
Towards a Formalization of System Requirements for an
Integrated Clinical Environment

[Invited Paper]

Cinzia Bernardeschi
Department of Information Engineering

University of Pisa, Italy
cinzia.bernardeschi@iet.unipi.it

Andrea Domenici
Department of Information Engineering

University of Pisa, Italy
andrea.domenici@iet.unipi.it

Paolo Masci
School of Electronic Engineering and Computer
Science, Queen Mary University of London, UK

p.m.masci@qmul.ac.uk

ABSTRACT
Interoperability of medical devices, and their interface to
clinicians and patients, are critical issues for the safety and
effectiveness of patient care. Ongoing efforts strive at estab-
lishing standards for integrated clinical environments, which
may connect and co-ordinate several medical devices and in-
terface them to patients, clinicians, and hospital information
systems. In this paper, an approach to the formalization of
system requirements for an integrated clinical environment
is presented. The formalization relies on the higher-order
logic language of the Prototype Verification System.

Categories and Subject Descriptors
D.2.1 [SOFTWARE ENGINEERING]: Requirements/
Specifications; D.2.4 [SOFTWARE ENGINEERING]:
Software/Program Verification—Formal methods

General Terms
Reliability, Standardization

Keywords
Integrated clinical environment, PVS, Formalization

1. INTRODUCTION
Hospital care relies on a large number of medical devices,
used both for monitoring patient conditions and for adminis-
tering therapy. Typically, each device is self-standing, i.e., it
operates independently of other devices and offers its own in-
terface to clinicians, and it is up to the clinicians to supervise
the set of available devices. For example, a patient may be

administered a sedative with an infusion pump, while a clin-
ician observes the patient’s conditions through the data dis-
played by a pulse oxymeter. The clinician then changes the
pump settings, or maybe stops or restarts delivery, according
to his or her perception of patient conditions, based mainly
on the oxymeter’s readings. The safety of this humans-in-
the-loop control process is enhanced by the availability of
automatic alarms triggered by patient’s parameters crossing
certain thresholds.

In the above scenario, hazards arise from device malfunc-
tions and human errors. The latter have many causes, in-
cluding ill-designed interfaces [6] and incorrect information
about the patient. The issue with interfaces is aggravated
by the fact that devices with the same purpose may have
different interfaces, depending on vendor or model.

Risks from such hazards may be reduced by Integrated Clin-
ical Environments (ICE). An ICE is a computer system
that mediates interactions between clinicians, medical de-
vices, and information systems, providing services to en-
hance safety and effectiveness of patient care and possibly
enforcing safety rules and standards.

Ongoing efforts strive at establishing standards for inte-
grated clinical environments. Since ICE systems are inher-
ently safety-critical, their requirements must be specified in
the most rigorous and formal way. Formalization of such
requirements, however, is difficult because the safety of an
ICE is affected by a wide spectrum of factors, ranging from
the operation of hardware and software to hospital proce-
dures related, e.g., to patient identification or transmission
of medical orders. An ICE is an example of a socio-technical
system, i.e., one whose behavior is determined by complex
interactions between people and machines.

In this paper, an approach to the formalization of system
requirements for an integrated clinical environment is pre-
sented. This approach is illustrated by examples showing
how requirements, expressed in natural language, can be
translated into a formal logic language. This language is the
one used in the Prototype Verification System, a theorem-

MOBIHEALTH 2015, October 14-16, London, Great Britain
Copyright © 2015 ICST
DOI 10.4108/eai.14-10-2015.2261701



Supervisor Network

medical

device

medical

device

medical

device

. 
. 
.

PatientClinician

ICE

Figure 1: An Integrated Clinical Environment
(adapted from [1]).

proving environment aimed at the formal specification and
verification of complex systems. This paper is focused on re-
quirements specification, leaving verification of requirements
consistency and achievement of safety goals to further work.

2. ICE REQUIREMENTS
An ICE (Fig. 1) can be defined as an“environment that com-
bines interoperable heterogeneous medical devices and other
equipment integrated to create a medical system for the care
of a single high acuity patient” [1].

