
EAI Endorsed Transactions
on Security and Safety Research Article

1

Vul-Mirror: A Few-Shot Learning Method for

Discovering Vulnerable Code Clone

 Yuan He1,2, Wenjie Wang1, Hongyu Sun3 and Yuqing Zhang1,*

1
National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, Beijing, China

2
School of mathematics and computer science, Dali University , Dali, China

3
School of Cyber Engineering, Xidian University, Xi’an, China

Abstract

It is quite common for reusing code in soft development, which may lead to the wide spread of the vulnerability, so

automatic detection of vulnerable code clone is becoming more and more important. However, the existing solutions either

cannot automatically extract the characteristics of the vulnerable codes or cannot select different algorithms according to

different codes, which results in low detection accuracy. In this paper, we consider the identification of vulnerable code

clone as a code recognition task and propose a method named Vul-Mirror based on a few-shot learning model for

discovering clone vulnerable codes. It can not only automatically extract features of vulnerabilities, but also use the

network to measure similarity. The results of experiments on open-source projects of five operating systems show that the

accuracy of Vul-Mirror is 95.7%, and its performance is better than the state-of-the-art methods.

Keywords: Vulnerability, few-shot learning, code clone, distance-metric.

Received on 25 May 2020, accepted on 09 June 2020, published on 10 June 2020

Copyright © 2020 Yuan He et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work

is properly cited.

doi: 10.4108/eai.13-7-2018.165275

*
Corresponding author. Email: zhangyq@nipc.org.cn

1. Introduction

With the rapid development of the open-source communities,

code reuse has become very popular. Code clone is a code

fragment with the same or similar code as the source code

[1], it is one of the common ways of code reuse. Code clone

improves development efficiency, but it will lead to

potential security problems. If vulnerable code is reused,

these vulnerabilities will spread to other applications and

endanger the security of all related systems. For example,

the OpenSSL heartbeat vulnerability (cve-2014-0160) [2]

affects web sites, web servers, operating systems, and

software applicat ions because the affected system either

uses the entire OpenSSL library or clones parts of the library

for its system use. So we need an automat ic method that can

accurately detect code clone vulnerabilities with a minimal

level of human intervention in different programs.

Once the vulnerability is exposed, researchers can

analyze the vulnerable codes and ext ract the corresponding

vulnerability pattern manually. Then the researchers can

discover vulnerable codes in different programs based on

the extracted vulnerability patterns. With the help of the

traditional program analysis methods such as symbol

execution [3-4] and taint analysis [5-7], the semi-automatic

methods can be realized for discovering vulnerable codes in

programs, but these tools are based on human learning and

expert knowledge is required.

In order to alleviate the work of human intervention,

researchers proposed many methods [8-11] to discover the

vulnerable codes clone by calculating the similarity of the

vulnerable codes and target codes. These methods are based

on the assumption that similar code has the same

vulnerability, which is tenable in most cases, so the method

based on code comparison is feasible to discover vulnerable

codes when two codes are the same or highly similar. But

we know that most of the vulnerabilit ies are caused by a few

codes, and there is a gap between code similarity and

vulnerabilities. We need to ext ract the vulnerability

characteristics and make a more accurate comparison to

discover vulnerable code clones.

EAI Endorsed Transactions on
Security and Safety

05 2020 - 06 2020 | Volume 7 | Issue 23 | e4

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/
mailto:zhangyq@nipc.org.cn

Yuan He et al.

2

In this paper, we find that the process of discovering code

clone vulnerability is very similar to that of face recognition.

So we consider the discovering vulnerable code clone as a

code recognition task and propose a few-shot learning

model fo r d iscovering vulnerable code clone. The model not

only automatically extracts vulnerability features, but also

uses the network to measure similarity. To meet the

requirements of few-shot learning, according to different

types of clones, we build a sample set of vulnerabilities. By

training the few-shot learning model with multitasks, the

model learns how to compare codes. When we test target

codes, the model can output the vulnerability most similar to

the target codes. Based on code similarit ies, combined with

the characteristics of vulnerabilities, vulnerable code clones

can be discovered by the model. The contributions of this

paper are as follows:

We first use few-shot learning to discover vulnerable

code clones and propose a novel method named Vul-Mirror,

which considers both codes features and similarity of codes.

