
Caching Techniques for Security Metadata in
Integrity-Protected Fabric-Attached Memories
Mazen Alwadi∗, Amro Awad

University of Central Florida, Electrical and Computer Engineering Department, Orlando, FL, United States

Abstract

The constant need for larger memories and the diversity of workloads have drove the system vendors
away from the conventional processor-centric architecture into a memory-centric architecture. Memory-
centric architecture, allows multiple computing nodes to connect to a huge shared memory pool and
access it directly. To improve the performance, each node uses a small local memory to cache the data.
These architectures introduce several problems when memory encryption and integrity verification are
implemented. For instance, using a single integrity tree to protect both memories can introduce unnecessary
overheads. Therefore, we propose Split-Tree, which implements a separate integrity tree for each memory.
Later, we analyze the system performance, and the security metadata caches behavior when separate trees
are used. We use the gathered insights to improve the security metadata caching for the separate trees and
ultimately improve the system performance.

Received on 16 June 2020; accepted on 07 July 2020; published on 11 August 2020

Keywords: Fabric-Attached Memory, Secure Memory, Memory-Centric, Encrypted Memory, Integrity Tree

Copyright © 2020 Mazen Alwadi et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.13-7-2018.165516

1. Introduction
The continuous growth in large-scale computing, data-
centric workloads, and the proliferation of virtual
machines points to the need of greater memory capac-
ities. Moreover, with the huge spectrum of workloads
diversity and memory requirements, increasing the
memory capacity of each computing node can lead to
highly under-utilized memories [21]. Therefore, Fabric-
Attached Memory (FAM) architecture are becoming
more desirable. FAM architectures allows computing
nodes to seamlessly connect to a huge memory pool. In
FAM architectures, a memory semantic protocol defines
how different processing elements can interact with
the memory through the system fabric. Gen-Z [3] is a
prominent example of FAM protocols, where different
processing agents (can be from different vendors) are
directly attached to a shared fabric that connects to one
or more different memory pools. Each memory pool
implements its own media controller that translates
Gen-Z commands into media-specific read and write
operations. Processing elements must use the Gen-Z

∗Corresponding author. Email: mazen.alwadi@knights.ucf.edu

command format and standards to be able to access
the fabric-attached memory. While Gen-Z is perhaps
the de facto standard for FAM architectures, many new
protocols advocate for similar directions, e.g., Compute
Express Lanes (CXL) [2] and Cache Coherent Intercon-
nect for Accelerators (CCIX) [1]. Such protocols intro-
duce a new architecture where processing elements can
access the shared memory pools without going through
home processor as in conventional system architectures
such as NUMA systems. As FAM architectures are
expected to have huge memory pools, using DRAM as
the main memory can be problematic due to the expen-
sive power required for the frequent refresh operations
and cooling. Therefore, FAM architectures are expected
to use emerging Non-Volatile-Memories (NVM) as the
main memory [3].

Emerging NVMs are promising replacement for
DRAM in future computing systems [17, 18, 20].
Such NVMs feature high-density, ultra-low idle power,
performance comparable to DRAM and persistency.
On the other hand, NVMs have a limited write
endurance and power consuming writes. Moreover,
NVMs ability to retain data during power loss facilitates
data remanance attacks. Therefore, NVMs are typically

1

EAI Endorsed Transactions
on Security and Safety Research Article

EAI Endorsed Transactions on
Security and Safety

06 2020 - 03 2021 | Volume 7 | Issue 24 | e1

http://creativecommons.org/licenses/by/3.0/
mailto:<mazen.alwadi@knights.ucf.edu>

Mazen Alwadi, Amro Awad

coupled with security features i.e, encryption and
integrity verification [5, 7, 8, 30, 31, 33, 34]. While
the secure memory implementations are not limited to
NVMs due to similar data remanance attacks performed
in DRAM i.e., cold boot attack [32], our work is not
limited to NVMs as well.

Secure memory implementation in state-of-the-
art work [7, 11, 28–31, 33, 34] uses counter-
mode encryption to protect the data confidentiality
and Merkle-Tree for integrity verification. Enabling
security metadata can lead to significant performance
overheads, as each memory access requires accessing
the corresponding encryption counter and possibly
the whole Merkle-Tree branch. Reading/Updating a
cacheline can lead to tens of Merkle-Tree reads/writes,
which grows as the size of the protected memory
region increases. Typically, security metadata caches
are used to reduce the required memory accesses for
encryption/decryption and integrity verification [19].
Previous work in secure memory architecture [7, 28–31,
33] considered a system that has a single memory pool
protected by a single Merkle-Tree. However, each node
in the FAM architecture has an access to a private local
memory, and a global shared memory. While the global
memory is shared between computing nodes, the nodes
are not necessarily sharing data or the same memory
region, as each node can be assigned to different region
(i.e., within the same 1 TB). Therefore, using a single
Merkle-Tree can introduce unnecessary overheads.

Using a single Merkle-Tree requires the tree to protect
the local memories as well as the global memory.
Which can lead to updating the Merkle-Tree each
time a local memory cacheline is written. Taking
the atomicity requirement into consideration, a single
cacheline update requires updating the whole Merkle-
Tree branch alongside with the updated cacheline. This
atomic update process will require locking the whole
Merkle-Tree branch until the update is finished, which
can prevent other processing elements from accessing
the affected Merkle-Tree nodes until the update is
finished. Moreover, such approach will enforce the
local memory to operate as a write through cache, as
each write needs to update the global memory data
and its associated security metadata. Thus, Split-Tree
implements two different Merkle-Trees.

Having two separate Merkle-Trees improves the
system performance and reduces the number of
memory accesses required for integrity verification.
Since the local memory is significantly smaller than
the global shared memory, the Merkle-Tree protecting
the local memory is smaller and contains less levels.
Moreover, having a separate Merkle-Tree for the local
memory eliminates the need to update the global
memory Merkle-Tree when a local memory cacheline is
written, the global memory Merkle-Tree is only updated
when the data is written back to the global memory.

On the other hand, having two separate Merkle-
Trees can affect the system performance, especially
in terms of metadata caching. For instance, having
a large Merkle-Tree protecting the nodes’ portion of
the global memory can generate high demand over
the shared security metadata cache. While the global
memory has access latencies higher than the local
memory, thus caching security metadata related to
the global memory can potentially eliminate several
requests to verify the integrity of a global memory
resident data. On the other hand, the local memory
is accessed more frequently than the global memory.
Therefore, caching the local memory Merkle-Tree nodes
can reduce multiple requests to the local memory,
which happens more often than the global memory
accesses. In this work, we study the problem of secure
memory implementation in FAM architectures, and
propose using a Split-Tree scheme to protect the local
and global memories. Moreover, we propose a caching
scheme that allows caching the global memory security
metadata in the local memory, and partitions the
security metadata cache to reduce the contention over
the security metadata cache.