An ICE is part of a wider environment, the hospital, and
therefore its requirements span a wide range of issues, from
administrative procedures (e.g., related to patient identifi-
cation) to device operations. For example, a requirement
related to patient data and identification might capture con-
cerns about what information shall be available to clinicians
to check that the right treatment is delivered to right pa-
tient. This information might include, for example, pa-
tient ID, demographical data (name, age, etc.), location,
etc.. A requirement related to the operation of a specific de-
vice, namely an infusion pump for patient-controlled analge-
sia (PCA), might capture information about safety-interlock
mechanisms that can be used to ensure the safe delivery of
a treatment in the case of device malfunction. For example,
to prevent overdose with a PCA pump, a safety requirement
could be defined to ensure that additional doses of anesthetic
(bolus) shall be inhibited in the presence of error conditions.

Other issues that ICE requirements must take into account
include clinician authorizations and authentication, alarms
and warnings, interconnection between ICE and devices,
human-machine interaction, and more. Expressing the re-
quirements in a formal language will result in a large and
complex conceptual model that can be checked for consis-
tency (no requirement contradicts another one).

Any effort towards the formalization of ICE requirements
will help developers to discover and address the typical prob-
lems of informal systems specification, such as ambiguities
inherent in the natural language in which the requirements
are originally expressed, and implicit assumption. In this
work, we cover this aspect of the formalization of safety re-
quirements, and present an example in the next sections.

The formalization of the safety requirements leads to gen-
erating a safety reference model of the system that captures
information about what needs to be verified in a system de-
sign to ensure safety of operation. To carry out this verifica-

tion, the reference model is populated with details about the
behavior of the system under analysis, e.g., following the ap-
proach illustrated in [4, 3]. The instantiated model defines
specific constraints that shall hold in the system to prove
that the real system meets the requirements formalized in
the safety reference model.

3. FORMALIZATION
The typed higher-order logic of the Prototype Verification
System (PVS) [8] has been used for the formal specification
of many kinds of systems, including medical devices [3, 7, 6].
In the PVS, a system is modeled by a theory, i.e., a set of
statements in the PVS logic language describing the system
by means of variable, constant, and function definitions, and
of axioms and theorems about them. Properties of the sys-
tems can then be proved with respect to the theory, using
the interactive PVS theorem prover.

A PVS theory can refer to other theories, thus enabling a
modular, hierarchical composition of complex systems from
subsystems. Another feature that makes the PVS language
attractive for systems specification is its flexible and ex-
pressive type system. With this type system it is possible
to specify all the datatypes available to programming lan-
guages, but also to define types that abstract from any un-
necessary details: It is then possible to state that the mem-
bers of a given type satisfy some properties, without any
reference to the implementation of the members. Further,
subtypes can be specified by stating the properties which
characterize the subtype members.

Thanks to these features, the PVS language is well-suited to
specifying such a complex system as an ICE. As previously
discussed, ICE requirements must span different domains
and different levels of abstraction and generality: For exam-
ple, there are requirements affecting all devices irrespective
of their kind, and requirements affecting specific kinds, such
as infusion pumps, X-ray machines, or respiration monitors.
The modular composability of PVS theories and the flexi-
bility of the type system make it possible to structure the
overall specification in a set of interrelated theories, each
devoted to a specific (sub)domain or level of abstraction.
Such a specification would be easily maintainable, in case of
changes of regulations or introduction of new equipment or
therapies.

3.1 Domain identification
A fundamental step in drafting a specification is domain
identification, i.e., recognizing and representing the funda-
mental concepts in the application domain. For example,
consider the requirement on patient identification mentioned
in Section 2 above. Some significant words in that text are
patient and information. Such words as patient ID, location,
or age, denote items of information pertaining to a patient.
Many other requirements will mention patients and patient-
related concepts, such as blood pressure or pulse rate. The
concepts related to patient identification can be grouped in
a theory as follows:

patients_th: THEORY

begin

patient: TYPE+



patient_ID: TYPE+

patient_location: TYPE+

id(p: patient): patient_ID

location(p: patient): patient_location

...

end patients_th

The above fragment says that patient, patient_id, and
patient_location are nonempty types, and that functions
id and location return patient p’s identifier and location,
respectively. Similar type and function definitions for other
attributes are not shown.