We analyze the relat ionships between different types of

code clones and original codes and effectively construct a

code clone dataset for few-shot learning.

We implement the prototype system on five popular

operating system codes, and the experimental results show

that Vul-Mirror can achieve much higher performance than

the state-of-the-art methods.

The remainder of the paper is o rganized as fo llows.

Section 2 reviews the related work. Sect ion 3 presents the

design of the system. Sect ion 4 describes our experimental

results. Section 5 discusses the advantages and

disadvantages of the method, and we conclude the paper in

section 6.

2. Related work

Traditional static and dynamic analysis methods also can

discover vulnerable code clones, but they rely heavily on

security experts. We main ly review the method that relies

less on security experts , these methods can be divided into

two types: pattern-based methods and similarity-based

methods.

2.1. Pattern-based methods

Li [12] assumes most of the codes are correct and proposed

a method named CP-Miner to find code clone errors. CP-

Miner parses a program and compares the resulting token

sequences using the “frequent subsequence mining”

algorithm known as CloSpan [13]. PR-Miner [14] focuses

on the clone of vulnerability patterns, not the codes. With

frequent patterns, it can discover paired vulnerabilities

which need to appear together, such as “lock” and “unlock”,

“malloc” and “free”. These methods can find code clone

vulnerabilities, but in many cases, the vulnerabilities do not

meet the frequent pattern.

Yamaguchi [15] provides a method called Chucky to

discover miss-check vulnerabilities. Chucky maps code to

vector space and ext racts API (Application Programming

Interface) usage patterns by principal component analysis. If

the candidate functions are similar to vulnerable codes with

high order, it should be audited. Yamaguchi [16] exp loits

patterns extracted from the abstract syntax trees of functions

to detect semantic clones. Yamaguchi [17] proposes a

method for inferring search patterns for taint-style

vulnerabilities in C code. These methods extract

vulnerability patterns semi-automatically, and each of the

methods can only discover one fixed pattern.

Deep learning can automat ically extract sample features.

Li [18] develops a deep learning-based vulnerability

detection system called VulDeePecker, which can ext ract

more than one patterns automatically. μVulDeePecker [19]

is based on VulDeePecker which can not only judge whether

the code is vulnerable but also decide the type of

vulnerability. However, due to the lack of a large number of

high-quality training samples, the methods based on deep

learning have not been widely used. To solve the problem of

the sample shortage, few-shot learning [24-27] is proposed,

but it is not applied in the field of vulnerability discovering.

2.2. Similarity-based methods

SourcererCC [20] and CCFinder [21] are typical lexicon-

based approaches that only consider the similarity in the

lexical level of code fragments. Deckard [22] is a standard

syntax-based approach that uses structured information to

identify a kind of code clones. White [23] proposes a deep

learning method to detect code clones. These techniques are

aimed at detecting as many code clones as possible but not

for finding security vulnerabilities accurately.

ReDeBug [11] can quickly find some unpatched code

clones of Type-3. However, it can hardly be applied to

Type-2 clones. VulPecker [9] takes the advantages of a

variety of algorithms to calculate similarity. However, its

comparison algorithms are limited, and it characterizes

vulnerability with a predefined set of features that need to be

specified manually. VUDDY [8] normalizes tokens by

replacing variab les, function names, etc. with fixed names,

and the hash values of functions are used to search code

clones. Shi H. [10] adopts deep learning to detect vulnerable

code clones. The common d isadvantage of the methods

mentioned above is that they only use a single pre-defined

metric to compare codes base on token-level or line-level,

and the vulnerability characteristics are not fully considered.

Our approach not only uses a deep metric to compute the

similarity of codes but also combines different

vulnerabilities features to find vulnerable code clones.