2. Related Work
Secure memory implementation has been studied from
different perspectives by variety of studies. Osiris [30]
discussed the crash consistency problem of secure
NVMs, and highlighted that a power failure or a
crash can result in having stale encryption counters,
which can lead to integrity verification failure, and
thus losing the whole memory content. Osiris proposed
a scheme to recover the encryption counters after a
crash, which relies on a stop-loss mechanism coupled
with using ECC bits as a sanity check for the
recovered counter correctness. Anubis [33] addresses
the recovery time problem in secure NVMs. Anubis
emphasizes that recovering the encryption counters
is not always sufficient to recover the integrity tree.
Moreover, rebuilding the integrity tree can take hours
for practical size NVMs. Therefore, Anubis proposed
a scheme that tracks the updated security metadata
cachelines in the cache. During the recovery phase,
Anubis relies on the tracking mechanism to pin-point
the lost data and recover it. Phoenix [5] highlights
the overheads caused by Anubis scheme when a ToC
is used. Phoenix [5] aims to reduce the number
of writes incurred to recover the ToC by utilizing
an encryption counters recovery scheme to recover
the encryption counters, and tracks the updates of
unrecoverable intermediate ToC nodes. VAULT [29]
discussed the overheads caused by the integrity tree and
proposed a scheme to reduce these overheads. VAULT
proposed having a variable arity tree, in which lower
integrity tree levels can pack more child nodes and

2 EAI Endorsed Transactions on
Security and Safety

06 2020 - 03 2021 | Volume 7 | Issue 24 | e1

Caching Techniques for Security Metadata in Integrity-Protected Fabric-Attached Memories

the arity decreases as we go higher, until it saturates
at an arity of eight. VAULT reduces the depth of the
integrity tree and thus reduces the number of accesses
required to verify the integrity of an encryption counter
or update it. Synergy [28] discussed the overheads
of Message Authentication Codes (MACs) associated
with the data in secure memory architectures. As
counter mode encryption is used to protect the data
confidentiality, and Merkle-Tree is used to verify the
encryption counters integrity, the data integrity is
protected by calculating a MAC value over the data
and the encryption counter. Therefore, protecting the
encryption counters is sufficient to ensure the integrity
of the data, due to the attacker inability to generate
the same MAC values [24]. Synergy [28] aims to reduce
the number of memory access required for integrity
verification by replacing the ECC bits with MAC value,
and storing the ECC bits in the memory instead.
Synergy relies on the fact that MAC values can be
used for error detection as well, and will always be
required for integrity verification. On the other hand,
ECC bits are used for error checking and rarely used for
error correction. Rogers et al.[25] proposed a scheme
for data protection in Non-Uniformed Memory Access
(NUMA) systems. The proposed scheme assumes each
node is protecting its memory, which leaves the
interconnects and message communication between
nodes unprotected. To protect the interconnects and
the communicated messages, a point-point encryption
is used. The encrypted messages are associated with
MAC values to ensure their integrity. Morphable
counters [27] discussed the overheads of secure memory
implementation, and suggested that increasing the
encryption counters cacheability can increase the cache
hit rate and improve the performance. Morphable
counters proposes a scheme that allows packing a
maximum of 128 encryption counters per cacheline,
but reduces the counters size and uses some bits for
the management. However, using small counters can
cause frequent minor counters overflow which can
lead to the whole page being re-encrypted. Therefore,
Morphable counters discusses the trade offs between
counters cacheability and the overflow.

3. Background
3.1. Threat Model
In this work, we assume a similar threat mode as in
state-of-the-art work in secure memory architecture
[5, 7, 8, 22, 27, 28, 30, 31, 33]. The trust base is limited
to the processor and its internal structures. We assume
an attacker who can snoop the local memory bus and
the global memory bus, scan the memories content,
tamper with memories content, and replay old packets.
Differential power attacks, electromagnetic inference
attacks, and attacks targeting the processor speculative

execution such as Spectre and Meltdown are beyond the
scope of this work.

3.2. Emerging Non-Volatile Memories (NVMs)
Emerging Non-Volatile Memories (NVMs) are expected
to replace the DRAM as main memories [5, 7, 27–
31, 33]. Emerging NVMs combine the features of
main memory and storage, as they feature byte
addressability, access latencies comparable to DRAM,
near-zero idle power consumption, high density, and
the ability to retain data during power failure
episodes. Data persistency of NVMs is probably
the most promising feature as it enables persistent
applications such checkpointing and file systems.
However, the persistency feature facilitates the data
remanance attacks [30]. Therefore, NVMs are typically
shipped with confidentiality protection and integrity
verification features [33]. However, NVMs suffer from
power consuming writes, and limited write endurance.
In a matter of fact, the most promising NVM
technology, Phase-Changed Memory (PCM), can only
endure tens of millions of writes [6]. Adding encryption
to NVMs exacerbates the write endurance problem,
due to the encryption diffusion property. Moreover,
updating a data cacheline in a Merkle-Tree integrity
protected system can lead to tens of Merkle-Tree
updates. Thus, NVM friendly encryption and integrity
verification algorithms are being explored by the
research community.

3.3. Counter Mode Encryption
Split counter-mode encryption is used in state-of-the-
art implementations of secure memory architecture [7,
22, 27, 30, 31, 33]. Counter mode encryption thwarts
dictionary based attacks, bus snooping attacks, and
known-plaintext attacks. Additionally, Counter mode
encryption does not propagate errors as the input of
a stage does not depend on the output of previous
stages. Moreover, Counter-Mode encryption overlaps
the One-Time-Pad (OTP) generation with memory
read latency, thus hides the decryption latency except
for the XOR operation. Figure 1 shows the split
counter-mode encryption scheme. Split counter-mode
encryption assigns a minor counter (7-bit) for each
data cacheline, and a major counter (64-bit) for each
page. An Initialization Vector (IV) composed of the
page ID, page offset, minor counter, major counter, and
padding. A secure processor key is used to generate
the OTP by encrypting the IV using AES encryption
engine. Then, the cacheline is XORed with the OTP to
do the encryption/decryption. To ensure the security of
counter mode encryption, re-using encryption counters
is prohibited as it facilitates known-plaintext attacks
[7, 30, 33].

3 EAI Endorsed Transactions on
Security and Safety

06 2020 - 03 2021 | Volume 7 | Issue 24 | e1

Mazen Alwadi, Amro Awad

Major
Ctr

Minor counters Padding

Minor Ctr

Major Ctr
Page
offset

Page ID
IV

AES Ctr
Mode Key

OTP

Plaintext
(from cache)

Ciphertext
(to NVM)

Ciphertext
(from NVM)

Plaintext
(to cache)

Figure 1. Split-Counter Mode Encryption

3.4. Integrity Trees
Bonsai Merkle-Tree (BMT). While the integrity of the
data can be easily verified using a keyed Message
Authentication Code (HMAC) values calculated over
the data and the encryption counters [11, 24], it would
be sufficient to protect the encryption counters using a
hash tree with its’ root kept secure in the processor. The
BMT is a tree of hashes built on top of the encryption
counters to ensure the integrity of the encryption
counters. The BMT calculates the hash of encryption
counters as shown in Fig.2 to create the first level of the
tree. Then, it calculates the hashes of first level nodes
to generate the second level and so on. The processes
of hashing is continued recursively until a single node
is calculated, which is referred to as the root. The
BMT calculates the hash of 64 encryption counters to
generate the first level, and hashes each 8 nodes (arity
of eight) to form upper levels. Figure 2 shows a BMT
with arity of two.

