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Abstract 

INTRODUCTION: Thermal processes are the essence of living organisms and are necessary for understanding life. The 
study of Transfer of heat in tissues is known as Bioheat transfer. Many techniques are developed for the thermal treatment 
of skin and other disease such as skin cancer, skin burns and  injured  skin  tissue with laser.  The tissue is inhomogeneous 
and at times anisotropic with complex thermal properties.  Moreover, there may be skin tissue damage when irradiated 
with a laser beam. 
OBJECTIVES: In this research a novel one-dimensional (1-D) bioheat model has been used with memory-dependent 
derivative (MDD) in Pennes’ bioheat transfer equation due to laser radiation and the thermal damage in tissue caused due 
to laser heating has been examined. 
METHODS: Bioheat transfer model has been used with memory-dependent derivative (MDD) in Pennes’ bioheat transfer 
equation.  The problem is solved using Laplace transform technique. 
RESULTS: The temperature and thermal damage in the skin exposed to heating with laser radiation is calculated and 
obtained in physical form. The thermal reaction of skin tissues during laser radiation is studied under memory-dependent 
derivative (MDD) in Pennes’ bioheat transfer equation. 
CONCLUSION: Analyzed a novel bioheat mathematical model on the basis of MDD involving time-delay parameter 𝜒𝜒 for 
the Pennes’ bioheat transfer equation and applied to examine the thermal properties of the skin tissue for burns caused due 
to laser radiations. The thermal damages can be measured in a better way with the MDD model. The blood perfusion 
prevent the tissue damage by developing the cooling function. Effect of memory dependent derivatives and time delay 
parameter are represented graphically and analysed. 
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Nomenclature 

𝑇𝑇𝑏𝑏  Blood temperature 

𝜔𝜔𝑏𝑏 Rate of blood perfusion 

t Time 

𝐼𝐼0 Intensity of the laser 
c Specific heat of the tissue 

𝑐𝑐𝑏𝑏 Specific heat of the blood 

K(t−ξ) Kernel function  

𝜌𝜌 Tissue mass density 

𝐶𝐶1,𝐶𝐶2, 
𝑘𝑘1,𝑘𝑘2 

Functions of diffuse reflectance 𝑅𝑅𝑑𝑑 

k thermal conductivity of the tissue 
U(t) unit step function 

B factor of frequency 

𝜇𝜇𝑎𝑎 coefficient of absorption 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒  heat generated per unit volume of tissues 

EAI Endorsed Transactions  
on Pervasive Health and Technology Research Article 

EAI Endorsed Transactions 
on Pervasive Health and Technology 

01 2020 - 05 2020 | Volume 6 | Issue 22 | e2

http://creativecommons.org/licenses/by/3.0/


I. Kaur, P. Lata and K.S. Handa

2 

𝜌𝜌𝑏𝑏 Blood mass density 

δ Penetration depth 

𝜒𝜒 Time delay parameter 

𝜇𝜇𝑠𝑠 Scattering coefficient 

𝜏𝜏𝑝𝑝 exposure time of the laser 
g factor of anisotropy 
R Universal gas constant 

𝑄𝑄𝑚𝑚 Metabolic heat generations in living tissues 
Ea Activation energy 

𝜃𝜃0 Incident heat flux intensity 

1. Introduction

Thermal processes are the essence of living organisms 
and are necessary for understanding life. Transfer of heat 
in tissues is complicated as it is affected by the flow of 
blood and asymmetrical structure of vascular tissues. The 
tissue is inhomogeneous and at times anisotropic with 
complex thermal properties. It also produces heat as part 
of the active metabolism. Maintenance of a fairly constant 
body temperature in a range of thermal environments 
implies that there is a continuous exchange of energy 
between deep, surface tissues and the environment.  

Lipkin & Hardy [1] developed the method for 
measuring the temperature of human tissues. Giering[2] 
described the numerous thermal characteristics  of 
biological tissues.   Gardner et al.[3] proposed the 1-D 
light transfer case in tissue for fluence rate and escape 
function using Monte Carlo method. Cheng & Plewes [4] 
developed a technique to determine the thermal properties 
precise to the patient and its organ or tumor. Shrivastava 
and Vaughan [5] proposed a generic bioheat transfer 
model which include protection of energy,  rate  of 
transfer of heat from blood vessels to tissue and 
applicable to any type of tissue. Othman et al.  [6] used 
the Penne’s bio-heat transfer equation for characterization 
of temperature variation in tissues.   

