Understanding cache dynamics in the network:
a software approach

lan Marsh
SICS, Swedish-ICT
. Sweden
ianm@sics.se

ABSTRACT

Complex time-varying load dynamics can be found at a net-
work cache. This is because data requests carried by thou-
sands of connections over diverse network paths load the
cache by many read (and sometimes) write operations. User
populations with a heterogeneity of request patterns and de-
lay requirements induce hitrate dynamics at the network and
cache interface. Content dynamics are further compounded
by the existence of local expurgation policies and dimen-
sioning decisions for each cache on a network path. Multi-
level caches on the same network path may cause inter-cache
dynamics of their contents. Finally, since the cache is in-
evitably part of a networked system, there is a complex dy-
namic relation between the cache hitrate and the network.

Categories and Subject Descriptors

Networks [Network performance evaluation]: [Network
simulations]; Computing Methodology [Visualization]: [Vi-
sualization application domains|

Keywords

Caching, dynamics, hitrate, visualization.

1. THE CACHING PREMISE

The simple idea of caching is, if one can store data “closer”
to the consumers, the time to access and retrieve the data
can be lowered. This is because the data is closer in terms of
distance (actual km) and probably less router hops, thereby
avoiding potential congestion. Loads on the network and
servers between the cache and server will also be reduced,
assuming the cache has non-zero efficacy. All that said,
buffering events during media replay are still commonplace
and annoying, caching solutions may be at the root of prob-
lem or be part of a solution such as in a CDN. Either way,
we present a joint simulation-visualization tool to give some
insight into the dynamics of network caching.

Time (request &)

L4 59 &« S
Dasa source
HR: 16%, §: 24, n: 22
Ley
1 contonts:
[1,2,58,10,11,12,15,16,17,21,26,33,48,53,85,82,108,138, 146,179,302
HR: 14%, 532, 02 15 HE: 1%, 5:37, 017
Level 20 Covel 2: 1
Oymisst
Omisst
Leved 1:0 Lovel 1: 1 Lovel 1:2 Level 1:3
9%, 5: 1,

HR: 14%, 5: 29, m: 12 HR: 21%, 5 16, m: 11 HR: 6%, 5: 1,01

rq for itemid: 10

Figure 1: Inspection of a caching simulation.

2. THEORY, SIMULATION, VISUALIZATION

Within this section we elucidate where network caching
can be better understood by using a combination of theory,
simulation and visualization. Our role is not to dismiss or
advocate existing approaches, but rather to show where ap-
proach differences can give rise to inaccuracies, e.g. in the
predicted hitrate. We motivate a joint approach within the
context of the original theoretical works, often expressed, or
not, as a mathematical assumption. The independent refer-
ence model (below) being an example of what we could point
to as an (accepted) difference between theory and practice.
We believe a simulation-visualization tool, which can parse
available datasets, typically compromising long streams of
time-series data, to be valuable. In caching, where size is an
important entity, a visualization can show where a 100 x 1U
object is preferable to store, rather than 100 x 1U objects,
or vice versa, by stepwise inspection. A single steppable,
time-reversible tool has proven invaluable in our own work,
i.e. assessing the effect of object size and tradeoffs between
edge and pervasive caching, see figure 1.

3. HITRATE FROM THEORY

The seminal [3] introduced a unified framework for the
analysis of a class of random allocation processes. In the
paper Flajolet et al. analyze a Least Recently Used man-
agement scheme, using a probabilistic (independent) refer-
ence model. The framework, which has persisted for some
years in the research community, means references to the
cache objects are considered independent (from the content)

VALUETOOLS 2015, December 14-16, Berlin, Germany
Copyright © 2016 ICST
DOI 10.4108/eai.14-12-2015.2262567



and stationary (constant mean and variance). Requests for
content n arrive according to a time homogeneous Poisson
process with intensity A,. Typically n is taken from a Zipf
distribution with popularity parameter o from 1/, where
r is the rank of the object. Che et al. showed that the hi-
trate for each object present in an LRU cache can be derived
directly [2]. They showed that the probability this object is
present in the cache, h(n), is approximated from the expo-
nent of the popularity as given in the left approximation in
Equation 1, where the unique root of ¢ is given below,

N

-y =c (1)

n=1

h(n) ~ 1 — Mt

A user requests an object from a population of N objects,
in a cache of capacity C. The probability a request is for
object n, for 1 < n < N, is proportional to popularity g(n),
independently of all past requests. Just to be clear, the
cache eviction time T¢ is assumed to be a deterministic
constant, see [4]. An shortcoming in the original approx-
imation is that the LRU hitrate can be variable in a real
setting, it changes over time as new objects are introduced
to the catalog. Within our environment, a dynamic cata-
log can be catered for by separating the input dataset into
time-dependent portions, e.g. per hour, day or week.

