GPU Performance Prediction Through Parallel Discrete
Event Simulation and Common Sense

Guillaume Chapuis
Los Alamos National
Laboratory
Bikini Atoll Rd., SM 30
Los Alamos, NM 87545, USA
gchapuis@lanl.gov

ABSTRACT

We present the GPU Module of a Performance Prediction
Toolkit developed at Los Alamos National Laboratory, which
enables code developers to efficiently test novel algorith-
mic ideas particularly for large-scale computational physics
codes. The GPU Module is a heavily-parameterized model
of the GPU hardware that takes as input a sequence of ab-
stracted instructions that the user provides as a representa-
tion of the application or can also be read in from the GPU
intermediate representation PTX format.

These instructions are then executed in a discrete event sim-
ulation framework of the entire computing infrastructure
that can include multi-GPU and also multi-node compo-
nents as typically found in high performance computing ap-
plications. Our GPU Module aims at a trade-off between
the cycle-accuracy of GPU simulators and the fast execu-
tion times of analytical models. This trade-off is achieved
by simulating at cycle level only a portion of the computa-
tions and using this partial runtime to analytically predict
the total execution of the modeled application.

We present GPU models that we validate against three dif-
ferent benchmark applications that cover the range from
bandwidth- to cycle-limited. Our runtime predictions are
within an error of 20%. We then predict performance of a
next-generation GPU (Nvidia’s Pascal) for the same bench-
mark applications.

Categories and Subject Descriptors

C.0 [Computer Systems Organization|: Modeling of
computer architecture; 1.6.5 [Computing Methodology]:
Simulation and Modeling—~Model Development

General Terms
Performance, Experimentation, Measurement

Stephan Eidenbenz
Los Alamos National
Laboratory
Bikini Atoll Rd., SM 30
Los Alamos, NM 87545, USA
eidenben@lanl.gov

Nandakishore Santhi
Los Alamos National
Laboratory
Bikini Atoll Rd., SM 30
Los Alamos, NM 87545, USA
nsanthi@lanl.gov

Keywords
Parallel Discrete Event Simulation, GPGPU, Performance
Prediction

1. INTRODUCTION

GPUs have become popular in the high-performance com-
puting (HPC) domain as commodity hardware, where GPU-
based clusters usually take at least some of the top spots
in the Top500 (see www.top500.org) list of most powerful
super-computers. GPU-based clusters are also projected to
be among most powerful next generation super computers
[17]. Predicting performance of next generation GPUs rel-
evant to the actual application portfolio that HPC users
have, such as national research laboratories, with an em-
phasis on computational physics codes, is a key challenge
for performance prediction. The US Department of Energy,
with its traditional need for high performance computing, is
executing a strategy of hardware/software co-design, which
at times requires significant code refactoring in order to take
advantage of novel architectures, such as GPU-based clus-
ters. The Performance Prediction Toolkit (PPT) is a DOE
co-design project that develops a comprehensive prediction
capability of how computational physics codes and methods
perform on novel hardware architectures, thus enabling a
fast adoption of new code by quickly identifying and ruling
out unsuccessful refactoring scheme.

PPT models both hardware and software at levels of ab-
straction that are appropriate to the concrete question at
hand applying a mix of discrete event simulation, stochas-
tic models, and analytical closed-form expression at various
layers of the software and hardware stacks. For instance,
modeling at a relatively high level, we have used PPT to
evaluate new computational physics methods in the area of
accelerated molecular dynamics [10]. The performance of
these physics methods depended on the quite involved statis-
tical properties of the physics system and the corresponding
loop structure of the code on the software side; on the other
hand a fairly simple model of the underlying hardware that
included the number of cores, clock speed and interconnect
speed as main parameters was sufficient for the study.

Other applications and computational physics kernels, which
often perform algebraic operations, such as matrix oper-
ations, require a much more detailed model of the avail-
able hardware because data motion, efficient cache hierarchy
usage, and latency hiding largely determine performance.

VALUETOOLS 2015, December 14-16, Berlin, Germany
Copyright © 2016 ICST
DOI 10.4108/eai.14-12-2015.2262575

Compared to a CPU design, a GPU architecture is simpler
to model. The relative shallowness of its hardware and soft-
ware stacks allows for a more predictable behavior. The
absence of features such as instruction reordering, branch
prediction and deep cache hierarchy - not to mention the
absence of a full fledged operating system running at the
same time -, make execution of code on a GPU much easier
to model than on a modern CPU.

