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ABSTRACT
In spite of recent advances in the genetics and neuroscience
of early childhood mental health, behavioral observation is
still the gold standard in screening, diagnosis, and outcome
assessment. Unfortunately, clinical observation is often sub-
jective, needs significant rater training, does not capture
data from participants in their natural environment, and
is not scalable for use in large populations or for longitu-
dinal monitoring. To address these challenges, we devel-
oped and tested a self-contained app designed to measure
toddlers’ social communication behaviors in a primary care,
school, or home setting. Twenty 16-30 month old children
with and without autism participated in this study. Tod-
dlers watched the developmentally-appropriate visual stim-
uli on an iPad in a pediatric clinic and in our lab while the
iPad camera simultaneously recorded video of the child’s
behaviors. Automated computer vision algorithms coded
emotions and social referencing to quantify autism risk be-
haviors. We validated our automatic computer coding by
comparing the computer-generated analysis of facial expres-
sion and social referencing to human coding of these behav-
iors. We report our method and propose the development
and testing of measures of young children’s behaviors as the
first step toward development of a novel, fully integrated,
low-cost, scalable screening tool for autism and other neu-
rodevelopmental disorders of early childhood.
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1. INTRODUCTION
Early identification of children with impairing neurodevelop-
mental and psychiatric disorders, such as autism spectrum
disorders (ASD) and anxiety disorders, can have a large im-
pact on long-term development and outcomes [3, 4]. How-
ever, the social communication and affective behaviors as-
sociated with these disorders are difficult to measure and
monitor in primary care pediatric settings, where children
are commonly seen, and even more difficult to measure in
natural environments such as homes or schools. Currently,
identification of children with neurodevelopmental disorders
in early childhood requires low specificity screening with
questionnaires followed by time-consuming observational as-
sessments by highly-trained clinicians. Even in the field of
autism, where progress has been made in developing new
technologies for measuring risk for the disorder, there is not
yet a low-cost and scalable way to directly observe children
and characterize their development automatically and on a
ubiquitous mobile device [9, 19]. There is a need for novel,
scalable tools to measure social communication and affective
behaviors and to use such measures to identify children who
are at risk for neurodevelopmental disorders in a manner
that can be disseminated to primary care clinics, schools, or
homes. The use of mobile devices is one way to address these
challenges, since their popularity opens the door to low-cost
(software only), training-free, and scalable solutions.

Towards this goal, we developed a mobile application to
elicit and quantify social referencing and affective behav-
iors. These behaviors, which include reciprocal social inter-
actions such as social smiling, social referencing, pointing,
and directing facial expression to others, represent some of
the earliest signs of autism [2, 18]. We investigated the con-
cept of delivering visual stimuli that could elicit and analyze
social referencing and affective behaviors of young children.
We tested tablet-based delivery of the app with integrated
stimuli presentation and behavior recordings in a 5-minute
session during well-child medical visits and analyzed result-
ing data. We present our methodology and results of feasi-
bility analysis for automated coding of these behaviors from
children with and without autism.
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2. METHODOLOGY
2.1 Experimental setup
The study was carried out in a pediatric care clinic and our
laboratory, with the approval of the Duke Institutional Re-
view Board. A researcher approached parents of children
presenting for an 18 or 24-month well-child check at the end
of their visit and after the child had been screened for autism
as per usual care. Children with known hearing or vision im-
pairments and parents who could not complete consenting in
English were excluded. We used a simple set up of an iPad
and stand. The parents held the child on his or her lap and
the iPad was set about 1 meter away. To minimize distrac-
tion, other adults and children were asked to stand behind
the parent. This also forced the child to turn to direct social
communication to others for unambiguous coding of behav-
iors. Parents were told they could interact with their child
for the first 45 seconds of the experiment while a mirror was
presented on the screen, but then they were asked to remain
quiet and not direct their child’s behavior or attention once
video stimuli began (unless the child became distressed or
tried to get up). The examiner called the child’s name at
three prompted points during the stimuli and silently waved
if the child turned and made eye contact. The frontal camera
in the iPad recorded video throughout the stimuli presenta-
tions at 1280x720 resolution and 30 frames per second. If
children screened positive on standard autism screening with
the Modified Checklist for Autism in Toddlers - Revised (M-
CHAT-R), or a parent or clinician expressed concerns about
autism during the medical visit, children received gold stan-
dard diagnostic testing with the ADOS-T with a child psy-
chologist for final diagnosis and group assignment [13, 20].