C1 C2 C3 C4 C5 C6 C7 C8

H1 H2 H3 H4 H5 H6 H7 H8

H21 H22 H23 H24

H31 H32

R

Encryption
Ctrs

Root

Hashes

Figure 2. Bonsai Merkle-Tree

Whenever an encryption counter is fetched from the
memory, its’ integrity needs to be verified by calculating
the hashes until a root is generated. If the calculated
root matches the processor stored root, the encryption
counter integrity is verified. Similarly, when a dirty

encryption counter is written to the memory, the whole
BMT branch needs to be updated. A faster way to verify
the counter integrity can be achieved by stopping the
verification process with the first parent cache hit, as
the cached nodes’ integrity was verified when it was
brought to the processor cache.

Tree of Counters (ToC). The ToC shown in Fig.3 is a
parallelizable form of the MT. The ToC uses 56-bit
counter for each data cacheline, and packs each eight
counters (arity of eight) along with a 56-bit MAC value,
and an unused eight bits in a single cacheline [11, 33].
The nodes’ MAC value is calculated over the node
counters along with a counter from the parent node.
The integrity verification in the ToC is similar to the
BMT, but the update process is different. Whenever
an encryption counter is updated, the corresponding
counter in the parent node is incremented and the MAC
value is updated. Since the upper nodes update does not
depend on the update of the child nodes, the update
process can be done in parallel [11, 33].

C00 C01 C02 C03 C04 C05 C06 C07 MAC00 C08 C09 C10 C11 C12 C13 C14 C15 MAC01

B00 B01 B02 B03 B04 B05 B06 B07 MAC10

A00 A01 A02 A03 A04 A05 A06 A07

Hash Hash

Hash

Secure region

Intermediate
node

Encryption
counters

Root

Figure 3. Tree of Counters.

Integrity Tree Update Schemes. Both BMT and ToC can
be either eagerly or lazily updated [7, 30, 31, 33]. An
eager update scheme ensures the root always reflects
the most recent state of the memory, which requires
updating the whole MT branch with the root for each
encryption counter update. Such an update scheme
incurs multiple memory accesses for each update,
and significantly degrades the performance. Despite
the performance degradation, it allows recovery after
a crash in case of recovery expectation (NVM main
memory) if all the updates were persisted. In case of
the MT were eagerly updated but the updates were
not strictly persisted, the BMT can be rebuilt if only
the encryption counters are persisted, but the nodes
inter-dependencies of the ToC makes it impossible to
recover from the encryption counters [5, 33].

The lazy-update scheme updates only the encryption
counter and relies on the natural eviction to propagate
the updates upwardly [5, 7, 33]. Whenever a dirty node
is evicted, its’ parent is fetched and updated. Such
an update scheme reduces the memory accesses and
the performance overheads significantly, but will have
a stale root value, and relies on the cached security

4 EAI Endorsed Transactions on
Security and Safety

06 2020 - 03 2021 | Volume 7 | Issue 24 | e1

Caching Techniques for Security Metadata in Integrity-Protected Fabric-Attached Memories

metadata to represent the most recent state of the
memory. Thereby, systems implementing a lazy-update
scheme are performance friendly, but more susceptible
to crash consistency problems [7, 22, 30].

3.5. Fabric-Attached Memory (FAM)
FAM architecture differs from traditional processor
centric architecture by disaggregating the memory
from the processing unit, and implements a shared
large memory pool. The memory pool can be accessed
directly by any processing element without the need
to go through a home processor as in NUMA systems
[16]. The main enabler of the FAM architectures are
FAM protocols such as Gen-Z [3], CCIX [1], and CXL
[2]. FAM protocols which are being currently developed
by the joint efforts of leading system providers such as
Google, HP, IBM, Dell EMC, Micron. Such protocols,
requires the processing elements to implement the
memory semantic protocol at the memory controller to
access the shared memory pool [3].

Processing
Element 0

Memory ControllerLocal DRAM

Processing
Element N

Memory Controller Local DRAM

Shared Memory Pool

GenZ Direct Attached, Switched, or Fabric Topology

Figure 4. Fabric-Attached Memory Architecture.

FAM architecture, shown in Figure 4, has several
advantages over traditional NUMA systems. For
instance, for a processing element to access data in a
different nodes’ memory, the request has to go through
the home processor of that specific memory, which
is typically done using expensive message passing
protocols. In FAM architecture, sharing data does not
require moving the data from one node to another, or
sending a request to home processor, data sharing is a
matter of assigning the memory region to the requester.

3.6. Motivation
In FAM architecture, each node has an access to a
local DRAM and an access to a global shared memory
pool. The local DRAM is used to cache the global
memory data to improve the system performance.
Therefore, implementing secure memory requires
special handling, due to having two separate memories.
Implementing integrity verification using a single
Merkle-Tree as used in traditional systems can incur
high overheads. Moreover, a single Merkle-Tree
covering the global shared memory and the private
local memories of all the nodes in the system can signif-
icantly reduce the global NVM lifetime. Additionally,

as the Merkle-Tree nodes are required to be updated
atomically with the data, this atomicity requirement
can lead to even higher overheads, as writing a
cacheline at any nodes’ local memory will require
locking the Merkle-Tree branch covering the modified
cacheline until the atomic Merkle-Tree branch update
is performed. Moreover, using a single Merkle-Tree will
require persisting the whole Merkle-Tree branch and
the updated node atomically, which will cause the local
DRAM to operate in a write-through manner.

To reduce the overheads of secure memory imple-
mentations, a Split-Tree scheme can be used. In the
Split-Tree scheme, a Merkle-Tree is used for the global
memory, and another Merkle-Tree is used to protect the
local DRAM. However, using two different trees can
introduce caching problems as the security metadata
for the trees will be contesting over the cache resources.
Thus, caching the security metadata for both memories
can cause a contention over the cache resources and
lead to unnecessary overheads. For instance, the global
memory is only accessed when the required data are
not present in the local memory, but the global memory
Merkle-Tree is expected to be huge. On the other hand,
the local memory which is frequently accessed have
smaller Merkle-Tree. However, the access latencies
for the global memory is much higher than the access
latencies for the local memory, and for the local memory
security metadata to contest the cache resources with
the global memory can degrade the system perfor-
mance. Moreover, security metadata caching can have
drastically different behavior depending on the used
Merkle-Tree update scheme. As using an eager-update
scheme will cause Merkle-Tree nodes in higher levels to
be always cashed, as they will be used more frequently.
Once the global memory is put into perspective, global
memory security metadata cachelines are highly likely
to be evicted due to the less frequent accesses.

On the other hand, using a lazy-update scheme tend
to cache the lowest levels of the Merkle-Tree and the
encryption counters, as it does not require to update
the whole tree path for each access. However, using
a lazy-update scheme can lead to crash consistency
problems in systems with recovery expectations. As
FAM architectures are expected to use NVMs as
the shared memory pool, lazy-update scheme is not
suitable for such systems. To address these challenges,
we propose Split-Tree, a scheme that uses separate
integirty trees to secure FAM architecture, and provides
a security metadata cache partitioning scheme that
studies the trade-offs and performance overheads of
caching security metadata in FAM architectures.

