
Towards Smart Railways: A Charging Strategy for
Railway Energy Storage Systems
Vítor A. Morais 1,∗, João L. Afonso 2, António P. Martins 1

1Department of Electrical and Computers Engineering, University of Porto, 4200-465 Porto, Portugal;
v.morais@fe.up.pt (V.A.M.); ajm@fe.up.pt (A.P.M.)
2Centro ALGORITMI, University of Minho, 4800-058 Guimarães, Portugal; jla@dei.uminho.pt

Abstract

The huge power requirements of future railways require the usage of energy-efficient strategies towards a
more intelligent railway system. The usage of on-board energy storage systems enables better usage of the
traction energy with a higher degree of freedom. In this article is proposed a top-level charging controller for
the on-board and wayside railway energy storage systems. Its structure comprehends two processing levels: a
real-time fuzzy logic controller for each energy storage system, and a genetic algorithm meta-heuristic, that
remotely and automatically tune the fuzzy rules weight. As global results, the reduction of regenerated energy
is 22.3% with the fuzzy logic controller. With the optimization strategy, this reduction can be further extended
to 28.7%. The need for a smart railway framework is also discussed towards a realistic implementation of
such charging strategy. Thus, with a high degree of flexibility, the efficiency of railway energy systems can be
increased with the proposed framework.

Received on 07 September 2020; accepted on 06 January 2021; published on 14 January 2021

Keywords: Energy Efficiency, Energy Storage Systems, Fuzzy Logic Controllers, Genetic Algorithms, Smart Railways

Copyright © 2021 Vítor A. Morais et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so
long as the original work is properly cited.

doi:10.4108/eai.14-1-2021.168136

1. Introduction
The development of next-generation electrical smart
grids is on a rise in past years, with the integration
of information technologies into the electrical system.
This leads to improved controllability, distributed
generation and controlled demand of such power grids.
These concepts are now being transported to the
railway sector, which comprises a special case of the
electrical power system, [1]. Specifically, the objective
of the power system is to provide power, whereas
the objective of the railway system is to transport
passengers and goods.

The railway electrification system is a particular case
of a power system, where most of the loads are trains
varying in space and time. Also, the interconnection
with power grid is made through Traction Power
Substations (TPS), usually heterogeneous power grids
(strong/weak grids), and the amount of power being
handled by each train can vary drastically in a few
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seconds (for example, a train arriving at a passenger
station, depends mostly on regenerative braking – if it is
possible – to immobilize the train; after a few seconds,
the train accelerates with full torque and power to
depart from the station), [1].

Railway transportation is considered one of the most
energy-efficient modes of transportation. According to
[2], the railway sector had a market share increase of
8.9% between 2005 and 2015 in the transportation of
passengers and goods in the European Union. From
the latest reports, the rail networks carry 8% of the
world’s motorized passenger movements and 7% of
freight transport, [3]. Besides, this market share is only
achieved with a final global energy consumption of 2%,
in comparison with other means of transportation.

Since trains are considered one of the most energy-
efficient modes of transportation and with the growth
from past years, it is necessary to bring the concepts
associated with electrical smart grids to this sector. This
paper extends the work in [4], where a charging strategy
for on-board Energy Storage Systems (ESS) is presented,
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having in focus a smart management of the railway
electrification energy flow.

The main objective of this paper is to present a
charging strategy for railway ESS, by proposing a two-
level hierarchical Energy Management System (EMS)
strategy using a Fuzzy Logic Controller (FLC) with a
Genetic Algorithm (GA). The objective of this approach
is to have a distributed processing architecture with
two levels: a local processing unit for real-time update
of the storage charging profile, based on real-time
measurements; and a remote central processing unit,
common to all trains, that optimizes the operation of
the local units. The proposed strategy is presented in
Fig. 1.

This paper will contribute to a new railway EMS
strategy based on a two-level hierarchical architecture.
This strategy is a generic one:

1. It is demonstrated for a case study of a single train
journey, but is compatible to have multiple input
variables for the local-processing unit;

2. It includes the usage of a GA to include multiple
optimization criteria;

3. It comprehends an automatic learning algorithm,
based on a database of results of the GA.

This decoupled operation allows the desired automatic
learning, based on the real-time operation of each train,
and sharing with all other trains the results of the GA
optimization.

This paper is structured into six sections. In the
following section is presented the scientific literature
review in the strategies for energy management in
smart railways. Then, in Sect. 3 is presented the
materials and methods used in this work (the FLC and
the GA). In Sect. 4 is covered the results, without and
with the optimization enabled, and later are discussed
the results. In Sect. 5 is presented and discussed
a conceptual implementation of such railway smart
charging strategy. Finally, in Sect. 6 are presented the
conclusions of this article.