4. A WORKFLOW APPROACH

Network simulators are commonplace, some which sup-
port caching (ndnSIM, Icarus). Producing a tool which al-
lows user interaction, state examination, run-at-near native
binary speed within a browser supporting multiple users, re-
quires some software engineering. Furthermore, the demon-
stration abilities of the tool should be at least pedagogical;
for students, industrial partners as well as network engineers
in the inspection and analysis of complex dynamics.

We chose to use the Emscripten C++ to Javascript frame-
work to compile the simulator, enabling us to verify if, the JS
code can execute inside a virtual machine, and thus inside a
web browser. However, just running the simulation inside a
Javascript VM does not improve the simulate-plus-visualize
workflow. Therefore, some work was done to run the Em-
scripten as a web worker, which avoids the browser stalling
when executing the simulation. As a worker it can send its
messages with the input parameters for the simulation, and
receive the resulting JSON output to be visualized. Being
runnable within a browser allows remote experimentation.
Tracking the input sequence of dataset provides insight, par-
ticularly in workload characterizations, as shown in figure 2.
In this case the workload was used to parameterize the time
constants in a control theoretic approach to cache hitrate
stabilization. Another simulation view is shown in figure 3.
In this case, we have run multiple simulations, varying the
size of the caches. This was done in order to see how large
caches need to be to achieve a reasonable hitrate, and to see
at what cache size (if any) we start to observe diminishing
returns from increasing the cache size further. The returns
seem to diminish after around 6% of our real catalog, which
was from Orange’s 3G network in France. It comprises http
requests taken over the complete country between the access
network and backhaul network. We should point out that
the simulation can be seen from multiple views simultane-
ously and indeed writing additional views is straightforward,

Workload characterisation

08 |

06 |

04}

Hit Rate

02F

Zipf (alpha=1) 4

Gaussian
Dataset

0 20 40 60 80 100 120 140 160

Time

Figure 2: Input data to a workload characterization.

Hit rate as a function of cache size

Ll

Figure 3: Example hitrate performance of a net-
worked cache.

a CSS stylesheet and small snippets of PicoJSON in the rare
case where instrumentation is not already available.

5. DISCUSSION

There are at least 20 papers on the analysis of LRU evic-
tion policy spanning 15 years up to 2015. All that work done
has been done for LRU only, whereas LFU is an alternative
expiration policy, where few papers exist [1]. The point be-
ing, a pragmatic and arguably more accurate eviction policy
can be coded into 15 lines of code within an existing sim-
ulator. This abstract, and accompanying tool is intended
to bring theory and simulation closer together, as there are
clearly advantages to both approaches. Given a highly dy-
namical system such as network caching, we propose, there
is a role for good visualization tools as well. The simulator
is publicly available, with documentation from®.

6. REFERENCES

[1] ArRDELIUS, J., GRONVALL, B., WESTBERG, L., AND
ARVIDSSON, A. On the effects of caching in access
aggregation networks. In Proceedings of the Second
Edition of the ICN Workshop on Information-centric
Networking (New York, NY, USA, 2012), ICN ’12,
ACM, pp. 67-72.

[2] CHE, H., TuNG, Y., AND WANG, Z. Hierarchical web
caching systems: modeling, design and experimental
results. Selected Areas in Communications, IEEE
Journal on 20, 7 (Sep 2002), 1305-1314.

[3] FLAJOLET, P., GARDY, D., AND THIMONIER, L.
Birthday paradox, coupon collectors, caching
algorithms and self-organizing search. Discrete Applied
Mathematics 89, 3 (1992), 207 — 229.

[4] FRICKER, C., ROBERT, P., AND ROBERTS, J. A
versatile and accurate approximation for LRU cache
performance. 2/th International Teletraffic Congress,
ITC 12 (2012).

https://bitbucket.org/redstrom/fmdcache