In this paper, we present the GPU Module of the Perfor-
mance Prediction Toolkit. Our GPU model consists of a
large set of parameters. It is embedded in the parallel dis-
crete event simulation engine Simian [12] written in Python.
It interacts with application models through an interface
that we call a task list. Upon execution, the GPU model pre-
dicts the time it takes to execute the task list. The task list
itself can be generated manually, through a Python script, or
directly from the intermediate representation PTX format
that is commonly used for GPU code. The loop-structure of
an application can be wrapped around the task list compu-
tations, such that we achieve realistic run time predictions
not just of individual GPU operations but rather of entire
applications.

We present models for three GPUs: a Tesla M2090, a K40,
and a Quadro K6000. We validate these models against
three benchmark applications, namely, an optimized matrix
multiplication, a naive Jacobi stencil implementation, and
an optimized Jacobi stencil implementation (all taken from
the Parboil benchmark [14]), that collectively cover the rele-
vant spectrum of computational physics applications ranging
from bandwidth- to cycle-limited. Our runtime predictions
are within an error of 20%. We then predict performance
of a next-generation GPU (Nvidia’s Pascal) for the same
benchmark applications. Our model predicts that Pascal
generation GPUs will benefit bandwidth- and cycle-limited
applications by a factor of up to 2.5 over Kepler based GPUs
on application from our benchmark.

The paper is organized as follows: after describing related
work in Section 2, Section 3 describes our GPU Module and
also includes a brief introduction to GPU architectures. Sec-
tion 4 describes our validation results, Section 5 describes
our prediction results for future GPU architectures.

2. RELATED WORK

Modeling and emulating the runtime behavior of GPUs is
an active field of research. When it comes to predicting the
performance of a piece of code on a given GPU architecture,
many analytical approaches have been proposed [8, 6, 9, 13].
In [8], the authors propose an analytical model of a GTX280
GPU, which combines and adapts to GPUs existing models
for parallel computations and memory accesses. The ana-
lytical model presented in [6] addresses memory-level paral-
lelism and thread-level parallelism behaviors of GPUs and
also concerns a GTX280 GPU. In [9], the authors use the
performance models from [6] and focus on the effect of code
optimization using code skeletons as input across two gen-
erations of Nvidia GPUs. In [13], the authors refine and
improve the model proposed in [6] to identify bottlenecks in
GPU code. Some efforts have also been made towards mod-
eling specific components of a GPU. In [11], the authors
focus on modeling the caching behavior of GPUs using the

reuse distance obtained from an execution trace. In [1], the
authors focused on the performance of choleski factoriza-
tion on heterogeneous clusters and thus proposed a detailed
model of CPU GPU communications developed using Sim-
grid [3].

On the other end of the spectrum, many GPU emulators
have been proposed [5, 4, 2, 15]. These tools fully model
the run-time behavior of GPUs and can be used to obtain
various metrics on a given execution without even having ac-
cess to the GPU. Authors in [5] propose an emulator called
Ocelot, which allows the execution of Cuda code on a mul-
ticore CPU through binary translation. In [4], the authors
describe Barra, a GPU emulator, which can run GPU code
on multicore CPUs and mimics the behavior of the GPU
in order to provide insights into how a given piece of code
would be executed. GPGPU-sim [2], emulates the run time
execution of a cuda code (using the intermediate represen-
tation as input) to predict the performance on a given GPU
and gain information about potential bottlenecks. Finally,
multi2sim [15] combines low-level models of an x86 CPU and
an AMD GPU to predict the performance and instrument
hybrid code.

Analytical models present the advantage of fast simulations
but lack the accuracy and bottleneck finding capabilities of
emulators. Emulators on the other hand exceed in runtime
the execution of the code on the actual GPU and therefore
cannot be used to explore optimization strategies for pieces
of code with very long execution times. We propose a hybrid
approach, which uses a cycle-level emulation of a subset of
the computations and extrapolates the result of this emula-
tion to obtain the predicted total execution time.

3. MODELING GPUS

In this section, we use Nvidia Cuda’s terminology to briefly
describe the architecture of GPUs. We then describe the
methodology we used to model executions on GPUs.

3.1 GPU architecture

The architecture of a GPU marks a radical change with re-
spect to the traditional design of CPUs. In this architecture,
high processor frequencies, large caches and low latencies are
traded for a higher bandwidth and a higher number of pro-
cessing units. This somewhat new paradigm provides higher
computational throughput and thus better performances for
highly parallel problems at the expense of programmability.