4. Design

5 EAI Endorsed Transactions on
Security and Safety

06 2020 - 03 2021 | Volume 7 | Issue 24 | e1

Mazen Alwadi, Amro Awad

Processing
Element 0

Memory ControllerLocal DRAM

Shared Memory Pool Assigned
Region

Figure 5. Split Merkle-Trees Design.

4.1. Overview

In secure FAM architecture each processing element
is expected to have a memory region of the shared
global memory as well as a small local memory.
Therefore, each processing element is responsible
for implementing data confidentiality and integrity
support for its associated memories. Since the local
memory is used to cache the global region data, a
naive approach would be to apply the encryption and
integrity verification for the global memory, and use
the same encryption counter and integrity tree to verify
the integrity of the local memory data. However, the
size of the security metadata responsible for protecting
such large memory region is expected to be huge. For
instance, to protect a memory region of 1TB using split-
counter mode encryption and BMT, it would require
16GB for encryption counters and 11 levels BMT of
about 19GB. Having an integrity tree with this huge size
will make integrity verification a very costly process,
even when caching is used. Therefore, we propose
a design that has two separate Merkle-Trees, a large
one used to protect the integrity of the owned global
memory region, and a smaller one protecting the local
memory. We refer to the shared memory region Merkle-
Tree as global MT, and to the local memory Merkle-Tree
as the local MT.

Figure 5 shows the implementation of the two
Merkle-Trees. The Split-Tree scheme has several advan-
tages over the single Merkle-Tree scheme. For instance,
the shared memory region should be encrypted using
different encryption counters and different processor
key to allow data sharing, and preserve each processing
element private data. As if the shared region needs to be
re-assigned to a different processing element, the new
global region owner needs to posses the used encryption
key, have access to the most recent encryption counters,
and the most recent integrity tree root. Using a single
Merkle-Tree means all the processing elements in the
system should have the same encryption key. In case of
a malicious processing element, or if an attacker obtains

access to one processing element, the attacker can access
any data in the system that belongs to different nodes.
Therefore, using the same encryption key will com-
promise the security of the other processing elements
in the system. Moreover, as the encryption keys are
different, the Merkle-Tree protecting the global region
is different from the one protecting the local memory
to enable data sharing while preserving the security of
each processing element. Data sharing can be enabled
by passing the region encryption key to the requester
along with the Merkle-Tree root, which can be done
securely as described in earlier work [25, 26].

Additionally, resolving any security metadata cache
miss will require accessing the global memory.
However, the global memory access latencies are
expected to be 3̃00ns for reads and 1̃000ns for writes
[16]. On the other hand, having a Local MT can obtain
the security metadata from the local DRAM.

Moreover, having two different Merkle-Trees can
reduce the writes to the NVM global memory by
updating the local MT when a data cacheline is
evicted from the processor caches to the DRAM. Thus,
increases the NVM lifetime which has a limited write
endurance. However, having two different Merkle-Trees
and two different set of encryption counters requires
decrypting/re-encrypting the data when transferred
between the different memories.

4.2. Data Transfer Between Memories
Each node in FAM architecture is expected to have a
local memory used to cache the data from the assigned
global memory region. For performance reasons, the
local memory is expected to be a DRAM, but the
global memory is expected to be a NVM for higher
capacity, persistency and lower power requirements.
As the DRAM is used to cache the global memory
region, data transfer between the local memory and
the global memory is expected to be managed by
an extension of the memory controller as in Intel
Xeon scalable processor memory controller for Intel
Optane DC-Memory mode [4]. Having a single Merkle-
Tree to protect the memory integrity will require the
encrypted data to be migrated from the global memory
to the local memory, and then perform the decryption
when the data is fetched from the local memory to
the processor cache hierarchy. While this scheme can
simplify the implementation of security measures, it
requires fetching the whole Merkle-Tree branch to
verify the integrity of the required data. Moreover,
updating the Merkle-Tree can be expensive in terms
of performance overhead, extra writes to the global
memory, and NVM lifetime.

On the other hand, using split Merkle-Trees requires
decrypting the data as it gets migrated from the global
memory, and re-encrypting it as it gets inserted into the

6 EAI Endorsed Transactions on
Security and Safety

06 2020 - 03 2021 | Volume 7 | Issue 24 | e1

Caching Techniques for Security Metadata in Integrity-Protected Fabric-Attached Memories

Local DRAM

Global Memory Region

1

AES
Encryption

Engine

2

4

Local MT Root

Global MT Root

Security
Metadata Cache

3

Global
OTP

Local
OTP

5
6

Memory Controller

Figure 6. Split Merkle-Trees re-Encryption.

DRAM, which can be done at the memory controller
responsible for page migration.

Figure 6 shows how the re-encryption process is
performed when a page is migrated from the global
memory region to the local memory. In Step 1, the
memory controller initiates a page migration from the
global memory to the local memory, which requires
allocating a physical frame in the local memory for the
requested page. While the page is being fetched from
the global memory, the memory controller generates
the global memory page OTPs and the allocated local
memory OTPs by notifying the AES encryption engine
as shown in steps 2 and 3. When the data arrives from
the global memory, the encrypted data is XORed with
the global memory OTP to complete the decryption.
After that, the decrypted data is XORed with the local
memory OTP to complete the local memory encryption
as shown in Step 4. After the re-encryption is done,
the local MT root is updated in Step 5. Finally, the
data is sent to the local memory in Step 6. Note
that generating the OTPs in a timely manner requires
the security metadata to be cached. However, caching
security metadata can be problematic as the global MT
is huge, yet the accesses to the global memory are less
frequent than the local memory. Therefore, the local
MT nodes will be replacing the global MT nodes in the
cache due to the LRU replacement policy.

4.3. Caching Security Metadata
Due to the frequent accesses to the local memory, the
security metadata of the global MT will be evicted
from the security metadata cache, resulting in multiple
accesses to verify the integrity for the global memory
to resolve a miss. However, as the local memory is

4

Local MT Root

Global MT Root

6

Local DRAM

Global Memory Region

Unprotected
region

Security metadata
cache

2

1

AES
Encryption

Engine
Local
OTP

Global
OTP

3 5

Figure 7. Updating Global Memory Region Merkle-Tree.

a DRAM, it does not require a recovery mechanism.
Therefore, using a lazy update scheme to update the
local memory Merkle-Tree can reduce the number of
accessed metadata for each update. On the other hand,
as the global memory region is a NVM, the system
should be able to verify the integrity of the NVM data
after crashes. Therefore, we use an eager update scheme
to update the global memory. Note that, data is written
to the global memory region when it gets evicted from
the local DRAM.