3. System design

When we write a new program or check the codes, we want

to test whether the program employs the historical

vulnerable codes. We can compute the similarity o f two

codes, then further confirm whether there is a vulnerable

code in the candidate code clones or not. To compute

EAI Endorsed Transactions on
Security and Safety

05 2020 - 06 2020 | Volume 7 | Issue 23 | e4

Vul-Mirror: A Few-Shot Learning Method for Discovering Vulnerable Codes Clone

3

similarity, the first method is to compare exposed

vulnerability with all the target code (see figure 1 (a)), the

second method is to compare one target code with all

historical vulnerabilit ies (see figure 1. (b)). The first method

is suitable for comparison with a few vulnerabilities. The

second method is suitable for finding multiple

vulnerabilities. We select the second method to compare

codes. In this way, the process of vulnerable code detection

is similar to image recognition. Therefore we can use the

method of image recognition to solve the problem of code

clone vulnerability detection

 program codes vulnerable codes

code-1 vul-1

code-2 vul-1

… …

code-n vul-1

(a) One vulnerability vs. all codes

vulnerable codes program codes

vul-1 code-1

vul-2 code-1

 … …

vul-n code-1

(b) One code vs. all vulnerabilities

Figure 1. Two methods of code comparison

Referring to the method of image recognition, we design

a system named Vul-Mirror to detect code clone

vulnerabilities based on few-shot learning. In the training

phase, we train a few-shot learning model by code clone

vulnerabilities. The model learns how to find which

vulnerability is most similar to the clone code from multiple

vulnerabilities. In the testing phase, the clone codes are

replaced with the target codes. The trained model can

identify which historical vulnerability is most similar to the

target code and output the similarity value. Because some

code clone is low similar to original codes, we need further

verify its vulnerable nature based on the output of few-shot

learning model. So we add the vulnerability verification

process in the testing phase. The framework of Vul-Mirror

is shown in Figure 2.

To realize Vul-Mirror, we break the task down into four

individual tasks: building data set, data processing,

designing a few-shot learning model, and identification

vulnerability.

3.1. Building data set

A few-shot learning model needs to be trained by a data set

that every class has one original sample and k similar

samples such as omnig lot and min iImagenet. There is no

data set for discovering the vulnerability, so we need to

build the data set. Code clones can be divided into four

types [1]. We treat exposed vulnerable codes as the original

codes and code clones as target codes . We found that

patterns of vulnerable code clones are as follows:

Type-1 clone is an exact clone where either completely

copies the source codes or adds some comments at best. In

type-1 clone, there is no change of function codes, so it has

the same vulnerability as the original codes (see Table 1

original code and Type-1 clone). A buffer overflow

vulnerability exists in the original code, type-1 clone has

same vulnerability as the original code.

Type-2 clone is a renamed clone, it modifies variables or

function names. If the changed name has nothing to do with

any vulnerability, the kind of clone has the same

vulnerability as the original codes (see Table 1 Type-2 clone

1). Otherwise, code clone has differently vulnerable from

the original codes (see Table 1 Type-2 clone 2).

Type-3 clone is a restructured clone, and statements are

inserted o r deleted based on the type-2 clone. If the

statements are related to some vu lnerability , the kind of

Table 1. Code clone and vulnerability

Original code Type-1 clone

1 void foo (int src[],int dst[]) 1 void foo (int src[],int dst[])

2 { 2 {

3 int sum = 0; 3 int sum = 0;

4 for (i = 0; i < len; i++); 4 for (i = 0; i < len; i++);

5 sum += arr[i]; 5 sum += arr[i]; //sum

6 memcpy(dst, src,
sizeof(src))

6 memcpy(dst, src,
sizeof(scr))

7 } 7 }

Type-2 clone 1 Type-2 clone 2

1 void foo (int src[],int dst[]) 1 void foo (int src[],int dst[])

2 { 2 {

3 int sum = 0; 3 int var = 0;

4 for (i = 0; i < len; i++); 4 for (i = 0; i < len; i++);

5 sum += arr[i]; 5 var += arr[i];

6 memcpy(dst, src,
sizeof(dst))

6 memcpy(dst, src,
sizeof(src))

7 } 7 }

Type-3 clone 1 Type-3 clone 2

1 void foo (int src[],int dst[]) 1 void foo (int src[],int dst[])

2 { 2 {

3 int sum = 0; 3 int var = 0;

4 for (i = 0; i < len; i++); 4 for (i = 0; i < len; i++);

5 sum += arr[i]; 5 var += arr[i];

6 memcpy(dst, src,
sizeof(src))

6 //delete line

7 printf("\%d ",sum);// add
line

7 }

8 }

EAI Endorsed Transactions on
Security and Safety

05 2020 - 06 2020 | Volume 7 | Issue 23 | e4

Yuan He et al.