2. Literature Review
A charging strategy for railway ESS inherits the
concepts of power management associated with the
development of the railway smart grid (RSG). The
Shift2Rail program identifies this vision, thought the
TD3.10 technical demonstrator, where "the detailed
mapping of energy consumption of a railway system
is mandatory for energy efficiency analysis and
management" where the knowledge of the power flow
will enable "global system load prediction, peak shaving
and energy cost optimisation" highlighting "the most
effective actions that could be implemented to give
energy savings" [5].

On-board Smart Railways Processing Unit

Fuzzy Logic Controller

powerInput (4)

storage (4)

convTemp (3)

chargProfile (5)

storageMgmt

(mamdani)
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Railway ESS Smart Charging Processing Unit

Genetic Algorithm
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Figure 1. Proposed two-level hierarchical architecture tor the
railway EMS.

2.1. Energy Management in Smart Railways

The research in this thematic has the work of [6]
as one of the first references to the inclusion and
demonstrative application of the smart grid concept
to the railway power and energy system, within the
Japan Railway Company. It was enabled the chance to
integrate bi-directional communication and advanced
computational features within the new components
of the RSG. The better usage of the regenerative
braking energy (RBE), as well as the availability of the
renewable energy sources (RES) and the energy storage
systems (ESS) are the drivers for the need of RSG.

In the 2014 work of Pilo et al. [1], is highlighted the
"vision for integration of the smart grid concept into
the railway system". Each supply station of a railway
track may be seen as a microgrid. The RSG concept
enables the potential use of RBE, ESS and RES, towards
multiple benefits in the railway system. The flexibility
of trains regarding the speed profiles allows the main
objective of this transportation system — the transport
passengers and goods according to a schedule — to be
compatible with the availability of all energy resources.
Therefore, new opportunities in energy optimization
and cost of energy optimization are open up.

From the outcomes of the MERLIN European
project1, an integrated EMS was investigated, with
the viability demonstrated with several publications.
Khayyam et al. [7, 8] firstly presented the Railway
Energy Management System (REM-S) concept and
architecture, where the contribution is in the demon-
stration that the railway systems are eligible to the
application of the Smart Grid concept, where three
objectives are listed: 1) Optimization of the energy
consumption, while keeping the fulfilment of the per-
formance requirements; 2) Optimization of the power
demand, by reducing, as an example, the peak power

1https://cordis.europa.eu/project/id/314125
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consumption (enhancing the electricity network capac-
ity); 3) Costs optimization with a more rational use of
energy.

The proposed automation architecture for the REM-S
is a hybrid centralized-distributed architecture model.
The REM-S must be based on the division of the system
into different zones, mostly due to the distributed
nature of the railway system as well as the size,
complexity and uncertainties. In this automation
architecture, each subnetwork of active entities of the
system is in contact with the central controller and
with the neighbouring subnetworks. Furthermore, the
architecture of REM-S comprises three operational
modes: 1) Day-Ahead Optimization; 2) Minutes-Ahead
Optimization; and 3) Real-Time Operation.

Several works have been published based on the
REM-S. In [9], is presented a proposal for the applica-
tion of the RMS-E in the Spanish railway, with a focus
on detailing the communications infrastructure. Flek et
al. [10], focus on the presentation of the methodology
for the Day-Ahead Optimization algorithm. It targets
the interaction with the power grid and the partici-
pation in the energy market. Furthermore, the time
intervals considered by the DAO will be compatible
with the time-step in energy trading at the electricity
market. The DAO algorithm proposed by Flek et al. [10]
considers two steps. In the first step, the optimization
objective is to find the best solution considering cost
and power peak optimization criteria, using a GA.
Then, the RESS are evaluated and further optimized.
The proposed algorithm was successfully applied to
real scenarios of railway tracks in France and Spain.
Later in 2018, Khayyam et al. [11] further tested the
real-time online operation on a Spanish railway line for
a few hours. The study focus on comparing the REM-
S operation in offline and online modes. Then, Razik
et al. [12] specify the prototype implementation of an
advanced automation architecture designed to operate
the railway electrical systems as a cyber-physical sys-
tem. The algorithms for the Real-Time Operation level
of the REM-S are comprehensively presented.

Other contributions also tried to solve the energy
management problem in railway systems. A practical
strategy to transfer power between sides of neutral
zones achieving up to 31 % in cost reduction was
proposed in [13]. In [14, 15] is presented a solution
to recover braking energy in DC lines to be used in
non-railway applications (proposing hybrid-buses as an
example).