Youn and Lee [7] evaluates the light dispersal and 
penetration depth in skin tissue using high-intensity light 
sources. Kengneet al.[8] predicts the distribution of 
temperature in a finite biological tissue with spatial 
heating and oscillatory surface. Deng & Liu [9] described 
the theoretical approaches to solve 3-D bioheat transfer 
problems in presence and absence of phase change. 
Kengne et al.[10]discussed the bio-heat transfer model for 
thermal traveling-wave dispersal in biological tissues. 
Kujawska et al.  [11]explored the ultrasonic method to 
determine the thermal conductivity of animal tissues using 
pulsed focused ultrasound.  Kujawskaet al.[11]developed 
a novel ultrasonic method measure the thermal 
conductivity of certain animal tissues. Kumar et al.[12, 
13] described the transfer of  heat in a skin tissue of finite
domain using metabolic heat. Sarkar [14] defined “the
memory-dependent derivative in an integral form of a

common derivative with a Kernel function on a slipping 
interval and insisted that this kind of definition is better 
than the fractional one for reflecting the memory effect 
(instantaneous change rate depends on the past state). 
Sarkar[14] pleaded the definition to be more intuitionistic 
for understanding the physical meaning and the 
corresponding memory dependent differential equation 
had more expressive force”. Youssef and Alghamdi[15] 
proposed a mathematical model one dimensional 
thermoelastic skin tissue  of small thickness using  dual-
phase-lag heat law.  Hobiny et al.[16] explored the 
bioheat model to thermal damage of living tissue caused 
by laser irradiation using the  fractional order derivative. 
Ezzat et al. [17, 18]  discussed the thermal responses of 
skin tissue using a fractional model of Bioheat equation 
with sinusoidal heat flux applied on the skin surface. 
Despite of this several researchers as Mahmoud et al. 
[19], Marin et al.[20, 21],  Zhang and Fu [22], Abbas & 
Marin [23], Bhatti et al.[24], Marin [25, 26], Lata and 
Kaur [27–30], Riazet al.[31]worked on different theory of 
thermoelasticity.  

In this research a novel one-dimensional (1-D) bioheat 
model has been used with memory-dependent derivative 
(MDD) in Pennes’ bioheat transfer equation due to laser
radiation and the thermal damage in tissue caused due to
laser heating has been examined. Laplace transform
technique is used to solve the given problem. The
temperature and thermal damage in the skin exposed to
heating with laser radiation is calculated and obtained in
physical form. Effect of memory dependent derivatives
and time delay parameter are represented graphically and
analyzed.

2. Basic Equations

For the differentiable function f(t), Wang and Li [32] 
introduced the first-order MDD with respect to the time 
delay  𝜒𝜒> 0 for a fixed time t: 

𝐷𝐷𝜒𝜒𝑓𝑓(𝑡𝑡) = 1
𝜒𝜒 ∫ 𝐾𝐾(𝑡𝑡 − 𝜉𝜉)𝑒𝑒

𝑒𝑒−𝜒𝜒 𝑓𝑓′(𝜉𝜉)𝑑𝑑𝜉𝜉. (1) 

The K(t−ξ) and the time delay parameter 𝜒𝜒 depends on  
the material properties. The kernel function K(t − ξ) is 
differentiable with respect to the variables t and ξ. 
Following Ezzat et al.[33–35] the kernel function K(t − ξ) 
is taken here in the form 

𝐾𝐾(𝑡𝑡 − 𝜉𝜉) = 1 − 2𝑏𝑏
𝜒𝜒

(𝑡𝑡 − 𝜉𝜉) 𝑎𝑎2

𝜒𝜒2
(𝑡𝑡 − 𝜉𝜉)2 =

�

1
1 + (𝜉𝜉 − 𝑡𝑡) 𝜒𝜒⁄
𝜉𝜉 − 𝑡𝑡 + 1

[1 + (𝜉𝜉 − 𝑡𝑡) 𝜒𝜒⁄ ]2

𝑎𝑎 = 0, 𝑏𝑏 = 0
𝑎𝑎 = 0, 𝑏𝑏 = 1/2
𝑎𝑎 = 0, 𝑏𝑏 = 1/𝜒𝜒
𝑎𝑎 = 1, 𝑏𝑏 = 1

 , 

(2) 

where a and b are constants. 
Following Sarkar [14] and Hobiny et al.[16]the 

memory dependent bio heat transfer equation with instant 
surface heating due to laser irradiation is given by 