We may note that each attribute could be implemented in
different ways, such as integer numbers, strings, or records,
but such details are inessential since they are never ad-
dressed in the ICE requirements, and have been consequently
abstracted out in the terse type declarations.

Another conceptual domain concerns medical devices. From
the documents on the ICE requirements, and from general
knowledge, a medical device can be seen abstractly as a sys-
tem that can“read” the values of physical quantities, receive
commands, and execute actions. A device has a state de-
fined by the values of a set of parameters. How the values
of parameters and of physical quantities are represented in
a given device is seldom, if ever, addressed in the ICE doc-
umentation. Actually, value representation is often an irrel-
evant detail, unless human interaction or control algorithms
are involved. So, a theory of medical devices should depend
on a theory of parameters embodying implicit knowledge on
physical values:

parameters_th: THEORY

parameter: TYPE+

dimension: TYPE+

unit: TYPE+

pulse_rate: parameter

blood_pressure: parameter

duration: dimension

mass: dimension

hr: unit % hours

mg: unit % milligrams

g_per_l: unit % grams per liter

parm_dimension(p: parameter): dimension

unit_dimension(u: unit): dimension

value: TYPE = [# magn: number, units: unit #]

parm_value(p: parameter): value

...

end parameters_th

In the above theory, the abstract types for parameters, di-
mensions, and units are defined, then a few sample param-
eters (pulse rate and blood pressure) are introduced, along
with physical dimensions and units. A value can then be
modeled as a record with a magn (magnitude) and a units

field. Functions return a parameter’s value and dimensions.

A theory for devices could be written in the following fash-
ion:

devices_th: THEORY

IMPORTING parameters_th

device: TYPE+

state: TYPE = setof[parameter]

command: TYPE+

display: TYPE = setof[parameter]

commands: TYPE = setof[command]

panel: TYPE = [# displ: display,

cmds: commands #]

st(d: device): state

pnl(d: device): panel

...

end devices_th

This theory says that a device state is a set of parameters, a
device front panel has a set of displayed parameters and a set
of commands, and functions (st and pnl) access a device’s
state and panel. Different types of devices, such as infusion
pumps, are modeled as subtypes of device in the respective
theories, which introduce device-specific commands, param-
eter, and functions describing state transitions:

infusion_pumps_th: THEORY

IMPORTING devices_th

infusion_pump: TYPE+ FROM device

pause_cmd: command

incr: command % increment value

% of parm currently edited

decr: command % decrement value

% of parm currently edited

bolus: command % deliver a bolus

pwr: command % power on/off

...

end infusion_pumps_th

3.2 Requirements formalization
Let us now consider the following requirements1 for the ICE
system:

• Remote control by the ICE system shall not be locally
overridden. Commands entered from the front panel
that change pump operation shall be disabled, except
for the pause command.

• The ICE system shall require confirmation when clear-
ing the pump settings and resetting the pump.

Even if the above requirements are specific to a particular
kind of device, they concern the interaction between a device
and the ICE system, and are likely to apply to other device
kinds. Therefore they may be dealt with in a theory of
interactions, where such concepts as remote or local control,
enabling or disabling, and issuing or confirming commands
are modeled:

interactions_th: THEORY

1The requirements were originally formulated for infusion
pumps in [2], and here we adapted the requirement to the
ICE system.



IMPORTING devices_th

control: TYPE = remote, local

controlled_under(d: device): control

% is d controlled locally or remotely?

issued(c: command): bool

% has command c been issued?

issued_under(c: command): control

% has c been issued locally?

enabled(c: command): bool

changer(c: command): bool

% does c change a parameter or mode?

confirmation_requested(c: command): bool

confirmed(c: command): bool

accepted(c: command): bool

...

end interactions_th

With the theories hinted at above, it is possible to specify
requirements in the form of axioms. For example, the re-
quirement that inhibits local control (except for the pause
command) when a pump is under ICE control would read
as follows:

infusion_pump_reqmts_th: THEORY

IMPORTING devices_th, interactions_th,

infusion_pumps_th

remote_disable_local: AXIOM

forall (p: infusion_pump):

controlled_under(p) = remote

=> forall (c: command):

cmds(pnl(p))(c) and changer(c)

and c /= pause_cmd

=> not enabled(c) and enabled(pause_cmd)