Two-level hierarchical EMS were proposed in [16],
[17–19], [20] and [21]. In [16] is proposed a hierarchical
two-level EMS to charge wayside ESS, having an FLC
to manage in real-time the net balance of the power,
and a GA as an ultimate optimization strategy having
the predictions and the cost of electricity as a reference
for the FLC (the generated reference will be an extra

input variable of the FLC). In [17–19] is introduced
a hierarchical structure for the RSG comprising two
levels, and were able to achieve up to 45 % cost
reduction and 40 % reduction on energy consumption,
for a case study with an actual rail route and trains of an
existing commercial brand. The paper in [20] proposes a
two-level EMS considering a day-ahead dispatch and an
intra-day feedback correction. In [21], the AC railway
with RES and ESS is targeted to be managed by a
two-level hierarchical management structure, having
not only to optimize the energy consumption but also
to provide power quality by reducing the negative
sequence currents and to contributing to reactive power
compensation.

Generic optimization strategies for railway EMS were
also proposed in [22], [23], [24], [25], [26] and in the
PhD thesis of [27]. In [22], an optimal scheduling
approach of substation integrated RES, RBE, and hybrid
ESS was proposed, and the achieved costs and energy
savings for a realistic case study were 33.2% and 9.6%,
respectively. In [23] the proposed EMS considers several
case studies to take into consideration the uncertainties
associated to the PV generation, to the variation of
the number of passengers and the initial State of
Charge (SoC) of the ESS, reaching a reduction of 35
% in the cost of daily energy consumption. In [24]
is evaluated the feasibility of integration PV power
plant and a super-capacitor ESS in a railway power
system, in a real tramway electric system, having a
random optimization procedure for the EMS. In [25]
is presented a comparison between two real metro
lines, in Italy and in Spain, where the excess of energy
resultant from the regenerative braking is used to
charge electric vehicles, and it was estimated that
between 685 and 1000 EVs could be charged every
day using the wasted braking energy for, respectively,
the considered Spanish and Italian lines. In [26] is
proposed an EMS on top of a railway power quality
compensator (RPQC) capable of having ESS and to be
implemented in the TPS and in the neutral zones, with
a centralized-decentralized management architecture.
In [27] is proposed optimization algorithms to design
the optimal installation of reversible substations and
energy storage systems, to maximize the use of energy
coming from regenerative braking.

2.2. Railway Power Systems
The railway system has huge power requirements,
which leads the railway operators to focus their efforts
to increase energy efficiency and reduce the energy
consumption bill. Modern trains can enhance the
energy consumption with the usage of power electronic
devices, which allow bi-directional power flow and, as
an ultimate goal, the regeneration of energy due to the
braking, [28].
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From the data from [29], a typical train power
consumption has the profile presented in Fig. 2a).
In Fig. 2b), visible a huge dispersion of the power
consumption/regeneration, which is caused mostly by
the needs to guarantee a given journey timetable, and
in this case, stop in every passenger station.

According to EN 50388-1, [30], the train operator can
inject the excess energy in the railway electrification
system, as long as limit voltage levels are not achieved.
However, in certain situations, the regenerated energy
cannot be returned to the Transmission/Distribution
System Operator TSO/DSO. Therefore, in these cases,
most of the regenerated energy must be dissipated in
the train rheostatic system and the billed energy will
not be the blue graph of Fig. 2c), being the red graph.

According to [31], in the worst case where the
headway between trains is big, almost all of the
regenerated energy will not be absorbed by another
train, and it will result in around 60% of energy losses.

Therefore, in similar conditions, there is a need to
minimize the regenerated energy without affecting the
train dynamic characteristics. One way to achieve this
is with the use of railway Energy Storage Systems.

2.3. Railway Energy Storage Systems
Ideally, when it is not possible to inject the regenerated
energy into the main grid, the most effective way to
increase the global efficiency of traction systems is to
use the regenerative braking energy to feed another
train in traction mode (and absorbing the totality of the
braking energy), [32]. However, this solution requires
an excellent synchronism and a small distance between
“in traction mode” and “in braking mode” trains.

Therefore, in the occurrence of small delays, the
regenerative energy cannot be used by another train and
can be dissipated in the train rheostatic system or, if
possible, can be returned to the DSO, [33].

The usage of regenerative braking energy to charge
ESS is one effective way to increase the global efficiency
of traction systems, [28, 33]. However, due to the high
cost of ESSs, alternatives such as reversible TPS result
in a higher cost-effective solution [34].

Nevertheless, onboard ESS are the most commonly
used solution for a catenary-free system, [35]. Besides,
to the best knowledge of the authors, wayside
ESS research only considers the acquisition cost of
infrastructure having the totality of ESS, without
considering the possibility of not including batteries (or
other storage technology).

In the future, it will be possible and needed to
have Electric Vehicles (EVs) charging stations located at
passenger stations, as previously reviewed. Therefore,
in theory, it is possible to connect the charging
stations to the catenary and increase the degree of
freedom in the EVs charging strategy. This way, having
this possibility, the wayside ESS can now be a cost-
effective solution, having multiple charging objectives.
Also and fortunately, the higher demands for power
consumption and regeneration occurs in the vicinity of
a passenger station, which leads this location to be a
point of interest for such wayside ESS.