𝑘𝑘∇2𝑇𝑇 = �1 + 𝜒𝜒𝐷𝐷𝜒𝜒��𝜌𝜌𝐶𝐶�̇�𝑇 − 𝑄𝑄 − 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒�, (3) 
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Where, 
𝜃𝜃(𝑥𝑥, 𝑡𝑡) = 𝑇𝑇(𝑥𝑥, 𝑡𝑡) − 𝑇𝑇0, (4) 

𝑄𝑄 = 𝜔𝜔𝑏𝑏𝜌𝜌𝑏𝑏𝑐𝑐𝑏𝑏(𝑇𝑇𝑏𝑏 − 𝑇𝑇) + 𝑄𝑄𝑚𝑚, (5) 
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) = 𝐼𝐼0𝜇𝜇𝑎𝑎�𝑈𝑈(𝑡𝑡) − 𝑈𝑈�𝑡𝑡 −

𝜏𝜏𝑝𝑝�� �𝐶𝐶1𝑒𝑒
−𝑘𝑘1𝛿𝛿 𝑒𝑒 − 𝐶𝐶2𝑒𝑒

−𝑘𝑘2𝛿𝛿 𝑒𝑒� . 

(6) 

Following Jacques  [36]𝐶𝐶1,𝐶𝐶2, 𝑘𝑘1 and 𝑘𝑘2 are given by 
𝐶𝐶1 = 3.09 + 5.44𝑅𝑅𝑑𝑑

− 2.12 exp(−21.5𝑅𝑅𝑑𝑑),
(7) 

𝐶𝐶2 = 2.09 + 1.45𝑅𝑅𝑑𝑑
− 2.09 exp(−21.5𝑅𝑅𝑑𝑑),

(8) 

𝑘𝑘1 = 1 − 0.423 exp(−20.1𝑅𝑅𝑑𝑑), (9) 
𝑘𝑘2 = 1.53 exp(3.4𝑅𝑅𝑑𝑑). (10) 

and penetration depth following[16]is defined as 
𝛿𝛿 = 1

�3𝜇𝜇𝑎𝑎�𝜇𝜇𝑎𝑎+𝜇𝜇𝑠𝑠(1−𝑔𝑔)�
.. (11) 

Eq. (3) represents the novel bioheat transfer equation with 
MDD. We get the basic Pennes’ bioheat equation when
𝜒𝜒 → 0.

3. Method and solution of the problem

The temperature distribution in a semi-infinite biological 
tissue with instantaneous surface heating and with the 
laser thermal source of 1-D model of Memory-Dependent 
Derivative Pennes bioheat transfer equation (MDDPBE) 
in a finite medium is considered. The 1-D form of Eq. (3) 
by taking 𝑄𝑄𝑚𝑚 as constant, is written as: 

𝑘𝑘
𝜕𝜕2𝜃𝜃
𝜕𝜕𝑥𝑥2

= �1 + 𝜒𝜒𝐷𝐷𝜒𝜒� �𝜌𝜌𝐶𝐶
𝜕𝜕𝜃𝜃
𝜕𝜕𝑡𝑡

− 𝜔𝜔𝑏𝑏𝜌𝜌𝑏𝑏𝑐𝑐𝑏𝑏(𝑇𝑇𝑏𝑏 − 𝜃𝜃 + 𝑇𝑇0)
− 𝑄𝑄𝑚𝑚
− 𝐼𝐼0𝜇𝜇𝑎𝑎�𝑈𝑈(𝑡𝑡)

− 𝑈𝑈�𝑡𝑡 − 𝜏𝜏𝑝𝑝�� �𝐶𝐶1𝑒𝑒
−𝑘𝑘1𝛿𝛿 𝑒𝑒

− 𝐶𝐶2𝑒𝑒
−𝑘𝑘2𝛿𝛿 𝑒𝑒��. 