Data has been collected on 47 children at the time of this
analysis. Two children refused to finish watching the videos
and one child did not have sufficient landmarks for analysis
due to hair covering his face. We selected 20 subjects for the
feasibility study based on age distribution to represent the
range of ages and both diagnostic groups. Data from the
first two video stimuli (bubbles and a social scene featuring
a mechanical bunny, Figure 1) were selected for this feasi-
bility analysis because preliminary analysis on pilot subjects
showed that smiling and social referencing (looking at par-
ent or examiner) was elicited most reliably during this part
of the experiment. Total time analyzed was 97 seconds. We
chose frequency of positive affect and frequency of social
referencing as the main outcome variables, as these will be
our clinically important outcome variables for future group
analysis comparing children with and without autism. We
removed the ratings of surprise in both human and com-
puter coding due to frequent vocalizations in young children
which cause the mouth to open briefly and the tendency of
children in this age group to stare with mouth slightly open.
For feasibility analysis, 6 children with autism and 14 age-
matched controls were processed through automatic and hu-
man coding of videos. To determine feasibility of elicitation
of social communication behaviors and automated coding,
we compared results of automated and human coding in the
combined dataset of autistic and control subjects.

2.2 Computer coding
Computer vision approaches for facial analytics rely on ex-
tracting features around specific regions on a face, such as
the mouth, eyes, and nose [21, 22, 23, 24, 28]. We classify

Figure 1: Example images of the experimental setup. From
left to right, the first two images show screenshots from the
two video-stimuli. The right-most image is an example of
the recording acquired from the front camera on the iPad.

facial expressions and track head pose from 49 facial land-
marks automatically extracted via the IntraFace software
[26]. For the task of facial expression classification we em-
ploy a modified version of the method previously described
in Hashemi et al [8], which is a robust method shown to
handle expression classification across varying poses. This
is critical for analyzing young children’s natural behavior,
since more standard approaches that constrain the user would
not be appropriate for use with young children. We learn a
cross-modality and pose-invariant dictionary using the BU-
3D Facial Expression dataset [27]; and train the facial ex-
pression classifier based on the learned dictionary and the
standard Cohn-Kanade dataset [11], where 3 classes are con-
sidered: Neutral, Positive (Happy), and Negative (Anger,
Disgust, and Sad). For the task of head pose, we incorporate
the pose output from the IntraFace software [26, 10]. Given
a video stream comprised of consecutive images (frames),
we first classify an emotion label and estimate head pose for
each frame independently, and then we smooth the emotion
labels by applying a max-voting filter every half of a sec-
ond (15 frames). If in any given frame there is not a visible
face, or the face exhibits a drastic pose relative to the cam-
era (> 45◦ or < −45◦ yaw pose), the algorithm returns a
‘Not Visible’ tag on that frame. Since the parent and exam-
iner are behind the child, an instance of social referencing
is defined by a period in time when the yaw pose changes
from ≤ 45◦ to > 45◦, and then comes back a period of time
later while exhibiting a pose < 45◦ and > 35◦. Similarly,
social referencing also considers the case when the yaw pose
changes from ≥ −45◦ to < −45◦, and back to > −45◦ and
< −35◦. These head pose values were chosen since our head
pose algorithm requires both eyes to be visible on the face
and to reflect what human coders will consider clear social
referencing.