4

vulnerability

repository

clone

codes

 AST sequence

normalization

vectorization

few-shot

learning

cve-2

cve-5

cve-1

cve-4

cve-3

code-1

diff –git

…

- kunmap(map);

+ kunmap(page);

...

 }

 return 0;

...

Ri,j<T？ VUL？ report
no

yes

yes

data set training modeldata processing identification vulnerability

vulnerability

repository

target

codes

 AST sequence

normalization

vectorization

few-shot

learning

cve-2

cve-5

cve-1

cve-4

cve-3

code-1

trained

Figure 2. Overall framework of Vul-Mirror

clone has different vulnerabilit ies from the original codes

(see Table 1 Type-3 clone 2). Otherwise, it has the same

vulnerability as the original codes (see Table 1 Type-3

clone 1).

Type-4 clone is a semantic clone, it changes the

statements but has the same functionality. In most cases,

original codes have low similar to clone code. Therefore, it

is difficult to determine the vulnerability directly.

According to the vulnerability pattern of code clone, we

build the data set (code clone) by the following steps:

Firstly, according to the information of exposed

vulnerabilities in the Common Vulnerabilit ies and

Exposures (CVE), we download the vulnerability files and

patch files from the open-source community and get the diff

files of vulnerabilities and patches.

Secondly, we extract functions from vulnerab le files.

Because vulnerabilit ies usually in intra-function, we select

the function as a unit to compare. When the vulnerable code

spans multiple functions, we compare vulnerable code with

the patch file and choose the function with the most rows

changed.

Thirdly, based on the vulnerable functions, we generate

the code clones using the heuristic method. For type-1 clone,

code clones have the same vulnerabilities as the original

codes, and we copy the original codes to get code clones.

For type-2 clone, we copy the original codes and normalize

variables, parameters, function-names, etc. as fixed symbols.

For type-3 clone, we delete or insert some statements in

functions based on the type-2 clone codes. For type-4 clone,

create a code clone is difficult, so we discover it by

similarity value and verification module.

We compare the modified code line with the patch. If the

modified line same as the patch, replace it until there is no

same code line with the patch. Finally, one class of

vulnerability includes one original code and three code

clones, all of the codes are vulnerable.

3.2. Data processing

The program code is different from the image, so we

process the sample to adapt few-shot learning. The

processing flow is as follows:

(i) Normalizat ion. We remove the tokens that have

nothing to do with the function of codes, such as

comments, non-ASCII characters, and redundant

whitespaces. We replace feature-independent prompts

in codes to “str”, such as a long string prompt

statement in double-quotes. We normalize the numbers

to “NUM1”, “NUM2”, and normalize variab les as

“VAR1”, “VAR2”.

(ii) Transforming code to abstract syntax t ree (AST)

sequence. AST can retain the most innovative

informat ion and remove the redundant information of

source code, so we use AST to present functions. We

first transform codes to AST, then transform AST into

a token sequence by Deep-First Search.

(iii) Vectorization. To get a fixed-size vector, we split the

AST sequence into many tokens and convert every

token into a corresponding vector. We select 2,000

tokens (about 250 lines of C code) as the unit of the

function. When the function tokens are less than 2,000,

pad it with zero vectors. If the function length is longer

than 2,000 tokens, intercept the corresponding number

of lines of code. Then we use word2vec to complete

the word embedding. After word embedding, each

token is converted to a vector o f 1*50 dimensions, and

each function is converted into a vector matrix of

2000*50 dimensions.

3.3. Design few-shot learning model

There are many few-shot learning models to be used.