GPUs are composed of a number of streaming multiproces-
sors (SMX). These multiprocessors share access to an off-
chip memory space, later referred to as global memory - see
Figure 1. Access to global memory by the SMXs presents a
high latency - several hundred cycles - and a high bandwidth
- hundreds of GB per second. This global memory can also
be accessed by the CPU and is used to send input data and
read results back as computations on the GPU are always
performed at the request of the CPU.

Each SMX contains various computational resources: single
and double precision units (SPUs and DPUs respectively),
special function units (SFUs) and load/store units (LD/ST).
SPUs - respectively DPUs - handle single - respectively dou-
ble - precision operations on floats and integers; SFUs han-

—
(2]
8 SMX SMX SMX SMX
3
¢
©
c
=l
g
=
g
IS SMX SMX SMX SMX
>
(=]
=
(4]
£
e
ey
(8]
£
o]

Figure 1: Overview a GPU’s architecture. The chip
contains several streaming multiprocessors. A large
but slow, off-chip memory is accessible to the com-
puting units.

dle operations such as exponentiation, square roots, sines
and cosines; LD /ST handle address translations for memory
accesses. Each SMX also contains a small amount of low-
latency on chip memory that can be used as a cache and
for inter thread communication - see Figure 2. Compared
to a CPU core, a greater percentage of the chip is devoted
to computational resources as opposed to fast memory and
control flow logic.

Each SMX can be seen as a processor with rather low clock
frequency when compared to a traditional CPU core. These
processors, however only compute instructions on 1024 bit
vectors - or 32 times a four-byte float - which is 32 times
larger than most CPU instructions and 4 times larger than
the largest available SIMD instruction vectors in current
CPUs. This difference allows for a greater computational
power for highly data parallel problems, ie. problems that
can exploit large vector instructions for most operations. In
order to exploit the large vector operations, problems to
be run on a GPU are decomposed into a computation grid.
The grid is composed of blocks of groups of 32 threads called
warps each executing the same sequence of instructions in
a lock-step fashion - see Figure 3. Due to this fact, each
warp can be seen as a single thread executing large vector
instructions and the thread-level granularity can most of the
times be ignored. Warps from the same block are executed
on a single SMX and can communicate with each other us-
ing the fast on-chip memory. All warps from the same grid
share the same sequence of instructions but can be at differ-
ent levels of completion, whereas threads of the same warp
execute the same instruction at any given time. Unlike with
CPUs, there is no instruction reordering done on a GPU,
which means that instructions are always executed by all
warps in the order provided by the sequence. However, an
instruction can be issued before the previous instruction is
completed if there is no dependency.

N

g Registers

£

6
B ey [|
Bl ey [Lom |
el Byl
==

AR

3| (e

8| e

5| EE

S| EE

g HE

SREE

3| |
==
el Byl
el Byl

_v HE

Figure 2: Overview a streaming multiprocessor

(SMX). Each SMX contains schedulers to issue in-
structions, computational resources (single precision
unit, double precision units etc.).

O
]
Grid]
]
O

Block
EODOONOOONOENEDD .. O
1 Instruction 1 |
Instruction 2
éurrem Instruction 3
Warp instruction_-'Insm’ICtIDn 4

Instruction 5

Instruction n

32 Threads

Figure 3: Example of a CUDA grid. The grid is
composed of blocks; each block is composed of warps
(or groups of 32 threads). Threads in a warp execute
instructions in a locked-step fashion.

Blocks of the grid are scheduled to the SMXs until one of
various conditions is reached. These conditions are availabil-
ity of register space, on-chip memory space or a hardware
limitation on the number of concurrent blocks or warps on
a single SMX. Each SMX thus has a pool of warps to issue
instructions to. Warps for which the current instruction de-
pends on the results of a previous instruction that has not
completed are called inactive. At a given clock cycle, ac-
tive warps can potentially be issued an instruction. Each
SMX contains a certain number of warp schedulers, which
try to issue one, or more if independent, instructions to a
given active warp at every clock cycle. The issuing of an in-
struction however depends on the availability of the required
computational resources.