2.3 Human coding
To classify facial expression, we used the principles of anatomic
units from the baby Facial Action Coding system (Baby-
FACs) of affect coding and rated only hedonic tone (posi-
tive, negative, neutral) to maximize reliability and general-
izability [1, 15]. We chose the more general system of cod-
ing hedonic tone because previous studies have shown that
observers can classify hedonic tone on young children with
high accuracy [17]. Briefly, raters coded a positive expres-
sion when the action of the zygomaticus major pulled the lip
corners up, negative tone when the action of the corrugator
supercilli caused brow lowering, surprise when the mouth
was wide open, and neutral affect when none of these mus-
cle movements were present [12]. Raters coded ‘Not Visible’
when child’s face was covered or out of the field of view and
when more than half of the face was not visible due to head
turning away from the camera. Social referencing was coded



when a child turned to look at the parent or examiner who
was behind them. Coding was performed in Nodlus Ob-
server XT software version 11.0 [16]. Raters first trained on
a reliability dataset (separate from analyzed subjects) until
they reached agreement greater than 75%. A single rater
coded the dataset of subjects for these analyses; a second
rater coded 20% of the dataset to verify on-going inter-rater
reliability. Inter-rater agreement for total time when raters
gave the same code to a behavior was 84% (76%-95% range).
Raters were not blind to diagnostic group; but were blind
to stimuli and videos were muted during coding to prevent
the influence of vocalizations on the coding of hedonic tone.

3. RESULTS
3.1 Agreement for affect
We compared frame-by-frame behavior coding between the
human coder and the automatic classifier to determine how
much time the computer gave the same code as a human
rater (example in Figure 2). This time resolution is signif-
icantly more accurate than what is done in clinical screen-
ing. Time in agreement and % agreement were calculated
for each child, showing a range of 30-96% agreement with
a mean of 75% (Table 1). The outlying value of 30% (sub-
ject 8) was due to disagreement between human coding of
negative and computer coding of neutral. Some of the dis-
agreement was due to edge effects, where the human and
computer agreed on a prolonged facial expression, but did
not agree on small changes in expression and on the exact
frame-by-frame onset and offset of an expression. Addition-
ally, we tested inter-rater reliability on frequency of positive
affect as a potential outcome measure by calculating the intr-
aclass correlation coefficient (ICC) using the package ‘irr’ in
R [5, 25]. We quantified frequency by extracting the distinct
instances of positive affect lasting greater than 0.5 seconds
to limit measurement of small movements in the child’s face,
which represent noise due to the high sampling rate rather
than true expressions [14]. We used a two-way, consistency,
average measure ICC [7]. ICC for frequency of positive af-
fect was 0.69 (95% CI 0.21-0.88), reaching good agreement,
but with a wide confidence interval, suggesting variance be-
tween raters for some subjects. We expect smoothing of
data to a higher sampling rate and disregarding insignifi-
cantly brief codes will generate better agreement in future
analysis, and be more representative of the clear agreement
like that observed in the visualizations in Figure 2.

Figure 2: Time-based coding by automated computer (top)
and human (bottom) methods demonstrating high agree-
ment (subject 9; stimulus 1) with 27 out of 30 seconds agree-
ment. Green is neutral expression, red is positive expres-
sion, black is not visible, and light green is social referencing
(looking at adult).

Table 1: Human coding compared to automated coding
showing good overall agreement (75% across 20 subjects)
and no apparent difference in mean agreement between the
autism (A) and control (C) groups.