According to our goal, we choose a 5-way 1-shot model. In

every iteration step, an episode is formed by randomly

selecting five classes from the train ing set with a labelled

sample, as well as a fraction of the remainder of five classes’

samples to serve as the query set. The features of the

samples are ext racted by the encoding module. The feature

EAI Endorsed Transactions on
Security and Safety

05 2020 - 06 2020 | Volume 7 | Issue 23 | e4

Vul-Mirror: A Few-Shot Learning Method for Discovering Vulnerable Codes Clone

5

of five vulnerab le codes and the clone code are combined,

and the relationship value between them is calcu lated by the

relation module. The relat ion score is a value from 0 to 1, 0

means two code is totally different, and 1 means precisely

similar. Then we use MSE as the loss function of the

network. The relat ion function and objective function are

shown in equation (1), (2). We choose the CNN network for

feature extract ion and relationship comparison. The

corresponding model is shown in Figure 3. The “code-1” is

a query code of sample, having the h ighest similarity with

the cve-3 in the vulnerable codes, so we consider that the

“code-1” may contain the same vulnerability as cve-3.

𝑅𝑖 ,𝑗 = 𝑔∅ (𝑐 (𝑓φ
(𝑥 𝑖

),𝑓φ (𝑥𝑗))) , 𝑖 = 1,2, … 𝐶. (1)

𝐿∅,𝜑 = 𝑎𝑟𝑔 min∅ ,𝜑
∑ ∑ (𝑅𝑖 ,𝑗 − 1(𝑦𝑖 − 𝑦𝑗))2.𝑛

𝑗=1
𝑚
𝑖=1 (2)

CNN

network

（fΨ）

cve-2

cve-5

cve-1

CNN

network

（gΦ）cve-4

cve-3

code-1

0

0

0

0

1

data
encoding
module

relation module relation
scores

one-hot
vector

0.1

0.1

0.9

0.1

0.1

cve-2

cve-5

cve-1

cve-4

cve-3

feature maps

concatenation Ri,j

code-1

code-1

code-1

code-1

code-1

Figure 3. 5-way 1-shot model

3.4. Identification vulnerability

This process is added to confirm some vulnerability. If the

vulnerability can be judged directly from the similarity such

as type-1 cone, and some of the type-2 clones, this process

can be avoided.

 The few-shot learning model can output which

vulnerability is most similar to the target code and its

relationship value, which can be used to judge the code

similarity. If the similarity of the two codes is too low, such

as less than 50%, we think that the vulnerability is not a

vulnerable code clone. Conversely, if the similarity of the

two codes is high, such as greater than 95%, they have the

same vulnerab ilities. When we found a target code similar

to vulnerable code with a score between 50% and 95%, we

use patch (or diff file) of vu lnerable code to check the target

code. If the target code is more similar to the patch, we

think the code has no vulnerabilit ies , vice versa, the target

code is considered a vulnerable code. Our method is

flexib le, and we can select different thresholds manually

according to the different situations.

4. Experiment

We perform our experiment with a large number of exposed

vulnerabilities and conduct experiments on a machine

running Ubuntu 16.04, with NVIDIA GeForce RTX 2070

GRU and Intel Xeon E5-2650 v4 CPU, 64 GB RAM, and

12 TB HDD.

In order to improve the similarity of code domain, we

search exposed vulnerabilities of five operat ing systems and

download the vulnerabilities and patches from the open-

source community. Patches are used to verify candidate

codes. According to the method discussed in the third

section, we ext ract the vulnerability function from five

operating system vulnerability files, construct the clone

code of the vulnerability, and deal with the function code.

The processed data set is used for training and testing the

model. Table 2 summarizes the number of datasets. #CVE

is the number of vulnerab ilities, #Fun is the number of

functions extracted from vulnerable files, #Patch is the

number of functions extracted from patch files and use to

train other models, #Clone is the number of generated clone

codes. The dataset consists of 5,258 classes, one class

includes one original vulnerab le code and three clone codes.

The dataset is randomly split into two parts, 80% for

training and the remaining 20% for testing.

TABLE 2. Datasets used in experiment

Repository #CVE #Fun #Patch #Clone

FreeBSD 156 156 156 468

openSUSE 1,365 1,365 1,365 4,095

Linux kernel 1,299 1,299 1,299 3,897

OpenBSD 45 45 45 135

ubuntu 2,393 2,393 2,393 7,179

Total 5,258 5,258 5,258 15,774

We used the same metric as the description in [18], TP is

the number of true positive samples that were correctly

EAI Endorsed Transactions on
Security and Safety

05 2020 - 06 2020 | Volume 7 | Issue 23 | e4

Yuan He et al.