In this paper, an ESS multiple-objective charging
strategy is proposed based on FLC with GA optimiza-
tion. This charging controller considers onboard ESS, as
a case study, but it can be extended to wayside ESS.

2.4. Optimal Charging Strategy of ESS
The management of ESS charging system is a research
topic in smart grids. Usually, the optimal charging
strategy is based on the scheduling of charging profiles,
using the knowledge of a predicted load profile, [36].

However, due to the high variation of the railway
energy consumption resulting in a relatively difficult
task for energy consumption prediction, the scheduling
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Figure 2. Details on a train journey power flow: a) Power consumption/regeneration for a sub-urban train journey; b) Histogram of
train power flow; c) Train energy consumption.
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of the charging profile is not an option. In this work,
optimal charging strategies without scheduling are
explored to be implemented in an ESS system, where
the charging controller decides in real-time the energy
flow.

A multi-objective system using an FLC for energy
management, as proposed in [37] and extended in
[38] and in [39], is a real-time charging strategy,
with the rule weights and Membership Function (MF)
parameters being the search space of the optimization
algorithm.

Since the performance of a fuzzy system is more
dependent on rule weights rather than MF parameters
[40], in this work the MF parameters are fixed and were
defined upon the authors’ knowledge of the system
(please see subsection 3.1 for further details). The
search space of the GA is, therefore, the adjustment of
the rule weights.

Based on [38], there are two possible objectives for the
charging strategy: (i) the financial objective function,
purely based on the cost of buying/selling energy in
different times; and (ii) the battery stress level, to
represent the physical degradation of the battery.

In this work, the financial objective is related to the
energy consumption/regenerated, whereas the battery
stress is dependent on the square value of the current
of the ESS charging converter (later called converter
temperature).

3. Materials and Frameworks
As previously stated, this approach is an extension
of the work in [4]. In this section is presented
the methodology and tools used to support the
proposed on-board railway charging strategy, where the
development repository is accessible2.

This strategy requires that trains will contain an
energy storage unit, as illustrated in Fig. 3.

In Fig. 3 is presented an AC 1x25 kV electrification
scheme, which is the system under study in [29],
having the sub-urban trains with a nominal power
consumption of 1.4 MW. However, this work targets
any type of train, as long as it has capabilities
for regenerative braking operation. Furthermore, the
technology and power electronics topology and control
solution to implement such an ESS is not the focus of
this work. It was considered that the traction converter
has the DC bus accessible and it is considered that
train has enough physical space to include a bi-
directional power converter, batteries of some sort of
technology and all the auxiliary elements to ensure
proper operation (battery management systems, safety
apparatus, among others).

2Repository: github.com/vitormorais/railway_charging_ESS.

M

Figure 3. Illustration of the on-board train ESS.

Having these elements into consideration, the results
of this article were obtained with an arbitrarily chosen
hypothetical and generic ESS hardware. Specifically, the
power capabilities of the ESS was set to have 350 kW
of charging/discharging maximum power (25% of the
train power consumption) and 35 kWh of stored energy
(6 minutes to fully charge the ESS when the charging
profile is constant and with an absolute per-unit (p.u.)
value). Regarding the efficiency of the ESS, recent
research on railway ESS has established the efficiency
for battery ESS to be 80%, and the efficiency of the
super-capacitor ESS is 98% [20, 41]. It is reasonable
to consider in this study a unitary efficiency for the
ESS if recent technological advancements on super-
capacitors and in silicon carbide (SiC) transistors are
taken into consideration, and if the focus of this study is
on the capabilities of the FLC and the GA optimization
algorithms.

Regarding the charging strategy, this comprises two
levels of processing: a real-time FLC which generates
references for the ESS Power Converter; and an
optimization GA, running in off-line, which increases
the energy efficiency of the global ESS.

The architecture for such a charging strategy is visible
in Fig. 4

Specifically, the GA optimizer generates a fuzzy rule-
set corresponding to the optimal operation of a specific
train consumption profile. Then and in real-time, the
FLC adapts the power of the train ESS Power Converter,
resulting in the charging or discharging of on-board
batteries.

3.1. Proposed Fuzzy-Based Charging Optimization
Strategy
In this subsection, the proposed fuzzy-based charging
strategy is detailed. The main core of the energy storage
control system is a Mamdani FLC, proposed in [42],
having the structure illustrated in the Fig. 5a.

The FLC has multiple inputs (the train power flow
value, the ESS State of Charge (SoC) and a variable
representing the temperature of the ESS) and one
output (the set point for the ESS power flow). From
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Figure 4. Integration of FLC + GA charging strategy with the
train on-board ESS hardware.

Fig. 5b to Fig. 5e is illustrated the FLC membership
functions for the input and output variables.