Once a block is completed - ie. when all its warps have
completed the last instruction in the sequence - a new block
can be attributed to the SMX if there are more blocks avail-
able in the grid. Different types of bottlenecks can occur; if
warps mostly stall on memory accesses, the problem is said
to be memory bound. For a given memory bound problem,
if the bandwidth limit is almost reached, it is said to be
bandwidth bound; if the bandwidth limit is not reached and
memory stalls still occur predominantly, the problem is la-
tency bound. In rarer cases, a problem can be limited by
the availability of computational resources; it is then said
to be compute bound. Achieving performance on GPUs re-
lies on a deep understanding of the underlying architecture,
whereas decades of software and hardware development on
CPUs provide programmers with a much better abstraction
of the hardware. From a modeling point of view, the relative
simplicity of the hardware and software stack of GPUs, ren-
ders their behavior much easier to understand and predict.
Recent trends in CPU and GPU designs, however, show that
both architectures are slowly merging to a common design,
with the Intel MIC being a perfect example of an architec-
ture half-way between a traditional multicore CPU and a
manycore GPU.

3.2 Simulation methodology

In order to model GPUs, we aim at a trade-off between the
cycle accuracy of emulators and the fast simulation runtimes
of analytical methods. To achieve this, we take advantage of
the simplicity of the block-scheduling scheme implemented
in GPU hardware to simulate at cycle-level only a portion of
the execution of the grid and use the obtained partial run-
time to analytically estimate the total execution time of the
grid. Computations on a GPU are represented as a grid of
blocks. These blocks are distributed to available SMXs until
a maximum occupancy per SMX is reached; this problem-
and hardware-dependent maximum number of blocks is later
referred to as max_block. These blocks are executed using
parallelism and pseudo-parallelism - using time slicing tech-
niques - on a given SMX. Once a block is completed, a new
one, if available, is issued by the block scheduler to the SMX.
We model at cycle-level the completion of max_block blocks
on a single SMX. By taking advantage of the regularity of
this block scheduling method, the time taken to complete
these blocks is then used to analytically predict the total
runtime of the grid - see Figure 4.

The entire grid is therefore divided into workloads of max_block

blocks. When computing the runtime of a single workload

Modeled

SMX SMX SMX SMX

MWT 0000 DEEE NEEE
blocks | OO0 NEENE NEEE
! 4 { ! 4
Block scheduler ‘
50 o

11 5 o o o
1 o o

Pending
blocks

Figure 4: Blocks are scheduled to available SMXs
until the maximum number of concurrent blocks is
reached on each SMX. We model the execution of
this maximum number of concurrent blocks on a sin-
gle SMX and extrapolate the runtime for the com-
putation of the entire grid.

on an SMX, we simulate every cycle and attempt to issue
instructions to available warps until the completion of the
instruction sequence of each warp. At each cycle, a num-
ber of warps can be issued an instruction up to the num-
ber of warp scheduler available on the modeled GPU. If the
GPU has dual-issue capabilities, we attempt to issue two
instructions to warps. A warp is active if dependencies for
its next instruction have been met and an instruction can
be issued if computational resources are available. It would
be wrong to assume that all blocks in a workload will com-
plete at the same time, which is why we take into account
the completion time of each block in a workload to compute
the potential overlap between workloads. In order to obtain
reliable predictions for small grids - ie. grids with a num-
ber of blocks close to the number of available SMXs -, we
need to determine how the block scheduler works in such
cases. Microbenchmarking results show that blocks are dis-
tributed evenly to SMXs instead of fully occupying the first
SMXs. This behavior might however change in future Cuda
releases as GPUs will tend to be used more as computation
servers with concurrent applications and kernels running on
the same GPU. Achieving high performance depends heavily
on hiding the latency of global memory accesses. Hiding the
memory latency is mainly done using instruction-level par-
allelism and thread-level parallelism. Instruction-level par-
allelism occurs when two (or more) consecutive instructions
are independent; in such cases, the second instruction can be
issued before the completion of the first one (provided com-
putational resources required for this second instruction are
available). Thread-level parallelism occurs when an SMX is-
sues instructions to different warps, thus hiding the latency-
induced stalling of inactive warps. Our low-level model of
the completion of a workload can simulate both these types
of latency-hiding mechanisms.