While using a lazy-update scheme to update the
local Merkle-Tree can prevent the local MT nodes from
evicting the global MT nodes, but it may lead to the
global MT nodes evicting the local MT nodes due
to the eager update scheme used for the global MT.
Therefore, we partition the security metadata cache to
prevent premature eviction of the security metadata
cachelines. While partitioning the cache can prevent
evicting the security metadata of the global MT, it
would still have to access the global memory to fetch
the required metadata. To reduce the global memory
region accesses, we use a small unprotected region in
the local memory to cache the security metadata of
the global memory region. Thus, whenever a global
memory security metadata cacheline is evicted from
the cache, the block is written back to the unprotected
memory region as well as the global memory region.
Caching the global memory region security metadata
in the DRAM reduces the access time of the required
metadata to a DRAM access latency instead of the
global FAM region. Figure 7 shows the global MT is
updated when a dirty page is written back from the
DRAM to the global memory region. In Step 1, the
memory controller selects a page in the DRAM to be
replaced. After that, the memory controller reads the
security metadata of the page from the unprotected
region in the DRAM and uses the security metadata to
generate the OTPs as in steps 2 and 3. In Step 4, the
data is decrypted using the local memory OTP and re-
encrypted using the global memory OTP. Finally, the
global MT root is updated and the data is written back
to the global memory region in steps 5 and 6. Note that
the global memory region security metadata are only

7 EAI Endorsed Transactions on
Security and Safety

06 2020 - 03 2021 | Volume 7 | Issue 24 | e1

Mazen Alwadi, Amro Awad

updated when the new global OTP is generated, which
requires updating the whole global MT branch and the
root. Finally, writing the data back to the global memory
region (NVM) should be done in an atomic manner,
in which the data is written atomically along with its
associated security metadata. Write atomicity can be
achieved by utilizing the Write Pending Queue (WPQ),
which is a persistent buffer in the memory controller.
The WPQ is supported by the Asynchronous DRAM
Self-Refresh (ADR) which provides enough power to
flush the WPQ contents in case of a crash.

4.4. Design Discussion
In this section, we discuss some design options and the
overheads of our scheme.

The overhead of the re-encryption process is minimal
as counter-mode encryption scheme is used, the OTPs
generation time can be overlapped with memory read
time, and XORing the encrypted data with the OTP
completes the decryption. Therefore, the overhead of
the re-encryption process is limited to few cycles
required to perform the XOR operations.

Both BMT and ToC can be used to provide the
required integrity verification. However, in our scheme
we use a BMT to protect the integrity of the local
memory and a ToC for the global memory. The BMT
does not allow a parallel update, but the leaves of
the BMT has a higher coverage than ToC leaves, as
each leaf node in the BMT covers one page (4KB) of
data. On the other hand, the global memory region
requires recoverability measures and thus an eager
update scheme is required. We use a ToC due to the
performance advantage by allowing parallel updates.

As the security metadata of the global memory
region is cached in the local DRAM, the DRAM region
used for caching is unprotected for two reasons. First,
protecting the caching region will require updating the
local memory MT and encryption counters each time a
cacheline is written, which can introduce unnecessary
overheads. Second, the encryption counters are already
protected using the Merkle-Tree, which has its root
stored securely in the processor.

4.5. Security Discussion
The security of the memories is protected using the
encryption counters and the Merkle-Trees. As the re-
encryption process is performed inside the secure
region, our scheme does not affect the security of the
system. However, to ensure the security of the counter-
mode encryption scheme, encryption counters re-use
is prohibited. Therefore, in a post-crash situation the
encryption counters for the local memory (DRAM) are
reset, which can open a room for encryption counters
reuse. Thus, the encryption key used to encrypt the
local memory data should be changed after each crash.

Table 1. Configurations of the Simulated System.

Processing Element (PE)
Processor 4 Cores, X86-64, Out-of-Order,

2.00GHz
L1 Cache Private, 4 Cycles, 32KB,8-Way
L2 Cache Private, 6 Cycles, 256KB, 8-Way
L3 Cache Shared, 12 Cycles, 1MB/core, 16-Way
Cacheline Size 64Byte
Fabric latency 40 ns

Memory
Local Memory 256MB DRAM
Global Memory Region Capacity 16GB
NVM Latencies Read 300ns, Write 1000ns

Encryption Parameters
Security Metadata Cache 256KB, 8-Way, 64B Block

On the other hand, changing the encryption key for
the global memory region (NVM) is not required as the
encryption counters are persisted.

Note that passive attacks aiming to read the data
are not possible, as the data is encrypted in the
memories and the bus. Active attacks trying to tamper
with the data or replaying old packets are detected
using the Merkle-Trees, and thus will fail the integrity
verification.

Finally, assigning global memory region to a
processing element requires transferring the encryption
key from the processing element managing the global
memory to the requester. The key exchange process
should be done in a secure key exchange mechanism as
used in previous work [9] to exchange keys between the
processor and the memory.

5. Methodology

To evaluate our scheme, we used the Structural
Simulation Toolkit (SST) [23]. We implemented the
BMT and the ToC, and the security metadata caches. We
added latencies to model the overhead of encryption.
We modified the memory controller to handle the
encryption and integrity verification. The configuration
of the modeled system are listed in Table 1.

To stress our proposed scheme, we used memory
intensive applications from SPEC2006 [13] bench-
marks, and some HPC workloads such as Lulesh2.0
[15], miniFE.x [14], pennant [10], and SimpleMOC [12].
We run each application for 500M instructions using
a single thread for SPEC2006 applications and four
threads for other workloads. We run the experiments
using a single processing element as using multiple
processing elements sharing the memory can result in
security metadata coherence problem, which is beyond
the scope of this work. We implemented a baseline
scheme that uses a single Merkle-Tree protecting the
global memory region and does not protect the local
memory. We implemented a scheme that uses a single
Merkle-Tree to protect both memories and does not par-
tition the security metadata cache. Then, we compared

8 EAI Endorsed Transactions on
Security and Safety

06 2020 - 03 2021 | Volume 7 | Issue 24 | e1

Caching Techniques for Security Metadata in Integrity-Protected Fabric-Attached Memories

 0

 0.5

 1

 1.5

 2

C
ac

tu
s

lb
m

lib
qua.

lu
le

sh

m
cf

m
in

iF
E.

pen
nan

t

Sim
ple

.

so
ple

x

G
EO

M
.

N
o

rm
a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Baseline
Single-MT
Split-Tree

Figure 8. Split-Tree Impact on Performance.

the single-MT scheme and our proposed split Merkle-
Tree scheme with the baseline. Finally, we implemented
the cache partitioning and used a DRAM cache region.

6. Evaluation
To evaluate our scheme, we implemented the Split-Tree
scheme, a Single-MT scheme, DRAM caching for global
MT nodes, and security metadata cache partitioning.
We compared the results with a baseline of a system that
only protects the global memory with one tree.

6.1. Split-Tree Impact on Performance
Figure 8 shows the performance overheads of Single-
MT scheme, and Split-Tree scheme compared to
the baseline. The Single-MT scheme has an average
performance overhead of 14%, which spikes to reach
51% for cactus, 34% for mcf, and 25% for lbm. This
spike can be explained by the increase in global memory
requests observed by these applications in the Single-
MT scheme as shown in Section6.3 and Section 6.2. On
the other hand, the Split-Tree scheme has an average
performance overhead of 6.9% which spikes to reach
31% for cactus, and 29.5% for mcf. The overheads
are caused by the Split-Tree local memory accesses as
discussed in Section 6.2 and Section 6.3. Note that the
Split-Tree scheme is reducing the performance overhead
by making the requests going to the local memory
which has faster accesses than the global memory.