The first input is the power consumption of the train
and it can be categorized as consumption (if the train
is in the traction mode and the energy flows from the
catenary to the wheels) or categorized as regeneration
(if the train is in braking mode and the regenerated
energy from the motors flows back to the catenary). The
second input is the onboard ESS SoC and corresponds
to 100% if the system is fully charged or 0% if the
system is fully discharged (considering those values
the absolute maximum/minimum voltage values, and
considering that reaching SoC values above 80% and
below 20% should be avoided by the controller). To
promote a reasonable usage of the ESS, a third variable
is proposed. This variable mimics the semi-conductors
heating and the battery state of health and is a quadratic
function of the charging power.

On the FLC output, a variable is proposed to define
the ESS charging profile, in an absolute p.u. value.

In this work, the FLC is tested with a testbed in
which a near 70-minute train journey is considered.
The train power consumption presented in Fig. 2 is the
independent input of the testbed. The objective of the
proposed testbed is better clarified in Fig. 6.

The SoC and the converter temperature depend
on the previous result of the FLC output variable.
Iteratively for each time instant, the stored energy
and the ESS temperature variables are calculated from
previous values, following the Fig. 7

The KESS constant defines the storage capacity and
the charger design limitations. The Ktemp and the Kdissip
represents the temperature increase of the ESS, as a
quadratic function of the power, and a dissipation factor

(a) Structure of Fuzzy Logic Controller
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(d) Input converter temperature membership functions
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(e) Output charging profile membership functions
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Figure 5. Implemented fuzzy logic controller: (a) Structure of
controller; (b) MF of train power consumption input variable; (c)
MF of ESS state of charge input variable; (d) MF of converter
temperature input variable; (e) MF of charging percentage of the
ESS output variable.
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Figure 6. Illustration of the testbed: at each time instant, the
train power consumption is used together with state of charge
and temperature to generate a charging profile; then from the
generated charging profile, the SoC and the ESS temperature
are updated.

to promote the temperature reduction. In this work, no
effort was made to use a specific ESS system and these
values were arbitrarily chosen.

To ensure the physical limits, the input variables
are limited by its admissible maximum and minimum
values and, in the case of the occurrence of over-
temperature, over-charge or over-discharge events, the
charging profile value is changed to avoid those events.
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Figure 7. Detail on the calculation of the ESS Temperature and
ESS SoC.

Regarding the FLC rule-set, in this work, these rules
were manually defined from the expected behaviour of
the system. Specifically, 17 different rules were defined
based on the relevant combinations of input MF and
output MF, being presented in Table 1 (please refer to
MF from Fig. 5b to Fig. 5e for the physical meaning of
each rule-set). The weights of the FLC rule-set is in this
work, is an array starting with a value of 0.5, and this
array can be adjusted by an optimization algorithm, as
explained in the following.

3.2. Proposed Meta-Heuristic Rule Weight
Adjustment
As a way to define the fuzzy rules, human knowledge
is a good starting point to obtain a charging strategy
for the FLC. In this section is proposed a GA as a meta-
heuristic to define the weights of the fuzzy rules, having
an objective function as the optimization criteria.

Therefore, each individual of the GA population will
have an array of 17 weights (genes) and a value for its
objective function that will be obtained in the FLC for a
given testbed. The crossover process considers the best
individuals and a new individual is generated having
part of the genetic material from the parent individuals.
The mutation considers the random increase/decrease
of certain genes. If a gene from the previous generation
has changed, in the mutation, it has a higher probability
to increase/decrease accordingly. The algorithm for the
implemented GA is presented in Algorithm 1.

The initial population is generated from five
individuals having the weights defined from human
knowledge in the previous section. Furthermore, 30
new individuals were generated as mutations from

Algorithm 1: Fundamentals on GA meta-
heuristics.

1 Generate the initial population
2 Compute fitness
3 while population has converged OR max

generations do
4 Selection
5 Crossover
6 Mutation
7 Compute fitness
8 end

those individuals. The integration of this GA in the FLC
rule-set weight adjustment can be better explained in
the Fig. 8.

After each FLC rule-set weight is tested, for a time-
series array of train power consumption, this results in
three time-series arrays of ESS SoC, Temperature and
the Charging Profile. Also, the energy at pantograph
(consumed and regenerated) is calculated using the
train power consumption and ESS charging profile
time-series arrays. From these arrays, four partial
metrics are extracted:

• The RMS value of the graph of converter
temperature;

• The RMS value of the resultant charging profile;

• The difference between the initial and the final
value of the ESS SoC;

• The final value of the regenerated energy.

As optimization criteria, it is considered the objective
to avoid peak values in the first two metrics (avoiding
high stress on the ESS, by having a high square value
of the charging profile). In the remaining metrics, the
optimization objective is to minimize the difference
between the final and initial values of SoC and
to minimize the difference between the regenerated
energy without and with the ESS.