6

discovered as vulnerabilit ies, FP is the number of samples

with false vulnerabilit ies discovered, FN is the number of

samples with true vulnerabilit ies undetected, and TN is the

number of samples with true non-vulnerable code detected.

We use the widely used metrics Precision (P), Recall (R),

False Positive Rate (FPR), False Negative Rate (FNR), and

F1 Score (F1) to evaluate vulnerability detection systems.

The ideal system neither misses vulnerabilities (FNR=0 and

TPR=1) nor triggers false alarms (FPR=0 and P=1), which

means F1=1.

To evaluate the efficacy and effectiveness, we compare

against the various state of the art methods, VUDDY [8],

VulPecker [9], and VulDeePecker [18]. A ll methods use the

same vulnerability samples, and the results are shown in

Figure 3.

Figure 3. the results comparing to other methods

The results show Vul-Mirror achieves higher

performance (F1=0.941). It misses fewer vulnerabilities

(FNR=0.037 and TPR=0.963) and triggers less false

alarms (FNR=0.126 and P=0.957). Because Vul-Mirror

not only extracts features of vulnerabilities but also uses

the network to measure the similarity of two codes.

VulDeePecker also uses deep learning to extract features

of codes, but the number of samples is small (on ly 5,258

vulnerabilities and 5,258 patches), which leads to the

performance of VulDeePecker degradation. VulPecker

can choose one algorithm from six algorithms to compare

target codes with vulnerab le codes according to different

types of vulnerabilities, but it cannot extract features

automatically. Imprecise features and limited algorithms

reduce the effectiveness of VulPecker. VUDDY uses hash

value to discover code clone vulnerabilit ies. VUDDY can

discover type-1 and type-2 clones vulnerabilities and no

trigger false alarms, but it hardly works in the case of that

most of the samples are type-3 clone vulnerabilit ies. We

use the end-to-end network, and it unifies feature

extraction and relation calculation as a whole to identify

vulnerable code clones, which is much more effective

than the existing methods.

Because every sample in our data sets is vulnerability,

we only need to find the most similar vulnerab ility to the

cloned code, no need to validate candidate code. The

model can achieve good performance, but due to the

complexity and diversity of the code, it is still unable to

recognize a few samples correctly.

In order to test the performance of the model in

practice, we randomly select a new sample set that

includes 13 code clones vulnerabilities and 417 non-

vulnerable codes. The non-vulnerable code is different

from all patch codes. We set the threshold to the high

value (0.95), the middle value (0.65), and the low value

(0.5) respectively. The test results of different thresholds

are shown in Table 5.

Table 3. The result of the new sample

Threshold FPR(%) FNR(%) TPR(%) P(%) F1(%)

0.95 0.00 84.62 15.38 100.00 26.67

0.65 1.93 15.38 84.62 57.89 68.75

0.5 6.24 0.00 100.00 33.33 50.00

From the result we know, when set high threshold

(0.95), the model can get high precision (100%) but it

misses some true vulnerabilities (FNR=84.6%). Because

of the similarity between the target code and related

vulnerability below the threshold, we think that samples

are not vulnerable. Note that the model can identify which

historical vulnerab ility is most similar to the target code.

0

95.1

4.9

100

9.3
1.9

89.8

10.2

84.3

18.2
24.4

13.5

86.5

72.6 75.4

12.6

3.7

96.3 95.7 94.1

0

20

40

60

80

100

120

FPR(%) FNR(%) TPR(%) P(%) F1(%)

VUDDY VulPecker VulDeePecker Vul-Mirror

EAI Endorsed Transactions on
Security and Safety

05 2020 - 06 2020 | Volume 7 | Issue 23 | e4

Vul-Mirror: A Few-Shot Learning Method for Discovering Vulnerable Codes Clone

7

So if we do not use threshold, the model can find these

vulnerabilities.

When we set a middle threshold value (0.65), the

model can obtain better comprehensive performance, but

it still misses some vulnerab ilit ies . When we set a lower

threshold value (0.5), the model can find all

vulnerabilities (TPR=100%). But some non-vulnerable

samples are identified as vulnerabilit ies . When the

similarity between the target code and one of the

vulnerabilities is higher than the threshold value, the

target code will be judged as vulnerability. The model

triggers false alarms. By using the vulnerability

verification process to confirm candidate target code, we

can reduce false positives and false positives.