We model an application by defining a task list which rep-
resents the sequence of instructions of the code to simulate.
Items of this list can be of the following type: single preci-

[Task list \

Actual code

[gmem_access],
[sp_op, n-1],
[gmem_access, n-1]
[gmem_access],
[sp_op, n-1],
[gmem_access, n-1]

Altid] += 10
Bltid] += 10

4

Figure 5: Example of a conversion from real code to
the task list representation. This two lines of code
(left) translate to six tasks in the task list (right).

sion operation, double precision operation, special function
operations, block synchronization and memory access (along
with the type of memory space being accessed, global, shared
or constant). Each operation in the task list is followed
by the index of the operations (if any) on the completion
of which it depends. We chose this simple representation
of applications to easily allow the modeling of applications
which have not been written yet. When Cuda code for the
application exists, the task list is automatically generated
from the PTX instruction sequence. Dependencies between
instructions are easily obtained using register names. The
current absence of instruction reordering on GPUs ensures
that the overall structure of the application, described in the
task list, is followed at runtime on an actual GPU.

Figure 5 shows an example of conversion of existing code
to our task list representation. This example assumes that
arrays A and B reside in global memory. Adding ten to
an element of these arrays yields three tasks for each ar-
ray: loading the value of the element from global memory,
computing a single precision operation and writing the re-
sult back to global memory. In this case, the second and
third tasks depend on the completion of the previous task;
therefore, no instruction-level parallelism can be achieved.
However, tasks 3 and 4 are independent accesses to global
memory. If resources are available (ie. LD/ ST units and
bandwidth), task 4 can be issued before the completion of
task 3. The first and fourth tasks of this example depend on
the computation of the value of variable tid; for simplicity,
this dependency is however not shown in this example.

Using PTX code as input does not provide the same level
of accuracy as using binary level information but provides
with a GPU independent representation of the code; mean-
ing that a single task list is required to simulate executions
on various GPUs. This task list can be edited to predict the
effect of code modifications on various architectures. This
simple task list representation, however, does not take into
account actual memory addresses being accessed by the sim-
ulated program. Therefore, memory address-dependent phe-
nomena such as partition clamping, shared memory bank
conflicts and caching behavior cannot be modeled. Includ-
ing memory address information would make the task list
representation much more complicated, thus rendering the
modeling of future applications too cumbersome. Caching
behavior could nevertheless be approximated using informa-

tion such as average reuse distance while allowing the task
list representation to remain simple.

4. VALIDATION

In this section, we describe our validation benchmark as well
as our modeled GPUs. We then present the results of our
predicted performances on the validation benchmark.

4.1 Description of the benchmark

Our validation benchmark is composed of three code ex-
amples taken from the Parboil benchmark [14]. The first
example, is an optimized matrix multiplication inspired by
the one from [16]. This piece of code makes use of the fast
on-chip memory to cache reused values and relieve band-
width usage. Despite these efforts, the optimized code is still
mostly bandwidth bound for large matrix sizes and latency
bound for small matrices. This example is later referred to
as SGEMM (for single precision general matrix multiply).
Instances for this piece code are composed of square matri-
ces with dimension ranging from 412 to 16384.

Our second example from the Parboil benchmark is a naive
implementation of a Jacobi stencil operation over a 3D grid.
This naive implementation does not make use of the fast
on-chip memory cache but global memory is nevertheless
accessed optimally - ie. all accesses are coalesced. This
implementation of the problem is highly bandwidth bound
even for small instances. This example is later referred to
as STENCIL. We run this code over volumes of size ranging
from 16 to 512 in all three dimensions.

Our last benchmark example is an optimized implementa-
tion of the Jacobi stencil operation over a 3D grid. Unlike
our previous example, this implementation make heavy use
of the fast on-chip memory and is optimized for large in-
stances. The use of this local cache greatly reduces the band-
width requirements making this piece of code mostly com-

pute bound. This example is later referred to as OPT_STENCIL.

For this optimized implementation, volume sizes range from
16 to 1024 in all three dimensions. These applications were
automatically translated to PPT task lists using the PTX
code as input.

4.2 Modeled GPUs

We model the three types of GPUs that we have at our dis-
posal: the M2090 from the Fermi generation, and the Tesla
K40 and Quadro K6000 from the Kepler generation. Among
those three, the older M2090 is the least powerful in almost
every aspect: clock frequency, amount of computational re-
sources, bandwidth etc. The number of SMX, however, has
remained rather stable across the two generations with 16
SMX for the Fermi GPU and 15 SMX for the Kepler ones.
The M2090 has two warp schedulers per SMX, whereas the
Kepler GPUs with much more computational resources have
four warp schedulers. It is important to note that the kepler
warp schedulers can dual issue instructions to a given warp
in the presence of two independent and ready-to-compute in-
structions. The K40 and K6000 are based on the same chip
design (GK110) and thus have very similar specifications.
The main difference between the two being the higher clock
frequency of the K6000 - 901.5MHz compared to 745MHz
for the K40. An important difference between the two gen-
erations is the number of concurrent blocks that can run on

