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Abstract 

It is quite common for reusing code in soft development, which may lead to the wide spread of the vulnerability, so 

automatic detection of vulnerable code clone is becoming more and more important. However, the existing solutions either 

cannot automatically extract the characteristics of the vulnerable codes or cannot select different algorithms according to 

different codes, which results in low detection accuracy. In this paper, we consider the identification of vulnerable  code 

clone as a code recognition task and propose a method named Vul-Mirror based on a few-shot learning model for 

discovering clone vulnerable codes. It can not only automatically extract features of vulnerabilities, but also use the 

network to  measure similarity. The results of experiments on open-source projects of five operating systems show that the 

accuracy of Vul-Mirror is 95.7%, and its performance is better than the state-of-the-art methods. 
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1. Introduction

With the rapid development of the open-source communities, 

code reuse has become very popular. Code clone is a code 

fragment with the same or similar code as the source code 

[1], it  is one of the common ways of code reuse. Code clone 

improves development efficiency, but it will lead to 

potential security problems. If vulnerable code is reused, 

these vulnerabilities will spread to other applications and 

endanger the security of all related systems. For example, 

the OpenSSL heartbeat vulnerability (cve-2014-0160) [2] 

affects web sites, web servers, operating systems, and 

software applicat ions because the affected system either 

uses the entire OpenSSL library or clones parts of the library 

for its system use. So  we need an automat ic method that can 

accurately detect code clone vulnerabilities with a minimal 

level of human intervention in different programs. 

Once the vulnerability is exposed, researchers  can 

analyze the vulnerable codes and ext ract the corresponding 

vulnerability pattern manually. Then the researchers can 

discover vulnerable codes in different programs based on 

the extracted vulnerability patterns. With the help of the 

traditional program analysis methods such as symbol 

execution [3-4] and taint analysis [5-7], the semi-automatic 

methods can be realized for discovering vulnerable codes in 

programs, but these tools are based on human learning and 

expert knowledge is required.  

In order to alleviate the work of human intervention, 

researchers proposed many methods [8-11] to discover the 

vulnerable codes clone by calculating the similarity of the 

vulnerable codes and target codes. These methods are based 

on the assumption that similar code has the same 

vulnerability, which is tenable in most cases, so the method 

based on code comparison is feasible to discover vulnerable 

codes when two codes are the same or highly similar. But 

we know that most of the vulnerabilit ies are caused by a few 

codes, and there is a gap between code similarity and 

vulnerabilities. We need to ext ract the vulnerability 

characteristics and make a more accurate comparison to 

discover vulnerable code clones. 
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In this paper, we find that the process of discovering code 

clone vulnerability is very similar to that of face recognition. 

So we consider the discovering vulnerable code clone as a 

code recognition task and propose a few-shot learning 

model fo r d iscovering vulnerable code clone. The model not 

only automatically extracts vulnerability features, but also 

uses the network to measure similarity. To  meet the 

requirements of few-shot learning, according to different 

types of clones, we build a sample set of vulnerabilities. By 

training the few-shot learning model with multitasks, the 

model learns how to compare codes. When we test target 

codes, the model can output the vulnerability most similar to 

the target codes. Based on code similarit ies, combined with 

the characteristics of vulnerabilities, vulnerable code clones 

can be discovered by the model.  The contributions of this 

paper are as follows: 

We first use few-shot learning to discover vulnerable 

code clones and propose a novel method named Vul-Mirror, 

which considers both codes features and similarity of codes. 

We analyze the relat ionships between different types of 

code clones and original codes and effectively construct a 

code clone dataset for few-shot learning.  

We implement the prototype system on five popular 

operating system codes, and the experimental results show 

that Vul-Mirror can achieve much higher performance than 

the state-of-the-art methods. 

The remainder of the paper is o rganized  as fo llows. 

Section 2 reviews the related work. Sect ion 3 presents the 

design of the system. Sect ion 4 describes our experimental 

results. Section 5 discusses the advantages and 

disadvantages of the method, and we conclude the paper in 

section 6.  

2. Related work

Traditional static and dynamic analysis methods also can 

discover vulnerable code clones, but they rely heavily on 

security experts. We main ly review the method that relies 

less on security experts , these methods can be divided into 

two types: pattern-based methods and similarity-based 

methods.  