Experimental results show that our method can

effectively detect code clone vulnerab ilities, and our

method can achieve good performance in practice.

5. Discussion

Few-shot learning is a hot topic. The model can reduce

intra-class differences and increase inter-class differences

of samples. Few-shot learning uses only a small number

of samples, which allev iates the problem of lack o f

labelled samples. We use few-shot learn ing to detect code

clone vulnerabilities and achieve good results. The results

show that few-shot learning is suitable to solve the code

clone issue. But at present, there are still some

shortcomings in our method:

First, our method is based on few-shot learning, it only

needs small samples, but it still requires every class of

sample has some similar samples. We create the code

clones (similar samples) set by the heuristic method.

However, it does not necessarily mean that the heuristic

method is always accurate in practice. How to effect ively

build a vulnerability data set is an interesting topic.

Second, different from code clones of detection, there

is a gap between the similarity and vulnerability. When

we test the non-vulnerable code, the performance of the

model will decline. How to use a few-shot learning model

to distinguish vulnerable codes and non-vulnerable codes

correctly is worth studying.

Third, although our method can alleviate the problem

of insufficient vulnerable samples in deep learn ing, it can

only be used to discover vulnerable code clones at present,

and it is difficu lt to detect vulnerabilit ies caused by other

reasons. How to use few-shot learning to discover other

kinds of vulnerabilities are the next topic.

Fourth, the similarity of d ifferent codes is different, so

threshold adjustment is a complex process. It is our next

work to give corresponding thresholds for different

application scenarios to improve the practicability of the

method.

6. Conclusion

In this paper, we propose Vul-Mirror to solve the problem

of low accuracy in d iscovering vulnerable code clones.

Vul-Mirror uses a few-shot learning model to extract code

features and compare the relation of codes. It takes

advantage of end to end network to implement fine-

grained detection of similar codes. We use five common

metrics to evaluate Vul-Mirror and conduct a comparative

experiment on five open-source OS vulnerabilities

datasets with three state-of-the-art methods. Experimental

results show that Vul-Mirror is significantly better than

other methods. We extend the application of few-shot

learning, improve the efficiency of code clone

vulnerability detection, and alleviate the lack o f a large

number of labelled data sets.

Acknowledgements.
We thank the anonymous reviewers for their comments that

helped us improve the paper. This paper is supported by the

National Natural Science Foundation of China (No.U1836210,

No.61572460).

References

[1] Roy C K., Cordy J R. A Mutation/Injection-Based

Automatic Framework for Evaluating Code Clone
Detection Tools[C]// 2009 International Conference on

Software Testing, Verification, and Validation Workshops.

IEEE, 2009: 157–166

[2] Common vulnerabilities and exposures. URL

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-0160.

[3] Schwartz, E. J., Avgerinos, T., Brumley, D. All You Ever

Wanted to Know about Dynamic Taint Analysis and

Forward Symbolic Execution (but Might Have Been

Afraid to Ask). 31st IEEE Symposium on Security and
Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,

California, USA. IEEE,2010;317-331

[4] Cadar, C., Sen, K. Symbolic execution for software testing:

three decades later. Communications of the ACM, 2013;

56(2), 82-90.
[5] Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B. G.,

Cox, L. P., et al. Taintdroid: an information-flow tracking

system for real time privacy monitoring on smartphones.

Communications of the ACM , 2014; 57(3): 99-106.

[6] Rathi, D., Jindal, R. Droidmark: a tool for android malware
detection using taint analysis and bayesian network.

International Journal on Recent and Innovation Trends in

Computing and Communication. 2018; 6(5): 71－76.

[7] Sergio Yovine and Gonzalo Winniczuk. Static taint

analysis applied to detecting bad programming practices in

android. Electronic Journal of SADIO, 2018; 17(1):35–53.

[8] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh.

Vuddy: A scalable approach for vulnerable code clone

discovery. In 2017 IEEE Symposium on Security and

Privacy, IEEE, 2017; 595–614.