Subject (diag.) Age Agree. Disagree. % Agree.
(months) (seconds) (seconds)

1 (A) 17 80 17 83%
2 (A) 20 77 20 79%
3 (A) 25 63 34 65%
4 (A) 30 84 13 86%
5 (A) 30 64 33 66%
6 (A) 31 61 36 63%
7 (C) 17 72 25 74%
8 (C) 18 29 68 30%
9 (C) 19 83 14 85%
10 (C) 19 77 20 79%
11 (C) 20 81 16 83%
12 (C) 24 64 33 66%
13 (C) 24 70 27 72%
14 (C) 24 68 29 70%
15 (C) 24 79 18 82%
16 (C) 24 68 29 70%
17 (C) 24 84 13 86%
18 (C) 24 93 4 96%
19 (C) 28 81 16 83%
20 (C) 30 71 26 73%

Control Group 23 73 24 74%
Autism Group 25 71 26 75%

3.2 Agreement on social referencing
We next measured the agreement on frequency of social ref-
erencing, which ranged from 0 to 8 head turns per subject in
data from both the human and computer coding. Two-way,
average measure, consistency ICC was 0.89 (95% CI of 0.73-
0.96), allowing us to infer that the automated analysis has
acceptable classification of social referencing. Limitations
on exact agreement include the inability of the computer
to determine whether a child is looking at a person or an
object behind them (which we could add in the future by
automatically detecting the other people). We achieved ex-
cellent agreement on number of head turns, and may be able
to distinguish social referencing from random movement by
the coordination of affect and social communication with
head turns in deeper analysis of the sequence of events.

3.3 Pattern of behaviors
The next step in developing this measure is to refine the
automated method and take into account the sequence of
events. A strength of observational measures carried out by
experts is that they take into account not only whether a
child displays a behavior, but also the sequence and inte-
gration of different behaviors. One key way that children
with autism are identified is via lack of reciprocal social in-
teractions, which is the act of directing facial expression and
communication to others [6, 13]. In order to work toward
a measurable difference in autistic children, we must also
take into account the temporal pattern of observed events.
We propose to measure this by automatically detecting and
characterizing the combination of positive affect and so-
cial referencing elicited by the iPad-delivered stimulus, or



(a) Control

(b) Autism

Figure 3: Comparison of sequence of behaviors in a control
subject and an autistic subject matched on age during the
same stimulus. Green is neutral expression, red is positive
expression, dark blue is negative expression, black is not vis-
ible, and light green is social referencing (looking at adult).

lack thereof. The sequence of automatically coded affective
states and social referencing in non-autistic children reveals
a pattern of behaviors that may be distinct from that of
autistic children, Figure 3. We intend to characterize these
patterns and identify group differences and developmental
patterns on an expanded group of children.

4. CONCLUSIONS
In this study, we have demonstrated the feasibility of deliver-
ing video stimuli in a clinic to young children and collecting
usable data on a mobile device. For parents and children
who participated in this study, the task was easy and enjoy-
able. These data suggest that observation of behaviors used
to indicate possible risk for autism can be elicited and auto-
matically measured with this app. Our technology has the
potential to improve access to autism screening, particularly
when evaluation by experts is limited and expensive. Our
tool can help to ensure that these evaluations are directed
to children who truly have an elevated risk for autism. We
interpret these results with the caution that we have not yet
demonstrated a group difference on a large sample of chil-
dren with and without autism. Further refinement of this
tool will be necessary before it can be considered a poten-
tial automatic screening instrument for autism. However,
this is the first step in the development of a new class of
tools for automated analyses of child behavior that could be
applied more broadly to screening for a range of neurode-
velopmental and mental health disorders and monitoring of
the development of these disorders and response to treat-
ments over time. A strength of our approach is that we
are able to rapidly improve the technology because we are
able to collect data on large, heterogeneous samples because
the technology is scalable and, thus, enables us to rapidly re-
cruit a normative sample. We hypothesize that children may
perform differently in their home or school setting, and we
therefore plan to expand data collection into these settings.
Broader application and dissemination of tools for assessing
early childhood behaviors will improve screening for autism
and other neurodevelopmental and mental health symptoms,
and early identification and on-going monitoring should im-

prove access to quality interventions that will support child’s
healthy development and functioning.
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