2.1. Pattern-based methods 

Li [12] assumes most of the codes are correct and proposed 

a method named CP-Miner to find code clone errors. CP-

Miner parses a program and compares the resulting token 

sequences using the “frequent subsequence mining” 

algorithm known as CloSpan [13]. PR-Miner [14] focuses 

on the clone of vulnerability patterns, not the codes. With 

frequent patterns, it can discover paired vulnerabilities 

which need to appear together, such as “lock” and “unlock”, 

“malloc” and “free”. These methods can find code clone 

vulnerabilities, but in many cases, the vulnerabilities do not 

meet the frequent pattern.  

Yamaguchi [15] provides a method called Chucky to 

discover miss-check vulnerabilities. Chucky maps code to 

vector space and ext racts API (Application Programming 

Interface) usage patterns by principal component analysis. If 

the candidate functions are similar to vulnerable codes with 

high order, it  should be audited. Yamaguchi [16] exp loits 

patterns extracted from the abstract syntax trees of functions 

to detect semantic clones. Yamaguchi [17] proposes a 

method for inferring search patterns for taint-style 

vulnerabilities in C code. These methods extract 

vulnerability patterns semi-automatically, and each of the 

methods can only discover one fixed pattern. 

Deep learning can automat ically extract sample features. 

Li [18] develops a deep learning-based vulnerability 

detection system called VulDeePecker, which can ext ract 

more than one patterns automatically. μVulDeePecker [19] 

is based on VulDeePecker which can not only judge whether 

the code is vulnerable but also decide the type of 

vulnerability. However, due to the lack of a large number of 

high-quality training samples, the methods based on deep 

learning have not been widely used. To solve the problem of 

the sample shortage, few-shot learning [24-27] is proposed, 

but it is not applied in the field of vulnerability discovering.  

2.2. Similarity-based methods 

SourcererCC [20] and CCFinder [21] are typical lexicon-

based approaches that only consider the similarity in the 

lexical level of code fragments. Deckard  [22] is a standard 

syntax-based approach that uses structured information to 

identify a kind of code clones. White [23] proposes a deep 

learning method to detect code clones. These techniques are 

aimed at detecting as many code clones as possible but not 

for finding security vulnerabilities accurately. 

ReDeBug [11] can  quickly find some unpatched code 

clones of Type-3. However, it can hardly be applied to 

Type-2 clones. VulPecker [9] takes the advantages of a 

variety of algorithms to calculate similarity. However, its 

comparison algorithms are limited, and it  characterizes 

vulnerability with a predefined set of features that need to be 

specified manually. VUDDY [8] normalizes tokens by 

replacing variab les, function names, etc. with fixed names, 

and the hash values of functions are used to search code 

clones. Shi H. [10] adopts deep learning to detect vulnerable 

code clones. The common d isadvantage of the methods 

mentioned above is that they only use a single pre-defined 

metric to compare codes base on token-level or line-level, 

and the vulnerability characteristics are not fully considered. 

Our approach not only uses a deep metric to compute the 

similarity of codes but also combines different 

vulnerabilities features to find vulnerable code clones. 

3. System design

When we write a new program or check the codes, we want 

to test whether the program employs the historical 

vulnerable codes. We can compute the similarity o f two 

codes, then further confirm whether there is a vulnerable 

code in the candidate code clones or not. To compute 

EAI Endorsed Transactions on 
Security and Safety 

05 2020 - 06 2020 | Volume 7 | Issue 23 | e4



Vul-Mirror: A Few-Shot Learning Method for Discovering Vulnerable Codes Clone 

3 

similarity, the first method is to compare exposed 

vulnerability with all the target code (see figure 1 (a)), the 

second method is to compare one target code with all 

historical vulnerabilit ies  (see figure 1. (b)). The first method 

is suitable for comparison with a few vulnerabilities. The 

second method is suitable for finding multiple 

vulnerabilities. We select the second method to compare 

codes. In this way, the process of vulnerable code detection 

is similar to image recognition. Therefore we can use the 

method of image recognition to solve the problem of code 

clone vulnerability detection 

 program codes  vulnerable codes 

code-1    vul-1  

code-2    vul-1  

…  …  

code-n    vul-1  

(a) One vulnerability vs. all codes

vulnerable codes program codes 

vul-1  code-1    

vul-2  code-1    

 …  … 

vul-n  code-1    

(b) One code vs. all vulnerabilities

Figure 1. Two methods of code comparison 

Referring to the method of image recognition, we design 

a system named Vul-Mirror to detect code clone 

vulnerabilities based on few-shot learning. In the training 

phase, we train a few-shot learning model by code clone 

vulnerabilities. The model learns how to find which 

vulnerability is most similar to the clone code from multiple 

vulnerabilities. In the testing phase, the clone codes are 

replaced with the target codes. The trained model can 

identify which historical vulnerability is most similar to the 

target code and output the similarity value. Because some 

code clone is low similar to original codes, we need further 

verify its vulnerable nature based on the output of few-shot 

learning model. So we add the vulnerability verification 

process in the testing phase. The framework of Vul-Mirror 

is shown in Figure 2.  