(12) 

The initial conditions are: 
𝜃𝜃(𝑥𝑥, 0) = �̇�𝜃(𝑥𝑥, 0) = 0,0 ≤ 𝑥𝑥 ≤ 𝑑𝑑. (13) 

The skin tissue is exposed to instantaneous surface 
heating. We consider that heat flux →0 deep inside 
the tissue. Therefore, applicable boundary conditions 
are: 

𝜃𝜃(0, 𝑡𝑡) = 𝜃𝜃0,
𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥
�
𝑒𝑒=𝑑𝑑

= 0,0 ≤ 𝑥𝑥 ≤ 𝑑𝑑, 𝑡𝑡

> 0.

(14) 

For simplify the solution, following non-dimensional 
quantities are given by 

𝑇𝑇′ = 𝑇𝑇−𝑇𝑇0
𝑇𝑇0

,𝑇𝑇𝑏𝑏′ = 𝑇𝑇𝑏𝑏−𝑇𝑇0
𝑇𝑇0

, 𝑡𝑡′ = 𝑘𝑘
𝜌𝜌𝜌𝜌𝐿𝐿2

𝑡𝑡, 𝜉𝜉′ =
𝑘𝑘

𝜌𝜌𝜌𝜌𝐿𝐿2
𝜉𝜉,𝜒𝜒′ = 𝑘𝑘

𝜌𝜌𝜌𝜌𝐿𝐿2
𝜒𝜒, 𝜏𝜏0′ = 𝑘𝑘

𝜌𝜌𝜌𝜌𝐿𝐿2
𝜏𝜏0, 𝜏𝜏𝑝𝑝′ =

𝑘𝑘
𝜌𝜌𝜌𝜌𝐿𝐿2

𝜏𝜏𝑝𝑝, 𝑥𝑥′ = 𝑒𝑒
𝐿𝐿

, 𝑘𝑘1′ = 𝐿𝐿𝑘𝑘1, 𝑘𝑘2′ = 𝐿𝐿𝑘𝑘2,𝑅𝑅𝑏𝑏 =

(15) 

𝜌𝜌𝑏𝑏𝜔𝜔𝑏𝑏𝜌𝜌𝑏𝑏𝐿𝐿2

𝑘𝑘
,𝑅𝑅𝑚𝑚 = 𝐿𝐿2𝑄𝑄𝑚𝑚

𝑘𝑘𝑇𝑇0
,𝑅𝑅𝑟𝑟 = 𝐿𝐿2𝐼𝐼0𝜇𝜇𝑎𝑎

𝑘𝑘𝑇𝑇0
. 

Using these non-dimensional quantities defined in 
(15), the governing Equation (12) and initial and 
boundary conditions (13) and (14) can be written as 
(by ignoring dashes) 
𝜕𝜕2𝜃𝜃
𝜕𝜕𝑥𝑥2

= �1 + 𝜒𝜒𝐷𝐷𝜒𝜒� �𝜌𝜌𝐶𝐶
𝜕𝜕𝜃𝜃
𝜕𝜕𝑡𝑡

− 𝑅𝑅𝑏𝑏(𝑇𝑇𝑏𝑏 − 𝜃𝜃)

− 𝑅𝑅𝑚𝑚
− 𝑅𝑅𝑟𝑟�𝑈𝑈(𝑡𝑡)

− 𝑈𝑈�𝑡𝑡 − 𝜏𝜏𝑝𝑝�� �𝐶𝐶1𝑒𝑒
−𝑘𝑘1𝛿𝛿 𝑒𝑒

− 𝐶𝐶2𝑒𝑒
−𝑘𝑘2𝛿𝛿 𝑒𝑒��. 

(16) 

Laplace transforms is given by 
ℒ[𝑓𝑓(𝑥𝑥, 𝑡𝑡)] =  ∫ 𝑒𝑒−𝑠𝑠𝑒𝑒𝑓𝑓(𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝑓𝑓(̅𝑥𝑥, 𝑠𝑠)∞

0 . (17) 
with basic properties 

𝐿𝐿 �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡
� = 𝑠𝑠𝑓𝑓(̅𝑥𝑥, 𝑠𝑠) − 𝑓𝑓(𝑥𝑥, 0), (18) 

𝐿𝐿 �
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑡𝑡2

� = 𝑠𝑠2𝑓𝑓(̅𝑥𝑥, 𝑠𝑠) − 𝑠𝑠𝑓𝑓(𝑥𝑥, 0) − �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡
�
𝑒𝑒=0