Name | M2090 | K40 | K6000
SMXs 16 15 15
SPUs (per SMX) 32 192 192
DPUs (per SMX) 16 64 64
SFUs (per SMX) 4 32 32
Schedulers (per SMX) 2 4 4
Dual issue No Yes Yes
Max blocks per SMX 8 16 16

Max threads per SMX 1536 | 2048 | 2048
Frequency (MHz) 650 745 | 901.5
Bandwidth (GB/s) 177 288 288

Table 1: Overview of the specifications of the three
modeled GPUs.

a single SMX. The M2090 is hardware limited to 8 blocks
or 48 warps, when Kepler cards can go up to 16 blocks or
64 warps. The larger register file of the Kepler cards also
means that register pressure is less of an issue.

Table 1 shows a subset of the parameters needed to cre-
ate a model of a GPU. The information in this table is
available in Nvidia white-papers and general documentation.
Additional information such as latency and throughput of
arithmetic and memory operations is obtained through mi-
crobenchmarks derived from [18], which we adapted to the
64 bit memory addresses of new GPU generations. Given
this information, a new GPU model can be implemented in
a matter of minutes by setting parameters accordingly in
PPT .

4.3 Validation results

Measured runtimes, in this section, are given in seconds
and include data transfers from the host to the GPU, a
thousand runs of the kernel and transfers back to the host.
Cuda code was compiled using nvcc flags to minimize the
caching of global memory data, since our model does not yet
take cache behavior into account. Figure 6 shows the mea-
sured and predicted performances for our benchmark on the
M2090 GPU. Predicted runtimes for the SGEMM and the
OPT_STENCIL examples are underestimated up to 20% for
the 512 instance of the OPT_STENCIL. The 1024 instance
exceeds the 6GB of global memory available on the M2090
and could therefore not be run; the memory required for this
instance is two representations of a 1024*1024*1024 volume
composed of floats (>8.5GB). Performances for the naive
stencil implementation are however slightly over-estimated.

Results of our validation benchmark on the K40 GPU can

be seen in figure 7. Performance prediction for the SGEMM

and the naive stencil over-estimate the measure runtimes,

while predictions for the OPT_STENCIL are under-estimated
up to a roughly 20% error for the last instance.

Figure 8 shows the results of our validation benchmark for
the K6000 GPU. Our predictions for the SGEMM closely
match the actual runtimes, while predictions for the STEN-
CIL and OPT_STENCIL examples are respectively over-
and under-estimated. While some errors remain in our pre-
dictions, we can see that the global trends of all three ex-
amples are fairly well predicted with all modeled GPUs.

Measured VS. predicted SGEMM Measured VS. predicted STENCIL

3 == Measured == Measured
—+— Predicted 30" == predicted

Runtime (s)
Runtime (s)

0 2000 4000 6000 800D 10000 12000 14000 16000 18000

Matrix size Volume size

Measured VS. predicted OPT_STENCIL

=& Measured
25 == Predicted

Runtime (s)

0 100 200 300 400 500 600

Volume size

Figure 6: Actual and predicted performance for the
M2090 GPU.

Measured VS. predicted SGEMM Measured VS. predicted STENCIL

18 | =f@=Measured 18 | == Measured
=4 Predicted

== Predicted

Runtime (s)
Runtime (s)

0 2000 4000 6000 800D 10000 12000 14000 16000 18000

Malrix size Volume size

Measured VS. predicted OPT_STENCIL

== Measured
100 == Predicted

Runtime (s)

0
0 200 400 600 800 1000 1200

Volume size

Figure 7: Actual and predicted performance for the
K40 GPU.

Measured VS. predicted SGEMM Measured VS. predicted STENCIL

1o Measured —8— Veasured
—— Predicted 121 == predicted
12
10
g g
E @ g
H £
z 6 [
4
2
0
0 2000 4000 6000 00O 10000 12000 14000 16000 18000 0 100 200 300 40 500 600

Matrix size Volume size

Measured VS. predicted OPT_STENCIL

== Measured
== Predicted

Runtime (s)

0 200 400 600 800 1000 1200

Volume size

Figure 8: Actual and predicted performance for the
K6000 GPU.

5. RESULTS

In order to illustrate how the PPT GPU module can be used,
we gather the scarce information about the future Pascal
generation of Nvidia GPU and create a model of such a
GPU. We first give the details of the parameters used to
build the model and then apply it to predict the performance
of this hypothetical GPU on our benchmark applications.