To realize Vul-Mirror, we break the task down into four 

individual tasks: building data set, data processing, 

designing a few-shot learning model, and identification 

vulnerability.  

3.1. Building data set 

A few-shot learning model needs to be trained by a data set 

that every class has one original sample and k similar 

samples such as omnig lot and min iImagenet. There is no 

data set for discovering the vulnerability, so we need to 

build the data set. Code clones can be divided into four 

types [1]. We treat exposed vulnerable codes as the original 

codes and code clones as target codes . We found that 

patterns of vulnerable code clones are as follows: 

Type-1 clone is an exact clone where either completely  

copies the source codes or adds some comments at best. In 

type-1 clone, there is no change of function codes, so it has 

the same vulnerability as the original codes (see Table 1 

original code and Type-1 clone). A buffer overflow 

vulnerability exists in the original code, type-1 clone has 

same vulnerability as the original code. 

Type-2 clone is a renamed clone, it modifies variables or 

function names. If the changed name has nothing to do with 

any vulnerability, the kind of clone has the same 

vulnerability as the original codes (see Table 1 Type-2 clone 

1). Otherwise, code clone has differently vulnerable from 

the original codes (see Table 1 Type-2 clone 2). 

Type-3 clone is a restructured clone, and statements are 

inserted  o r deleted  based  on  the type-2 clone. If the 

statements are related to some vu lnerability , the kind of 

Table 1. Code clone and vulnerability 

Original code Type-1 clone   

1 void foo (int src[],int dst[]) 1 void foo (int src[],int dst[]) 

2 {     2 {   

3 int sum = 0;     3 int sum = 0;  

4 for (i = 0; i < len; i++);     4 for (i = 0; i < len; i++);  

5 sum += arr[i];     5 sum += arr[i]; //sum  

6 memcpy( dst, src, 
sizeof(src)) 

6 memcpy( dst, src, 
sizeof(scr))  

7 } 7 } 

Type-2 clone 1 Type-2 clone 2 

1 void foo (int src[],int dst[]) 1 void foo (int src[],int dst[]) 

2 {     2 {   

3 int sum = 0;     3 int var = 0;  

4 for (i = 0; i < len; i++);     4 for (i = 0; i < len; i++);  

5 sum += arr[i];     5 var += arr[i];  

6 memcpy( dst, src, 
sizeof(dst)) 

6 memcpy( dst, src, 
sizeof(src))  

7 } 7 } 

Type-3 clone 1 Type-3 clone 2 

1 void foo (int src[],int dst[]) 1 void foo (int src[],int dst[]) 

2 {     2 {   

3 int sum = 0;     3 int var = 0;  

4 for (i = 0; i < len; i++);     4 for (i = 0; i < len; i++);  

5 sum += arr[i];     5 var += arr[i];  

6 memcpy( dst, src, 
sizeof(src)) 

6  //delete line  

7 printf("\%d ",sum);// add 
line 

7 } 

8 }     
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Figure 2. Overall framework of Vul-Mirror 

clone has different vulnerabilit ies from the original codes 

(see Table 1 Type-3 clone 2). Otherwise, it has the same 

vulnerability as the original codes (see Table 1 Type-3 

clone 1). 

Type-4 clone is a semantic clone, it changes the 

statements but has the same functionality. In most cases, 

original codes have low similar to clone code. Therefore, it 

is difficult to determine the vulnerability directly. 

According to the vulnerability pattern of code clone, we 

build the data set (code clone) by the following steps: 

Firstly, according to the information of exposed 

vulnerabilities in the Common Vulnerabilit ies and 

Exposures (CVE), we download the vulnerability files and 

patch files from the open-source community and get the diff 

files of vulnerabilities and patches. 