[9] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi,

and Jie Hu. Vulpecker: an automated vulnerability
detection system based on code similarity analysis. In

Proceedings of the 32nd Annual Conference on Computer

Security Applications, 2016; 201–213.

EAI Endorsed Transactions on
Security and Safety

05 2020 - 06 2020 | Volume 7 | Issue 23 | e4

Yuan He et al.

8

[10] Heyuan Shi, Runzhe Wang, Ying Fu, Yu Jiang, Jian Dong,
Kun Tang, and Jiaguang Sun. Vulnerable code clone

detection for operating system through correlation-induced

learning. IEEE Transactions on Industrial Informatics,

2019; 15(12):6551–6559.

[11] Jang. J., Agrawal A. and Brumley D. Redebug: finding

unpatched code clones in entire os distributions. In 2012
IEEE Symposium on Security and Privacy, IEEE, 2012;

48–62.

[12] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan

Zhou. Cp-miner: Finding copy-paste and related bugs in

large-scale software code. IEEE Transactions on software

Engineering, 2006; 32(3):176–192.

[13] Xifeng Yan, Jiawei Han, and Ramin Afshar. Clospan:

Mining: Closed sequential patterns in large datasets. In

Proceedings of the 2003 SIAM international conference on

data mining, 2003; 166–177.

[14] James Newsome. Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits

on Commodity Software. Chinese journal of engineering

mathematics, 2005, 29(5):720-724

[15] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon,

and Konrad Rieck. Chucky: Exposing missing checks in
source code for vulnerability discovery. In Proceedings of

the 2013 ACM SIGSAC conference on Computer &

communications security, 2013; 12: 499–510.

[16] Fabian Yamaguchi, Markus Lottmann, and Konrad Rieck.

Generalized vulnerability extrapolation using abstract

syntax trees. In Proceedings of the 28th Annual Computer

Security Applications Conference. 2012; 12: 359–368.

[17] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and

Konrad Rieck. Automatic inference of search patterns for

taint-style vulnerabilities. In 2015 IEEE Symposium on

Security and Privacy, IEEE, 2015; 797– 812.

[18] Li, Z., Zou, D., Xu, S., Ou, X., Zhong, Y. VulDeePecker:
A Deep Learning-Based System for Vulnerability

Detection. Network and Distributed System Security

Symposium.2018;

[19] Zou, D., Wang, S., Xu, S., Li, Z., Jin, H. μVulDeePecker:

A Deep Learning-Based System for Multiclass
Vulnerability Detection. IEEE Transactions on Dependable

and Secure Computing, 2019; 1-1.

[20] Sajnani, H., Saini, V., Svajlenko, J., Roy, C. K. and Lopes,

C. V. Sourcerercc: scaling code clone detection to big code.

2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), Austin, TX, 2016; 1157-

1168

[21] Kamiya T., Kusumoto S., Inoue K., CCFinder: A

Multilinguistic Token-Based Code Clone Detection
System for Large Scale Source Code. IEEE Transactions

on Software Engineering, 2002, 28(7):654-670.

[22] Jiang L. DECKARD: Scalable and accurate tree-based

detection of code clones. Proc of Icse Minneapolis Mn Usa,

IEEE, 2007; 96-105.
[23] White, M., Tufano, M., Vendome, C. and Poshyvanyk, D.

Deep learning code fragments for code clone detection. the

31st IEEE/ACM International Conference. International

Conference on Automated Software Engineering, ACM,

2016; 87–98.

[24] Gregory K., Richard Z., and Ruslan S. Siamese neural
networks for one-shot image recognition. In ICML deep

learning workshop, Lille, France, 2015. JMLR: W&CP
volume 37

[25] Snell J., Swersky K., Zemel R S.., Prototypical Networks

for Few-shot Learning. In Advances in Neural Information

Processing Systems, 2017; 4077–4087.

[26] Sung F., Yang Y., Zhang L., et al. Learning to Compare:

Relation Network for Few-Shot Learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018; 1199–1208.

[27] Vinyals O., Blundell C., Lillicrap T., et al. Matching

Networks for One Shot Learning. In Advances in neural

information processing systems, 2016; 3630–3638.

EAI Endorsed Transactions on
Security and Safety

05 2020 - 06 2020 | Volume 7 | Issue 23 | e4