6.2. Split-Tree Impact on Memory Reads
As shown in figure 9, the Single-MT scheme has an
average of 34.5% reads to the global memory. These
reads are caused by the security metadata misses which
are required to verify the integrity of the required data
cachelines. On the other hand, the Split-Tree scheme
has no extra reads to the global memory, in a matter of
fact, Split-Tree scheme reduces the global memory reads
by an average of 1%, which is caused by verifying the
integrity of the required data cacheline using the local

 0

 0.5

 1

 1.5

 2

 2.5

 3

C
ac

tu
s

lb
m

lib
qua.

lu
le

sh

m
cf

m
in

iF
E.

pen
nan

t

Sim
ple

.

so
ple

x

G
EO

M
.

N
o

rm
a
li
z
e
d

 G
lo

b
a
l
R

e
a
d

s

Baseline
Single-MT
Split-Tree

Figure 9. Split-Tree Impact on Global Memory Reads.

 0

 1

 2

 3

 4

 5

 6

 7

C
ac

tu
s

lb
m

lib
qua.

lu
le

sh

m
cf

m
in

iF
E.

pen
nan

t

Sim
ple

.

so
ple

x

G
EO

M

N
o

rm
a
li
z
e
d

 L
o

c
a
l
R

e
a
d

s

Baseline
Single-MT
Split-Tree

Figure 10. Split-Tree Impact on Local Memory Reads.

memory MT. However, the Split-MT scheme reduces the
global memory reads by increasing the local ones.

As shown in figure 9, the Single-MT global memory
reads spikes to reach 259% for mcf, and 232% for cactus
which explains the high performance overhead for these
applications. On the other hand, Split-MT scheme has
5% less global memory reads for lbm which explains the
huge performance improvement for this application in
the Split-MT scheme.

Figure 10, shows the normalized read operations by
the schemes. We observe that Single-MT scheme has no
effect on the local memory reads, which is expected as
the Single-MT scheme protects the local memory using
the same MT protecting the global memory, and as a
result the security metadata misses are fetched from the
global memory as discussed earlier.

The Split-MT scheme has 193% local memory reads
on average, which spikes to reach 644% for cactus,
446% for mcf, and 383% for SimpleMOC. The high
number of local memory reads for these applications
is explained by the low security metadata cache hit
rate for these applications as discussed in Section 4.3.
However, we notice that SimpleMOC does not have
a high performance overhead as other applications
having similar memory accesses, which is explained by
the low number of memory accesses for this application.

9 EAI Endorsed Transactions on
Security and Safety

06 2020 - 03 2021 | Volume 7 | Issue 24 | e1

Mazen Alwadi, Amro Awad

 0

 1

 2

 3

 4

 5

C
ac

tu
s

lb
m

lib
qua.

lu
le

sh

m
cf

m
in

iF
E.

pen
nan

t

Sim
ple

M

so
ple

x

G
EO

M
EA

N

N
o

rm
a
li
z
e
d

 G
lo

b
a
l
W

ri
te

s

Baseline
Single-MT
Split-Tree

Figure 11. Split-Tree Impact on Global Memory Writes.

6.3. Split-Tree Impact on Memory Writes
Figure 11 shows the global memory writes incurred
by the schemes. The Single-MT scheme has an average
of 241% writes, which spikes to reach 480% for mcf,
and 365% for SimpleMOC. We observe that applications
having the lowest security metadata cache hit rate are
experiencing the highest extra memory accesses, and
due to protecting the local memory using the same MT
protecting the global memory, the accesses to fetch the
required security metadata are directed to the global
memory. On the other hand, the Split-Tree scheme has
no extra writes to the global memory but reduces the
writes to the global memory by 1.1% on average. We
observe that lbm has 10% less writes to the global
memory, which is caused by having a higher security
metadata cache hit rate in the Split-MT scheme.

Figure 12 shows the local memory writes for the
schemes. We observe that Single-MT scheme has no
effect on the local memory writes as the security
metadata writes are directed to the global memory. On
the other hand, the Split-MT scheme has an average of
29% extra writes to the local memory which spikes to
224% for mcf, and 220% for SimpleMOC due to the low
security metadata cache hit rate. We noticed that Split-
MT scheme has two advantages over the Single-MT
scheme in terms of writes. First, Split-MT changes the
writes overhead to the local memory (DRAM) instead of
the global memory (NVM), which translates into better
performance and increases the lifetime of the NVM by
2.4x. Second, as the local memory has a smaller capacity
and thus a smaller MT, the local MT updates are causing
only 29% instead of the 124%.

6.4. Cache Partitioning Impact on Split-Tree
In order to analyze the effect of Split-Tree on the
security metadata cache, we started by collecting the
security metadata cache hit rate for the Single-MT
scheme, the local MT in the Split-Tree scheme, and the
global MT in the Split scheme, and finally the overall
Split-Tree scheme.

 0

 0.5

 1

 1.5

 2

 2.5

 3

C
ac

tu
s

lb
m

lib
qua.

lu
le

sh

m
cf

m
in

iF
E.

pen
nan

t

Sim
ple

.

so
ple

x

G
EO

M

N
o

rm
a
li
z
e
d

 L
o

c
a
l
W

ri
te

s

Baseline
Single-MT
Split-Tree

Figure 12. Split-Tree Impact on Local Memory Writes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

C
ac

tu
s

lb
m

lib
qua.

lu
le

sh

m
cf

m
in

iF
E.

pen
nan

t

Sim
ple

.

so
ple

x

G
EO

M

S
e
c
u

ri
ty

 M
e
ta

d
a
ta

 C
a
c
h

e
 H

it
 R

a
te

Single-MT
Global-MT
Local-Tree

Split-Tree-Total

Figure 13. Security Metadata Cache Hit Rate.

Figure 13 shows the security metadata cache hit rate
for the schemes. Single-MT scheme has an average
security metadata cache hit rate of 80%, with cactus
having a 48% hit rate, mcf and SimpleMOC having
a 65.2% hit rate. On the other hand, the global MT
in the Split-Tree scheme is showing a better security
metadata cache hit rate for all the applications with
an average of 85% hit rate. The hit rate of the MT
is improved because the global MT is actually smaller
than the Single-MT and it is only updated whenever
data is written back to the NVM. However, the local
MT is showing a very low average hit rate of 58.8%
where cactus is having a 16.3%, mcf is having 29.5%,
and SimpleMOC is having a 34.1% hit rates. Using a
BMT for the local MT which is lazily updated makes the
usage for the local MT nodes less frequent comparing to
the eagerly updated global MT which results in evicting
most of the local MT nodes. While caching the global
MT nodes is more desirable but it is severely degrading
the hit rate for the local MT. To analyze this low hit
rate of the local MT, we collected the distribution of
security metadata cache and analyzed the accesses to
the MT nodes. We observed that without partitioning
the security metadata cache, the global MT nodes are
occupying 97.8% of the security metadata caching.