Secondly, we extract functions from vulnerab le files. 

Because vulnerabilit ies usually in intra-function, we select 

the function as a unit to compare. When the vulnerable code 

spans multiple functions, we compare vulnerable code with 

the patch file and choose the function with the most rows 

changed. 

Thirdly, based on the vulnerable functions, we generate 

the code clones using the heuristic method. For type-1 clone, 

code clones have the same vulnerabilities as the original 

codes, and we copy the original codes to get code clones. 

For type-2 clone, we copy the original codes and normalize 

variables, parameters, function-names, etc. as fixed symbols. 

For type-3 clone, we delete or insert some statements in 

functions based on the type-2 clone codes. For type-4 clone, 

create a code clone is difficult, so we discover it by 

similarity value and verification module.  

We compare the modified code line with the patch. If the 

modified line same as the patch, replace it until there is no 

same code line with the patch. Finally, one class of 

vulnerability includes  one original code and three code 

clones, all of the codes are vulnerable. 

3.2. Data processing 

The program code is different from the image, so we 

process the sample to adapt few-shot learning. The 

processing flow is as follows: 

(i) Normalizat ion. We remove the tokens that have 

nothing to do with the function of codes, such as

comments, non-ASCII characters, and redundant 

whitespaces. We replace feature-independent prompts

in codes to “str”, such as a long string prompt

statement in  double-quotes. We normalize the numbers

to “NUM1”, “NUM2”, and normalize variab les as

“VAR1”, “VAR2”.

(ii) Transforming code to abstract syntax t ree (AST)

sequence. AST can retain the most innovative 

informat ion and remove the redundant information of

source code, so we use AST to present functions. We

first transform codes to AST, then transform AST into

a token sequence by Deep-First Search.

(iii) Vectorization. To get a fixed-size vector, we split the

AST sequence into many tokens and convert every

token into a corresponding vector. We select 2,000

tokens (about 250 lines of C code) as the unit of the 

function. When the function tokens are less than 2,000,

pad it with zero vectors. If the function length is longer

than 2,000 tokens, intercept the corresponding number

of lines of code. Then we use word2vec to complete

the word embedding. After word embedding, each

token is converted to a vector o f 1*50 dimensions, and

each function is converted into a vector matrix of

2000*50 dimensions.

3.3. Design few-shot learning model 

There are many few-shot learning models to be used. 

According to our goal, we choose a 5-way 1-shot model.  In 

every iteration step, an episode is formed by randomly 

selecting five classes from the train ing set with a labelled 

sample, as well as a fraction of the remainder of five classes’ 

samples to serve as the query set. The features of the 

samples are ext racted by the encoding module. The feature 
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of five vulnerab le codes and the clone code are combined, 

and the relationship value between them is calcu lated by the 

relation  module. The relat ion score is a value from 0 to 1, 0 

means two  code is totally different, and 1 means precisely 

similar. Then we use MSE as the loss function of the 

network. The relat ion function and objective function are 

shown in equation (1), (2). We choose the CNN network for 

feature extract ion and relationship comparison. The 

corresponding model is shown in Figure 3. The “code-1” is 

a query code of sample, having the h ighest similarity with 

the cve-3 in the vulnerable codes, so we consider that the 

“code-1” may contain the same vulnerability  as cve-3. 

𝑅𝑖 ,𝑗 = 𝑔∅ (𝑐 (𝑓φ
(𝑥 𝑖

),𝑓φ (𝑥𝑗))) , 𝑖 = 1,2, … 𝐶.  (1) 

𝐿∅,𝜑 = 𝑎𝑟𝑔 min∅ ,𝜑
∑ ∑ (𝑅𝑖 ,𝑗 − 1(𝑦𝑖 − 𝑦𝑗))2.𝑛

𝑗=1
𝑚
𝑖=1  (2) 

CNN 

network

（fΨ）

cve-2

cve-5

cve-1

CNN 

network

（gΦ）cve-4

cve-3

code-1

0

0

0

0

1

data
encoding 
module

relation  module relation
scores

one-hot
vector

0.1

0.1

0.9

0.1

0.1

cve-2

cve-5

cve-1

cve-4

cve-3

feature maps

concatenation Ri,j

code-1

code-1

code-1

code-1

code-1

Figure 3. 5-way 1-shot model 

3.4. Identification vulnerability 

This process is added to confirm some vulnerability. If the 

vulnerability can be judged directly from the similarity such 

as type-1 cone, and some of the type-2 clones, this process 

can be avoided.  