In the design of the global objective function metric,
all four metrics are considered, having arbitrarily
defined weights to better fulfil the expected behaviour
of the system (in terms of convergence speed, the
stability of the GA, intuition, etc.). Therefore, to
obtain the results presented in Sect. 4, the converter
temperature and charging profile metrics, have received
small weights, and the SoC variation and global energy
reduction have received a higher weight (with the global
energy reduction tuned to rapidly reduce this metric).

4. Results and preliminary discussion
In this section is presented the results of the proposed
methodology. Specifically, is illustrated the results for
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Table 1. List of fuzzy rules with the initial weights.

RULE Weight

1 If ((powerInput is regen)) then (chargProfile is highCharg) 0.5
2 If ((powerInput is highConsumpt)) then (chargProfile is highDischarg) 0.5
3 If ((storage is high)) then (chargProfile is highDischarg) 0.5
4 If ((storage is dischar)) then (chargProfile is highCharg) 0.5
5 If ((powerInput is null)) and (storage is high) then (chargProfile is lowDischarg) 0.5
6 If ((powerInput is null) and (storage is med)) then (chargProfile is null) 0.5
7 If ((powerInput is null) and (storage is low)) then (chargProfile is lowCharg) 0.5
8 If ((powerInput is lowConsumpt) and (storage is high)) then (chargProfile is null) 0.5
9 If ((powerInput is lowConsumpt) and (storage is med)) then (chargProfile is null) 0.5

10 If ((powerInput is lowConsumpt) and (storage is low)) then (chargProfile is lowCharg) 0.5
11 If ((convTemp is hot)) then (chargProfile is null) 0.5
12 If ((powerInput is regen) and (convTemp is cold)) then (chargProfile is highCharg) 0.5
13 If ((powerInput is highConsumpt) and (convTemp is cold)) then (chargProfile is highDischarg) 0.5
14 If ((storage is high) and (convTemp is cold)) then (chargProfile is highDischarg) 0.5
15 If ((storage is dischar) and (convTemp is cold)) then (chargProfile is lowCharg) 0.5
16 If ((convTemp is med)) then (chargProfile is lowDischarg) 0.5
17 If ((convTemp is med)) then (chargProfile is lowCharg) 0.5
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Figure 8. Illustration of the integration of GA in this work.

the application of the GA for the proposed evaluation
testbed. This testbed corresponds to the power of a train
journey through 22 passenger stations, as illustrated in
Fig. 9.

Later, this methodology is evaluated and discussed.

4.1. Preliminary Knowledge of System Behavior
The following results present the testbed evaluated
with the 17 known rules. For different generations

(throughout the evolution of the GA) and the same
independent power consumption input (Fig. 10a), in
Fig. 10b is illustrated the evolution of stored energy;
in Fig. 10c is presented the evolution of the charging
profile and in Fig. 10d is visible the evolution of the
converter temperature. (Note: these illustrations are
visible with different coloured plots).

At each generation, 40 new individuals are generated
from the previous population, where 25 of the
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Figure 10. Evolution of testbed variables, in order of time,
for different meta-heuristic generations of fuzzy rule weights:
(a) Power consumption for one journey; (b) Stored energy; (c)
Charging profile; and (d) Converter temperature.

individuals result from crossing the genetic material
(the weight of FLC rules) from the previous generation
and the other 15 as result from mutations on the
population. Between generations, only the five best
individuals are eligible to pass to the next generation.
The evolution of the objective function is presented in
Fig. 11.

Figure 11a shows the evolution of individual
objective functions, and by providing different weights
for each of the metrics, following the expression in (1),
a global objective function is presented in Fig. 11b.
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globalOF =
√
mean(TESS − Tambient)2 × 0.06 × 0.04

+
√
mean(ChargP rof ile)2 × 3 × 0.2

+ |SoC[end] − SoC[init]| × 1 × 0.5

+ (ratio with/without ESS) × 0.6 × 5
(1)

Each of the individual objective functions was
adapted to result in a near-unitary value, with the
product by the weight in bold in expression (1). As an
example, in the first line of the equation regarding the
ESS temperature, if the ESS is in average 20◦C above the
ambient temperature, this part of the objective function
will be almost unitary. The non-bold gains were defined
manually, by viewing the evolution graph (as example,
visually, the global energy must reduce and the ESS SoC
must be near zero; the other should be kept contained)
and adapting them accordingly.

Specifically, Fig. 11 illustrates the weights of all
individuals of the same generation, plotted with “+” in
the graphs, having the best individual of a generation
highlighted with a square (in Fig. 11b).

For each rule, the FLC rule weights evolution for 200
generations are presented in the heat map graph of
Fig. 12.

From the previous heat map result, certain rules
will contribute more to the expected optimality. As
an example, the heuristic algorithm will increase the
weight of rules 1, 3, 6, 8 and 14, and reduce the weight
of remaining rules, to achieve the desired lower value of
the objective function.