Figure 14 shows the access distribution for the MT
levels. We observe that Single-MT and the global MT are
showing a similar behavior where 25.5% and 29.5% of

10 EAI Endorsed Transactions on
Security and Safety

06 2020 - 03 2021 | Volume 7 | Issue 24 | e1

Caching Techniques for Security Metadata in Integrity-Protected Fabric-Attached Memories

-0.1

 0

 0.1

 0.2

 0.3

 0.4

Lvl
1

Lvl
2

Lvl
3

Lvl
4

Lvl
5

Lvl
6

Lvl
7

P
e
rc

e
n

ta
g

e
 o

f
R

e
q

u
e
s
ts

Merkle Tree Level

Single-MT
Global-MT
Local-MT

Figure 14. Access Distribution to Merkle-Tree Levels.

the accesses are going to the first level, then the number
of accesses are saturating around 11%. The saturation
level 11% represents the generated writes used to
eagerly update the trees. The lower levels are showing
higher accesses due to stopping the verification of read
data at the first cache hit. On the other hand, the local
MT is lazily updated and thus the higher MT nodes are
only required when a dirty child node is evicted, or for
read verification of the child node is missing. Due to
this less frequent of the upper nodes they get evicted
by the contesting eagerly updated global MT nodes.
However, this is not the case with the Split-Tree scheme.
As shown in Figure 14, the local MT has 4 levels which
are receiving 27%, 26.9%, 25.9%, and 19.8%. Despite
the use of the lazy update scheme, and the high node
coverage of the BMT, the local MT lower levels nodes are
getting evicted which requires requesting higher levels
for read verification, which explains the access behavior
of the local MT levels despite the use of the lazy update.

6.5. DRAM Metadata Caching and Cache
Partitioning Impact on Split-Tree
To improve the system performance, we enabled DRAM
caching of global MT nodes by allocating a 256KB
region and using it as a cache. The DRAM caching
improved the system performance slightly. Note that,
a DRAM cached metadata miss will cause a higher
latency to fetch the required global MT node, as the
memory controller has to check the DRAM caching
region first and then send the request to the global
memory if the node is not cached in the DRAM
cache region. To improve the performance further,
we overlapped the requests by sending the request
to the local memory as well as the global memory,
and if the request was served from the DRAM, the
global request is ignored. Finally, we applied cache
partitioning techniques to prevent the local MT and the
global MT from contesting over the cache resources. As
the local MT is using a lazy update scheme and due to
the small local memory size, we limited the local MT
nodes partition to 30% of the security metadata cache

 0.5

 1

 1.5

 2

Exe
cu

tio
n-T

im
e

Loca
l-R

ea
ds

Loca
l-W

rit
es

G
lo

bal
-R

ea
ds

G
lo

bal
-W

rit
es

M
D
-H

itr
at

e

N
o

rm
a
li
z
e
d

 P
e
rf

o
rm

a
n

c
e

Split-Tree
DRAM Caching + Partitioning

Figure 15. DRAM Caching and Partitioning Impact on
Performance.

size. Furthermore, we cached the lowest two levels of
the local MT only and partitioned the global MT cache
sets to prevent lower global MT levels from evicting
higher MT levels, and assigned a smaller number of sets
for higher levels. The MT node coverage increase as the
level of the MT node increases, therefore we assigned
one set for the highest two levels, and increased the
number of sets for the lower levels dynamically.

Figure 15 shows all the performance aspects of
the DRAM caching combined with cache partitioning
compared to the Split-Tree. The cache partitioning and
DRAM caching of security metadata improved the
performance by 7%, local memory reads by 50%, local
memory writes by 30%. We observe that, despite the
use of DRAM caching which is expected to increase
the number of local memory accesses, the number of
accesses to the local memory decreased. This decrement
is justified by the huge improvement in the security
metadata cache hit rate, as the cache partitioning
improved the hit rate from 73.5% to 95.5%.

7. Conclusion
Protecting the confidentiality and integrity of the
data in FAM architecture is challenging and requires
special handling due to having two different memories.
Implementing secure memory architecture schemes
directly can introduce higher overheads. Split-Tree is a
scheme that uses a dedicated integrity tree to protect
the local memory, and another integrity tree to protect
the global memory. Using two different integrity trees
can reduce the performance overhead of traditional
secure memory implementation schemes. However,
having two different trees will cause a high contest over
the security metadata cache and can lead to unnecessary
performance overheads and extra memory accesses. To
reduce the effect of the contest over the cache resources,
we partition the security metadata cache to have static
partition for the local MT and another partition for
the global MT. Furthermore, we prevent caching higher

11 EAI Endorsed Transactions on
Security and Safety

06 2020 - 03 2021 | Volume 7 | Issue 24 | e1

Mazen Alwadi, Amro Awad

levels of the local MT due to the use of lazy update for
the local MT, and we partition the global MT cache sets
between different MT levels dynamically.

Using Split-Tree can reduce the performance over-
head by 7%, global memory reads by 34%, global writes
by 140%. However, this improvement is achieved by
increasing the local memory reads by 93%, and local
memory writes by 29%. Finally, implementing cache
partitioning techniques and allowing DRAM caching
of the global MT nodes improved the performance
by additional 7%, which is stemming from the high
improvement of the security metadata cache hit rate.

Acknowledgement. This research was developed with fund-
ing from the Defense Advanced Research Projects Agency
(DARPA). The views, opinions and/or findings expressed are
those of the author and should not be interpreted as repre-
senting the official views or policies of the Department of
Defense or the U.S. Government. Approved for public release.
Distribution is unlimited.

References
[1] “CCIX specifications V 1.0,” https://www.

ccixconsortium.com/library/specification/, accessed:
2019-11-10.

[2] “CXL 1.1 specifications,” https://www.
computeexpresslink.org/, accessed: 2019-11-10.

[3] “GenZ specifications kernel description,” https:
//genzconsortium.org/faqs/, accessed: 2019-09-30.

[4] “Intel® Optane™ DC Persistent Memory Operating
Modes Explained,” https://itpeernetwork.intel.com/
intel-optane-dc-persistent-memory-operating-modes/
#gs.xtmcnw, accessed: 2020-24-02.

[5] M. Alwadi, A. Mohaisen, and A. Awad, “Phoenix:
Towards persistently secure, recoverable, and nvm
friendly tree of counters,” 2019.

[6] A. Awad, P. Manadhata, S. Haber, Y. Solihin, and
W. Horne, “Silent shredder: Zero-cost shredding for
secure non-volatile main memory controllers,” ACM
SIGOPS Operating Systems Review, vol. 50, no. 2, pp.
263–276, 2016.

[7] A. Awad, Y. Solihin, L. Njilla, M. Ye, and K. Zubair,
“Triad-nvm: Persistency for integrity-protected and
encrypted non-volatile memories,” in Proceedings of the
46th International Symposium on Computer Architecture.
ACM, 2019, pp. 169–180.