 The few-shot learning model can output which 

vulnerability is most similar to the target code and its 

relationship value, which can be used to judge the code 

similarity. If the similarity of the two  codes is too low, such 

as less than 50%, we think that the vulnerability is not a 

vulnerable code clone. Conversely, if the similarity of the 

two codes is high, such as greater than 95%, they have the 

same vulnerab ilities. When we found a target code similar 

to vulnerable code with a score between 50% and 95%, we 

use patch (or diff file) of vu lnerable code to check the target 

code. If the target code is more similar to the patch, we 

think the code has no vulnerabilit ies , vice versa, the target 

code is considered a vulnerable code. Our method is 

flexib le, and we can select different thresholds manually 

according to the different situations. 

4. Experiment

We perform our experiment with a large number of exposed 

vulnerabilities and conduct experiments on a machine 

running Ubuntu 16.04, with NVIDIA GeForce RTX 2070 

GRU and Intel Xeon E5-2650 v4 CPU, 64 GB RAM, and 

12 TB HDD.  

In order to improve the similarity of code domain, we 

search exposed vulnerabilities of five operat ing systems and 

download the vulnerabilities and patches from the open-

source community. Patches are used to verify candidate 

codes. According to the method discussed in the third 

section, we ext ract the vulnerability function from five 

operating system vulnerability files, construct the clone 

code of the vulnerability, and deal with the function code. 

The processed data set is used for training and testing the 

model. Table 2 summarizes the number of datasets. #CVE 

is the number of vulnerab ilities, #Fun is the number of 

functions extracted from vulnerable files, #Patch is the 

number of functions extracted from patch files and use to 

train other models, #Clone is the number of generated clone 

codes. The dataset consists of 5,258 classes, one class 

includes one original vulnerab le code and three clone codes. 

The dataset is randomly split into two parts, 80% for 

training and the remaining 20% for testing. 

TABLE 2. Datasets used in experiment 

Repository #CVE #Fun #Patch #Clone 

FreeBSD 156 156 156 468 

openSUSE 1,365 1,365 1,365 4,095 

Linux kernel 1,299 1,299 1,299 3,897 

OpenBSD 45 45 45 135 

ubuntu 2,393 2,393 2,393 7,179 

Total 5,258 5,258 5,258 15,774 

We used the same metric as the description in [18], TP is 

the number of true positive samples that were correctly 
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discovered as vulnerabilit ies, FP is the number of samples 

with false vulnerabilit ies discovered, FN is the number of 

samples with true vulnerabilit ies undetected, and TN is the 

number of samples with true non-vulnerable code detected. 

We use the widely used metrics Precision (P), Recall (R), 

False Positive Rate (FPR), False Negative Rate (FNR), and 

F1 Score (F1) to evaluate vulnerability detection systems. 

The ideal system neither misses vulnerabilities (FNR=0 and 

TPR=1) nor triggers false alarms (FPR=0 and P=1), which 

means F1=1. 

To evaluate the efficacy and effectiveness, we compare 

against the various state of the art methods, VUDDY [8], 

VulPecker [9], and VulDeePecker [18]. A ll methods use the 

same vulnerability samples, and the results are shown in 

Figure 3.  

Figure 3. the results comparing to other methods

The results show Vul-Mirror achieves higher 

performance (F1=0.941). It misses fewer vulnerabilities 

(FNR=0.037 and TPR=0.963) and triggers less false 

alarms (FNR=0.126 and P=0.957). Because Vul-Mirror 

not only extracts features of vulnerabilities  but also uses 

the network to measure the similarity of two codes. 

VulDeePecker also uses deep learning to extract features 

of codes, but the number of samples is small (on ly 5,258 

vulnerabilities and 5,258 patches), which leads to the 

performance of VulDeePecker degradation. VulPecker 

can choose one algorithm from six algorithms to compare 

target codes with vulnerab le codes  according to different 

types of vulnerabilities, but it cannot extract features 

automatically. Imprecise features and limited algorithms 

reduce the effectiveness of VulPecker.  VUDDY uses hash 

value to discover code clone vulnerabilit ies. VUDDY can 

discover type-1 and type-2 clones vulnerabilities and no 

trigger false alarms, but it  hardly  works in the case of that 

most of the samples are type-3 clone vulnerabilit ies. We 

use the end-to-end network, and it  unifies feature 

extraction and relation calculation as a whole to identify 

vulnerable code clones, which is much more effective 

than the existing methods.  