This can be also visible in Fig. 13, with the
modification of the FLC rule surface. As an example,
higher values for charging profile are achieved for
higher values of regenerative power and for a more
discharged battery.

4.2. Evaluation of Energy Optimization
In Fig. 14 is presented the comparison of the train
journey energy consumption/regeneration for the three
possible cases in the study:

• A train without onboard ESS, in Fig. 14a;

• A train with ESS, with a FLC charging controller
but without fuzzy weights optimization (only
with the 17 known rules having the same
weights), in Fig. 14b;

• A train with onboard ESS, with the charging con-
troller based on FLC, using the GA optimization
criteria over the 17 known rules, in Fig. 14c;

In Table 2 is summarized the comparison of the train
energy for the three cases in the study: the inclusion or
not of the onboard ESS and the inclusion or not of the
optimization procedure.

4.3. Discussion
From the results in Table 2, globally, a maximum
near 28.7% of reduction on the regenerated energy is
achieved, as well as a reduction of 9.5% of energy
consumption.

As a baseline, the simple usage of FLC without
any optimization results in 22.3% in the reduction of
regenerated energy. The utilization of GA requires only
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Table 2. Energy optimization results.
Train energy

Consumption Regeneration

kWh % kWh %

Without ESS 273.5 100 93.9 100

With ESS, with known rules, without GA optimization 254.4 93.0 73.0 77.7

With ESS, with known rules, with GA optimization 247.4 90.5 67.0 71.3

-0.5

-0.4

-0.3

0

-0.2

-0.1

0

0.1

-1

ch
ar

g
Pr

of
ile

 (
p
.u

.) 0.2

0.3

0.4

0.5

-0.5

storage (p.u.)

0.5

powerInput (p.u.)

0

0.5
1 1

ch
ar

g
Pr

of
ile

 (
p
.u

.)

-0.5

-0.4

-0.3

0

-0.2

-0.1

0

0.1

-1

0.2

0.3

0.4

0.5

-0.5

storage (p.u.)

0.5

powerInput (p.u.)

0

0.5
1 1

(a) FLC rule surface before GA optimization

(b) FLC rule surface after GA optimization
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computational processing power, and it ultimately can
achieve 6.4% in the reduction of regenerated energy.
This is of advanced interest since without adding more
ESS elements or increasing the power capabilities of the
converter, it is possible only with software to achieve a
more optimal point of operation.

It should be highlighted that this proposal is very
flexible, either in considering more input variables
for the FLC and in considering other optimization
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Figure 14. Comparison of train energy consumption/regeneration
graphs.

strategies (other meta-heuristics, such as simulated
annealing, tabu-search, or other algorithms, such as
neuro-fuzzy, neural networks, etc).

As an example, the catenary voltage level, measured
in train pantograph, could be an important input
variable for the FLC. The catenary voltage provides a
good image of the state of the system. Clearly, the rules
should be easy to be defined: “if the catenary voltage is
low, then the ESS should discharge; otherwise, it should
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charge". Another variable can be train speed. This
variable provides information for near-future energy
needs: "if the train is stopped, then it most likely
requires high demand for power in near future, for the
departure; of the speed is high, then it might be needed
to be stored a high amount of energy in the ESS".

However, this is strongly dependent on the train
position and on the operation conditions of other trains.
Therefore, it is essential to have a broad picture of
the electrification system, through a power-flow system
state analyser. Such analyser requires that each train
reports in real-time the data from energy meters to a
remote metering database.

The obtained results also depend on the ESS
technology. The chosen unitary efficiency has led to the
presented results and it should be considered lower
improvements in energy efficiency depending on the
ESS technology. However, with the consideration of
super-capacitors and SiC transistors that can lead to an
efficiency of 98%, the expected results must be closer
to the obtained ones. Future research directions are
possible with the study of the case study for different
parameters (different capacities for ESS, different
ratings, different efficiency values, etc.).

In the following section is discussed a practical
implementation of the proposed methodology in a
smart railway framework.

5. Smart Railway Framework
As previously discussed, the presented charging
strategy considers a specific train journey. However, for
a practical implementation, a smart railway framework
must be considered, as illustrated in Fig. 15.

The hardware for onboard ESS is coupled in each
train DC bus. The references for the charging profile
came from the “Onboard Smart Railways Processing
Unit”, which is a computational platform that reports
data from each train to a remote processing unit
(represented in Fig. 15 by the cloud) and receives
setpoints to improve the energy efficiency.

This cloud-based strategy has been explored in [43],
where the knowledge of the electrification power flow
is required for the necessary setpoints and a fast
communication link provides better actuation.