...

end infusion_pump_reqmts_th

In the above snippet, the expression cmds(pnl(p))(c)means
that c belongs to the set of commands (cmds(...)) ac-
cepted by the front panel (pnl(...)) of p. This (perhaps
too) terse but precise expression stems from PVS’s way of
interpreting sets as logical predicates, i.e., defining a set im-
plicitly defines a predicate characterizing its members. The
above axiom then reads as “for all pumps p, if p is remotely
controlled, then all its commands which change parameter
values or operation mode are disabled, except for the pause
command”.

It may be observed that compliance to the above require-
ments would avoid adverse situations such as reported in [5],
where simulation showed that an infusion pump could re-
ceive a pause command from the ICE while infusion pa-
rameters were being manually edited, resulting in over- or
underdosing.

The examples in this section illustrate how a single rigorous
formalism such as the PVS language is expressive enough
to model system requirements from different perspectives,
from administrative procedures to technical requirements on
device operation and co-ordination.

4. CONCLUSIONS
This paper advocates the use of the PVS specification lan-
guage to formalize system requirements for integrated clin-
ical environments. A modular, hierarchical approach to the
construction of a complex theory modeling ICEs and ex-
pressing their requirements has been illustrated by means
of simple examples. Proof-of-concept PVS theories are cur-
rently being developed by the authors according to this ap-
proach.

Acknowledgements
Paolo Masci was funded by the CHI+MED project: Multi-
disciplinary Computer Human Interaction Research for the
design and safe use of interactive medical devices project,
UK EPSRC Grant Number EP/G059063/1.

5. REFERENCES
[1] F2761-2009. Medical Devices and Medical Systems —

Essential safety requirements for equipment comprising
the patient-centric integrated clinical environment
(ICE) — Part 1: General requirements and conceptual
model. IEC, International Electrotechnical Commission,
2008.

[2] The Generic Patient Controlled Analgesia Pump
Hazard Analysis and Safety Requirements.
http://rtg.cis.upenn.edu/gip.php3, retrieved
7/20/2015.

[3] M. D. Harrison, P. Masci, J. C. Campos, and
P. Curzon. Demonstrating that medical devices satisfy
user related safety requirements. In 4th International
Symposium on Foundations of Healthcare Information
Engineering and Systems (FHIES2014), 2014.

[4] P. Masci, A. Ayoub, P. Curzon, M. D. Harrison, I. Lee,
and H. Thimbleby. Verification of interactive software
for medical devices: PCA infusion pumps and FDA
regulation as an example. In EICS2013, 5th ACM
SIGCHI Symposium on Engineering Interactive
Computing Systems. ACM Digital Library”, 2013.

[5] P. Masci, P. Mallozzi, F. L. De Angelis, G. Di Marzo
Serugendo, and P. Curzon. Using PVSio-web and
SAPERE for rapid prototyping of user interfaces in
Integrated Clinical Environments. In submitted to
Verisure2015, Workshop on Verification and Assurance,
co-located with CAV2015, 2015.

[6] P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi,
A. Gimblett, Y. Li, P. Curzon, and H. Thimbleby. The
benefits of formalising design guidelines: A case study
on the predictability of drug infusion pumps. Innov.
Syst. Softw. Eng., 11(2):73–93, June 2015.

[7] P. Masci, Y. Zhang, P. Jones, P. Curzon, and
H. Thimbleby. Formal verification of medical device
user interfaces using PVS. In S. Gnesi and A. Rensink,
editors, Fundamental Approaches to Software
Engineering, volume 8411 of Lecture Notes in Computer
Science, pages 200–214. Springer Berlin Heidelberg,
2014.

[8] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype
verification system. In D. Kapur, editor, Automated
Deduction — CADE-11, volume 607 of Lecture Notes
in Computer Science, pages 748–752. Springer Berlin
Heidelberg, 1992.