5.1 Future GPUs

Nvidia recently announced its new generation of GPUs called
Pascal [7]. Since it has not been released yet, information
about the architecture is still very scarce. Our model is
therefore based on suppositions, which we describe here.
This new generation will have a new type of 3D memory de-
livering a much higher bandwidth up to almost 1000 GB/s
for higher-end cards. The global memory will also be phys-
ically closer to the chip than in previous generations, po-
tentially yielding lower latency of memory accesses. Pascal
generation GPUs will also have a faster connection to the
CPUs memory, which Nvidia claims will be 5 to 12 times
faster than current generation interconnects. This should
lead to faster data movement between the host and the de-
vice. None of our benchmark applications, however, relies on
a fast connection to the host, since we time a single pair of
transfers back and forth with a thousand runs of the kernel.
Though taken into account in our model, this new feature
should therefore not impact our predicted performances sig-
nificantly.

No information has yet been given about the number of
SMXs nor the content of these future multiprocessors. Given
the apparent stability across previous generations of the
number of SMXs, we project this number to remain around
16. The recent trend seems however in an increased compu-
tational capacity per SMX. We therefore project 256 single
precision units per SMX and up to 128 double precision

Projection on SGEMM Projection on STENCIL

14 | —8—KB000 (measured) —8 K6000 (measured)
—— Pascal (predicted) 100 —s—pascal {predicted)

Runtime (s)
Runtime (s)

0 5000 10000 15000 20000 0 200 400 600 80O 1000 1200

Matrix size Volume size

Projection on OPT_STENCIL

70 == K6000 (measured)
== Pascal (predicted)

Runtime (s)

[200 400 600 800 1000 1200

Volume size

Figure 9: Projection of performances of a hypo-
thetical Pascal GPU. Measured performances of the
K6000 GPU are given as a reference.

units, as opposed to 192 and 64 respectively for the K6000
and K40 from the Kepler generation. Due to power con-
sumption constraints and in accordance with recent trends,
we project that processor clock frequencies will remain sta-
ble around 900 MHz for both Quadro and Tesla cards.

5.2 Predicted performances

Figure 9 shows our performance projections for the hypo-
thetical Pascal GPU described previously. Actual perfor-
mances obtained on the K6000 GPU are given as a reference.
Projected performances for the Pascal GPU show a signifi-
cant speedup of nearly 2.5x on SGEMM and OPT_STENCIL.
The projected speedup for the naive stencil is however more
modest with nearly 1.5x. These projected speedups do not
get close to the 10x speedup over Maxwell GPUs claimed by
Nvidia. Our benchmark codes, however, do not make use
of the large amount of 16 bit precision floating point com-
putational power introduced in future Pascal GPUs; more-
over, our benchmarks do not heavily rely on communication
between the host and the device, which will be greatly im-
proved in Pascal GPUs. It is very likely that applications
with such properties will see a higher speedup on the Pascal
generation of GPUs.

6. CONCLUSION

We presented the GPU Module of a Performance Predic-
tion Toolkit developed at Los Alamos National Laboratory.
The aim of this toolkit is to quickly explore the hardware-
software space to find the best match between algorithms
and computer architectures for a given problem. This toolkit
can help software developers in finding the best algorithmic
variation for a given architecture or finding the best archi-
tecture to run a given piece of code before purchasing the
machine. It also aims at testing algorithmic ideas on various
architectures before even writing the code.

We described the modeling strategy used for our GPU model,
which offers a trade-off between the cycle-accuracy of GPU
emulators and fast execution of analytical models. This
trade-off is achieved by modeling at the cycle-level only a
portion of the computations and using the relative simplic-
ity of the GPU architecture to use this partial runtime to
analytically infer the total execution time of the entire pro-
gram. Three recent Nvidia GPUs are modeled and validated
against a subset of applications from the Parboil bench-
mark [14]. Our models showed a maximum error of around
20% and were successful in determining the global trends on
all three benchmark applications. We then used available in-
formation to create a model of a GPU from the future Pascal
generation and predicted its performance on our benchmark
applications.