This generation of FLC rules is performed remotely
by the GA, and it must be based on the result of on-
board train prediction algorithm: each train generates
a prediction, then it compares this prediction with a
database of predictions and finally, it updates the FLC
rule-set. This strategy is better explained in Fig. 16.
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Figure 15. Smart railways framework to support the railway on-board charging strategy for multiple trains.
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FLC rule set Database

...

Genetic Algorithm
Optimizer

Figure 16. Strategy for real-time operation of on-board smart railways processing unit.

As an example, if the prediction algorithm is capable
to generate a one-minute prediction of the train power
consumption, then this array of predictions is compared
to a database of previously generated FLC rule-sets.
The comparison is performed through the Root Means
Square Error (RMSE): the prediction is compared with
all arrays in the database, in a 1×N approach (where
N is the size of the database); then the arrays are
ordered and the one having the lower RMSE is selected
(specifically, the previously processed FLC rule-set is
selected, correspondent to the lower RMSE). It should
be noted that this comparison procedure can be fast
(as an example, the RMSE comparison of a 1000 points
prediction array with a database of 10 000 elements
takes around 0.2 s in a modern computer).

Besides, if the predicted power consumption is quite
different from any of the elements in the database —
the lower value of the comparison RMSE is higher than
a minimum RMSE — then the train sends the predicted
value to the cloud, and the GA will generate a new
fuzzy rule-set for the corresponding array. Finally, this
is sent back to all trains (considering that all trains have
similar ESS device).

In Fig. 17 is illustrated exactly how the information
should flow between the two sides.

This proposed charging strategy can also be included
in wayside ESS. In this, it is needed a real-time
evaluation of the state of the system. Therefore, it is
required that every train has onboard energy meters

and these measurements must be transmitted in real-
time to a remote database, wherewith such information,
is possible to calculate the power flow in the railway
electrification.

With this remote power flow analysis and measure-
ments, the wayside can take advantage of the excess of
energy injected by each train when they are operating in
regenerative braking. Also, the opposite is viable, where
the wayside railway ESS can support the departure
of trains when their demand is nearly the maximum
available torque and power.

In Fig. 18 is illustrated a particular case of
wayside ESS, specifically the electric vehicles parked in
passengers station parking lot.

In the example of the Fig. 18, the wayside ESS
comprises a passenger parking lot, having electric
vehicle chargers where the energy for this chargers
comes from the catenary. The passenger stations are the
points on the line where, naturally, the train mostly
needs to brake and accelerate. Therefore, this place is
a point of interest to have the power injection. The
flexibility of the proposed two-level hierarchical energy
management strategy is now demonstrated.

6. Conclusions
The initial approach of a storage charging controller,
focused on multiple optimization criteria, and applied
to railway transportation systems, is presented here.
The proposed strategy is a two-level hierarchical EMS,
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Figure 17. Illustration on the information flow between local and remote processing units.

where the real-time processing level is ensured by a
fuzzy logic controller and the higher-level is responsible
for the optimization through a genetic algorithm. This
optimization strategy combines the knowledge of the
expected behaviour of the system, by manually defining
the rules of a fuzzy logic controller and, later, a meta-
heuristic is used to adjust the weight of the fuzzy rules.

The contribution of this paper was partially demon-
strated in the first part of this paper, with a case study of
a single train journey. The focus of this work was to val-
idate that a feasible charging solution having multiple
input variables can be easily implemented with an FLC.
This charging solution can result in the high reduction
of the regenerated energy (near 22.3% in the presented
case study). Later, as an optimization strategy, a meta-
heuristic can achieve 6.4% of regenerated energy reduc-
tion, on top of baseline.

With the demonstration of the feasibility of the
solution for a single train journey case study, the
second part of this paper tries to clarify, with a
conceptual discussion, the integration of the proposed
algorithms into a smart railway framework for energy
management. In here are addressed questions regarding
the need to have prediction models in train on-board
processing units, and the need to hold a database on
the results of the GA outcomes. The big advantage
of the proposed algorithm is the ability for automatic
learning.

With the discussion on the solution, further research
directions have emerged. First, the prediction of the
train state is needed to better adapt the real-time

operation of the FLC. Then is required a power system
state analyser, that is capable to generate the knowledge
on the global railway electrification state. This task is
computationally demanding since not only it requires
the collection of all power consumptions of all trains, as
well as their geographical positions, but also, it needs to
automatically calculates the power flow in the catenary.
Not only this task performs the calculation for the
instantaneous time-stamp, but also for the prediction
time window.

A reliable communication link is also required
for the operation of the proposed strategy. With
a well-designed software solution combined with
faster computational resources and with a faster
communication link, it is enabled the operation of this
energy management system with good performance.
The lower the latency between the data acquisition and
the decision, the better the operation of this strategy.

The valid demonstration of the proposal together
with the relevant scientific contributions leads to the
conclusion that with a smart railway framework it is
possible to increase the railway energy efficiency, with
a high degree of flexibility.
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