLUSIONS
In this work, a combination of conventional profiling with
monitoring of user actions (e.g. mouse and keyboard inputs)
is proposed. This allows for a more fine-grained analysis of
program behavior and also for a calculation of coverage lev-
els (e.g. in GUI tests). The approach is currently a proposal,
realization of a prototype implementing the approach is cur-
rently ongoing.

6. REFERENCES
[1] A. Adamoli, D. Zaparanuks, M. Jovic, and

M. Hauswirth. Automated gui performance testing.
Software Quality Journal, 19(4):801–839, 2011.

[2] S. Arlt, C. Bertolini, S. Pahl, and M. Schäf. Trends in
model-based gui testing. Advances in Computers,
86:183–222, 2012.

[3] J. Du, N. Sehrawat, and W. Zwaenepoel. Performance
profiling of virtual machines. ACM SIGPLAN Notices,
46(7):3–14, 2011.

[4] M. Jovic, A. Adamoli, D. Zaparanuks, and
M. Hauswirth. Automating performance testing of
interactive java applications. In Proceedings of the 5th
Workshop on Automation of Software Test, pages 8–15.
ACM, 2010.

[5] M. Jovic and M. Hauswirth. Measuring the
performance of interactive applications with listener
latency profiling. In Proceedings of the 6th international
symposium on Principles and practice of programming
in Java, pages 137–146. ACM, 2008.

[6] P. M. Kruse and O. Stadie. Closing Gaps between
Capture and Replay: Model-based GUI Testing. In 1st
International Workshop on User Interface Test
Automation, 2015.

[7] A. M. Memon. Gui testing: Pitfalls and process.
Computer, 35(8):87–88, 2002.

[8] T. E. Vos, P. M. Kruse, N. Condori-Fernández,
S. Bauersfeld, and J. Wegener. Testar: Tool support for
test automation at the user interface level.
International Journal of Information System Modeling
and Design (IJISMD), 6(3):46–83, 2015.