Because every sample in our data sets is vulnerability, 

we only need to find the most similar vulnerab ility to the 

cloned code, no need to validate candidate code. The 

model can achieve good performance, but due to the 

complexity and diversity of the code, it is still unable to 

recognize a few samples correctly.  

In order to test the performance of the model in 

practice, we randomly select a new sample set that 

includes 13 code clones vulnerabilities and 417 non-

vulnerable codes. The non-vulnerable code is different 

from all patch codes. We set the threshold to the high 

value (0.95), the middle value (0.65), and the low value 

(0.5) respectively. The test results of different thresholds 

are shown in Table 5. 

Table 3. The result of the new sample 

Threshold FPR(%) FNR(%) TPR(%) P(%) F1(%) 

0.95 0.00 84.62 15.38 100.00 26.67 

0.65 1.93 15.38 84.62 57.89 68.75 

0.5 6.24 0.00 100.00 33.33 50.00 

From the result we know, when set high threshold 

(0.95), the model can get high precision (100%) but it 

misses some true vulnerabilities (FNR=84.6%). Because 

of the similarity between the target code and related 

vulnerability below the threshold, we think that samples 

are not vulnerable. Note that the model can identify which 

historical vulnerab ility is most similar to the target code. 
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So if we do not use threshold, the model can find these 

vulnerabilities. 

When we set a middle threshold value (0.65), the 

model can obtain better comprehensive performance, but 

it still misses some vulnerab ilit ies . When we set a lower 

threshold value (0.5), the model can find all 

vulnerabilities (TPR=100%). But some non-vulnerable 

samples are identified as vulnerabilit ies . When the 

similarity between the target code and one of the 

vulnerabilities is higher than the threshold value, the 

target code will be judged as vulnerability. The model 

triggers false alarms. By using the vulnerability 

verification process to confirm candidate target code, we 

can reduce false positives and false positives. 

Experimental results show that our method can 

effectively  detect code clone vulnerab ilities, and our 

method can achieve good performance in practice. 

5. Discussion

Few-shot learning is a hot topic. The model can reduce 

intra-class differences and increase inter-class differences 

of samples. Few-shot learning uses only a small number 

of samples, which allev iates the problem of lack o f 

labelled samples. We use few-shot learn ing to detect code 

clone vulnerabilities and achieve good results. The results 

show that few-shot learning is suitable to solve the code 

clone issue. But at present, there are still some 

shortcomings in our method: 

First, our method is based on few-shot learning, it  only 

needs small samples, but it still requires every class of 

sample has some similar samples. We create the code 

clones (similar samples) set by the heuristic method. 

However, it does not necessarily mean that the heuristic 

method is always accurate in practice. How to effect ively 

build a vulnerability data set is an interesting topic. 

Second, different from code clones of detection, there 

is a gap between the similarity and vulnerability. When 

we test the non-vulnerable code, the performance of the 

model will decline. How to  use a few-shot learning model 

to distinguish vulnerable codes and non-vulnerable codes 

correctly is worth studying. 

Third, although our method can alleviate the problem 

of insufficient vulnerable samples in deep learn ing, it can 

only be used to discover vulnerable code clones at present, 

and it is difficu lt to detect vulnerabilit ies caused by other 

reasons. How to use few-shot learning to discover other 

kinds of vulnerabilities are the next topic. 

Fourth, the similarity of d ifferent codes is different, so 

threshold adjustment is a complex process. It is our next 

work to give corresponding thresholds for different 

application scenarios to improve the practicability of the 

method. 

6. Conclusion

In this paper, we propose Vul-Mirror to solve the problem 

of low accuracy in d iscovering vulnerable code clones. 

Vul-Mirror uses a few-shot learning model to extract code 

features and compare the relation of codes. It takes 

advantage of end to end network to  implement fine-

grained detection of similar codes. We use five common 

metrics to evaluate Vul-Mirror and conduct a comparative 

experiment on five open-source OS vulnerabilities  

datasets with three state-of-the-art methods. Experimental 

results show that Vul-Mirror is significantly better than 

other methods. We extend the application of few-shot 

learning, improve the efficiency of code clone 

vulnerability detection, and alleviate the lack o f a large 

number of labelled data sets.  
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