[8] A. Awad, S. Suboh, M. Ye, K. Abu Zubair, and M. Al-
Wadi, “Persistently-secure processors: Challenges and
opportunities for securing non-volatile memories,” in
2019 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2019, pp. 610–614.

[9] A. Awad, Y. Wang, D. Shands, and Y. Solihin,
“Obfusmem: A low-overhead access obfuscation for
trusted memories,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, 2017,
pp. 107–119.

[10] C. R. Ferenbaugh, “Pennant: an unstructured mesh mini-
app for advanced architecture research,” Concurrency

and Computation: Practice and Experience, vol. 27, no. 17,
pp. 4555–4572, 2015.

[11] S. Gueron, “A memory encryption engine suitable for
general purpose processors,” 2016, https://eprint.iacr.
org/2016/204.

[12] G. Gunow, J. Tramm, B. Forget, K. Smith, and T. He,
“Simplemoc-a performance abstraction for 3d moc,”
2015.

[13] J. L. Henning, “SPEC CPU2006 benchmark
descriptions,” ACM SIGARCH Computer Architecture
News, vol. 34, no. 4, pp. 1–17, sep 2006. [Online].
Available: https://doi.org/10.1145/1186736.1186737

[14] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan,
E. R. Keiter, H. K. Thornquist, and R. W. Numrich,
“Improving performance via mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, vol. 3,
2009.

[15] I. Karlin, J. Keasler, and J. Neely, “Lulesh 2.0 updates and
changes,” Lawrence Livermore National Lab.(LLNL),
Livermore, CA (United States), Tech. Rep., 2013.

[16] V. R. Kommareddy, S. D. Hammond, C. Hughes,
A. Samih, and A. Awad, “Page migration support for
disaggregated non-volatile memories,” in Proceedings of
the International Symposium on Memory Systems, 2019,
pp. 417–427.

[17] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting
phase change memory as a scalable dram alternative,”
ACM SIGARCH Computer Architecture News, vol. 37,
no. 3, pp. 2–13, 2009.

[18] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek,
O. Mutlu, and D. Burger, “Phase-change technology and
the future of main memory,” IEEE micro, no. 1, pp. 143–
143, 2010.

[19] T. S. Lehman, A. D. Hilton, and B. C. Lee, “Maps:
Understanding metadata access patterns in secure
memory,” in 2018 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS).
IEEE, 2018, pp. 33–43.

[20] Z. Li, R. Zhou, and T. Li, “Exploring high-performance
and energy proportional interface for phase change
memory systems,” IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA), pp.
210–221, 2013.

[21] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang,
P. Ranganathan, and T. F. Wenisch, “System-level impli-
cations of disaggregated memory,” in IEEE Interna-
tional Symposium onHigh-Performance Comp Architecture.
IEEE, 2012, pp. 1–12.

[22] S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency
in encrypted non-volatile main memory systems,” in
2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2018, pp. 310–
323.

[23] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey,
R. Oldfield, M. Weston, R. Risen, J. Cook, P. Rosenfeld,
E. CooperBalls et al., “The structural simulation toolkit,”
SIGMETRICS Performance Evaluation Review, vol. 38,
no. 4, pp. 37–42, 2011.

[24] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin,
“Using address independent seed encryption and

12 EAI Endorsed Transactions on
Security and Safety

06 2020 - 03 2021 | Volume 7 | Issue 24 | e1

https://www.ccixconsortium.com/library/specification/
https://www.ccixconsortium.com/library/specification/
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://genzconsortium.org/faqs/
https://genzconsortium.org/faqs/
https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/#gs.xtmcnw
https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/#gs.xtmcnw
https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/#gs.xtmcnw
https://eprint.iacr.org/2016/204
https://eprint.iacr.org/2016/204
https://doi.org/10.1145/1186736.1186737

Caching Techniques for Security Metadata in Integrity-Protected Fabric-Attached Memories

bonsai merkle trees to make secure processors os-and
performance-friendly,” in Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2007, pp. 183–196.

[25] B. Rogers, M. Prvulovic, and Y. Solihin, “Efficient data
protection for distributed shared memory multiproces-
sors,” in Proceedings of the 15th international conference on
Parallel architectures and compilation techniques. ACM,
2006, pp. 84–94.

[26] B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, and Y. Soli-
hin, “Single-level integrity and confidentiality protec-
tion for distributed shared memory multiprocessors,” in
2008 IEEE 14th International Symposium on High Perfor-
mance Computer Architecture. IEEE, 2008, pp. 161–172.

[27] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser,
J. Joao, and M. Qureshi, “Morphable counters: Enabling
compact integrity trees for low-overhead secure memo-
ries,” in 2018 51st Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). IEEE, 2018, pp.
416–427.

[28] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and
M. K. Qureshi, “Synergy: Rethinking secure-memory
design for error-correcting memories,” in 2018 IEEE
International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 454–465.

[29] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault:
Reducing paging overheads in sgx with efficient integrity

verification structures,” in Proceedings of the Twenty-
Third International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM,
2018, pp. 665–678.

[30] M. Ye, C. Hughes, and A. Awad, “Osiris: A low-cost
mechanism to enable restoration of secure non-volatile
memories,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 403–415.

[31] M. Ye, K. Zubair, A. Mohaisen, and A. Awad, “Towards
low-cost mechanisms to enable restoration of encrypted
non-volatile memories,” IEEE Transactions on Dependable
and Secure Computing, 2019.

[32] S. F. Yitbarek, M. T. Aga, R. Das, and T. Austin,
“Cold boot attacks are still hot: Security analysis of
memory scramblers in modern processors,” in 2017 IEEE
International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2017, pp. 313–324.

[33] K. A. Zubair and A. Awad, “Anubis: ultra-low overhead
and recovery time for secure non-volatile memories,”
in Proceedings of the 46th International Symposium on
Computer Architecture. ACM, 2019, pp. 157–168.

[34] P. Zuo, Y. Hua, and Y. Xie, “Supermem: Enabling
application-transparent secure persistent memory with
low overheads,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture,
2019, pp. 479–492.

13 EAI Endorsed Transactions on
Security and Safety

06 2020 - 03 2021 | Volume 7 | Issue 24 | e1

	1 Introduction
	2 Related Work
	3 Background
	3.1 Threat Model
	3.2 Emerging Non-Volatile Memories (NVMs)
	3.3 Counter Mode Encryption
	3.4 Integrity Trees
	Bonsai Merkle-Tree (BMT)
	Tree of Counters (ToC)
	Integrity Tree Update Schemes

	3.5 Fabric-Attached Memory (FAM)
	3.6 Motivation

	4 Design
	4.1 Overview
	4.2 Data Transfer Between Memories
	4.3 Caching Security Metadata
	4.4 Design Discussion
	4.5 Security Discussion

	5 Methodology
	6 Evaluation
	6.1 Split-Tree Impact on Performance
	6.2 Split-Tree Impact on Memory Reads
	6.3 Split-Tree Impact on Memory Writes
	6.4 Cache Partitioning Impact on Split-Tree
	6.5 DRAM Metadata Caching and Cache Partitioning Impact on Split-Tree

	7 Conclusion