We plan on improving our GPU Module by adding a cache
model to increase the accuracy of its prediction. Such a
model for cache behavior could be based on reuse distance
information so as to preserve the simplicity of application

models and avoid having to include memory address-dependent

information. New features will also be added to help soft-
ware developers find bottlenecks in their applications using
the insight provided by the cycle-level part of our model.
We also intend to create models for GPU-cluster-size appli-
cations to test the validity of our entire Performance Pre-
diction Toolkit. Such applications will include multi-GPU
computations across a cluster of hybrid machines.

7. REFERENCES

[1] E. Agullo, O. Beaumont, L. Eyraud-Dubois,

J. Herrmann, S. Kumar, L. Marchal, and S. Thibault.
Bridging the gap between performance and bounds of
cholesky factorization on heterogeneous platforms. In
Heterogeneity in Computing Workshop 2015, 2015.

[2] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and
T. M. Aamodt. Analyzing cuda workloads using a
detailed gpu simulator. In Performance Analysis of
Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on, pages 163-174. IEEE,
20009.

[3] H. Casanova, A. Giersch, A. Legrand, M. Quinson,
and F. Suter. Simgrid: a sustained effort for the
versatile simulation of large scale distributed systems.
arXiw preprint arXiv:1309.1630, 2013.

[4] S. Collange, M. Daumas, D. Defour, and D. Parello.
Barra: A parallel functional simulator for gpgpu. In
IEEE International Symposium on Modeling, Analysis
& Simulation of Computer and Telecommunication
Systems (MASCOTS), 2010, pages 351-360. IEEE,
2010.

[5] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and
N. Clark. Ocelot: a dynamic optimization framework
for bulk-synchronous applications in heterogeneous
systems. In Proceedings of the 19th international
conference on Parallel architectures and compilation
techniques, pages 353-364. ACM, 2010.

[6] S. Hong and H. Kim. An analytical model for a gpu
architecture with memory-level and thread-level
parallelism awareness. In ACM SIGARCH Computer
Architecture News, volume 37, pages 152-163. ACM,
20009.

[7] J.-H. Huang. Nvidia gpu roadmap, 3 2014. Keynote
speech by Nvidia CEO Jen-Hsun Huang at the Annual
GPU Technology Conference in San Jose, Calif.

[8] K. Kothapalli, R. Mukherjee, M. S. Rehman,

S. Patidar, P. Narayanan, and K. Srinathan. A
performance prediction model for the cuda gpgpu
platform. In High Performance Computing (HiPC),
2009 International Conference on, pages 463-472.
IEEE, 2009.

[9] J. Meng, V. A. Morozov, K. Kumaran,

V. Vishwanath, and T. D. Uram. Grophecy: Gpu
performance projection from cpu code skeletons. In
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis, page 14. ACM, 2011.

[10] S. M. Mniszewski, C. Junghans, A. F. Voter, D. Perez,
and S. J. Eidenbenz. Tadsim: Discrete event-based
performance prediction for temperature-accelerated
dynamics. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 25(3):15, 2015.

[11] C. Nugteren, G.-J. van den Braak, H. Corporaal, and
H. Bal. A detailed gpu cache model based on reuse
distance theory. In High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International
Symposium on, pages 37-48. IEEE, 2014.

[12] N. Santhi, S. Eidenbenz, and J. Liu. The simian
concept: Parallel discrete event simulation with
interpreted languages and just-in-time compilation. In
Proceedings of rate 2015 Winter Simulation
Conference, page to appear, 2015.

[13] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. A
performance analysis framework for identifying
potential benefits in gpgpu applications. In ACM
SIGPLAN Notices, volume 47, pages 11-22. ACM,
2012.

[14] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid,
L.-W. Chang, N. Anssari, G. D. Liu, and W.-M. W.
Hwu. Parboil: A revised benchmark suite for scientific
and commercial throughput computing. Center for
Reliable and High-Performance Computing, 2012.

[15] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli.
Multi2sim: a simulation framework for cpu-gpu
computing. In Proceedings of the 21st international
conference on Parallel architectures and compilation
techniques, pages 335-344, 2012.

[16] V. Volkov and J. W. Demmel. Benchmarking gpus to
tune dense linear algebra. In High Performance
Computing, Networking, Storage and Analysis, 2008.
SC 2008. International Conference for, pages 1-11.
IEEE, 2008.

[17] D. Wade. Computational science graduate fellowship
program. Technical report, NNSA, 07 2015.

[18] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi,
and A. Moshovos. Demystifying gpu microarchitecture
through microbenchmarking. In Performance Analysis
of Systems & Software (ISPASS), 2010 IEEE
International Symposium on, pages 235-246. IEEE,
2010.