. (19) 

𝐿𝐿�𝜒𝜒𝐷𝐷𝜒𝜒� = G

=
τ0
χ
�(1 − e−sχ) �1 −

2b
χs

+
2a2

χ2s2
�—�a2 − 2b

+
2a2

χs
� e−sχ�

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧

(1 − 𝑒𝑒−𝑠𝑠𝜒𝜒), 𝑎𝑎 = 𝑏𝑏 = 0,

(1 − 𝑒𝑒−𝑠𝑠𝜒𝜒) �1 −
1
𝑠𝑠𝜒𝜒
� , 𝑎𝑎 = 0, 𝑏𝑏 =

1
2

,

(1 − 𝑒𝑒−𝑠𝑠𝜒𝜒) �1 −
1
𝑠𝑠
� + 𝜒𝜒𝑒𝑒−𝑠𝑠𝜒𝜒 , 𝑎𝑎 = 0, 𝑏𝑏 =

𝜒𝜒
2

,

(1 − e−sχ) �
2

χ2s2
� + �1 −

2
χs
� , 𝑎𝑎 = 1, 𝑏𝑏 = 1.

(20) 

𝐿𝐿�𝑈𝑈(𝑡𝑡 − 𝑎𝑎)� =
𝑒𝑒−𝑎𝑎𝑠𝑠

𝑠𝑠
, 𝐿𝐿�𝑈𝑈(𝑡𝑡)� =

1
𝑠𝑠

. (21) 

where 

𝑈𝑈(𝑡𝑡 − 𝑎𝑎) = �0, 𝑖𝑖𝑓𝑓 0 ≤ 𝑡𝑡 < 𝑎𝑎
1, 𝑖𝑖𝑓𝑓 𝑡𝑡 > 𝑎𝑎

(22) 

Thus we get 

𝐷𝐷2�̅�𝜃 = (1 + 𝐺𝐺) �𝜌𝜌𝐶𝐶𝑠𝑠�̅�𝜃 −
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏
𝑠𝑠

+ 𝑅𝑅𝑏𝑏�̅�𝜃

−
𝑅𝑅𝑚𝑚
𝑠𝑠

−
𝑅𝑅𝑟𝑟
𝑠𝑠

[1

− 𝑒𝑒−𝜏𝜏𝑝𝑝𝑠𝑠] �𝐶𝐶1𝑒𝑒
−𝑘𝑘1𝛿𝛿 𝑒𝑒

− 𝐶𝐶2𝑒𝑒
−𝑘𝑘2𝛿𝛿 𝑒𝑒��, 

(23) 

where 

𝐷𝐷 =  
𝑑𝑑
𝑑𝑑𝑥𝑥

. 
which can be further simplified as 

(𝐷𝐷2−𝜂𝜂2)�̅�𝜃 = 𝜁𝜁1 + 𝜁𝜁2𝑒𝑒
−𝑘𝑘1𝛿𝛿 𝑒𝑒 + 𝜁𝜁3𝑒𝑒

−𝑘𝑘2𝛿𝛿 𝑒𝑒 (24) 

Where 
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𝜂𝜂2 = (1 + 𝐺𝐺)(𝜌𝜌𝐶𝐶𝑠𝑠 + 𝑅𝑅𝑏𝑏) (25) 

𝜁𝜁1 = −(1 + 𝐺𝐺) �
𝑅𝑅𝑏𝑏𝑇𝑇𝑏𝑏
𝑠𝑠

+
𝑅𝑅𝑚𝑚
𝑠𝑠
� (26) 

𝜁𝜁2 = −(1 + 𝐺𝐺) �
𝑅𝑅𝑟𝑟
𝑠𝑠

[1 − 𝑒𝑒−𝜏𝜏𝑝𝑝𝑠𝑠]𝐶𝐶1� (27) 

𝜁𝜁3 = −(1 + 𝐺𝐺)
𝑅𝑅𝑟𝑟
𝑠𝑠

[1 − 𝑒𝑒−𝜏𝜏𝑝𝑝𝑠𝑠]𝐶𝐶2 (28) 

And the boundary conditions after the application of 
Laplace transform (17) takes the form 

�̅�𝜃(0, 𝑠𝑠) =
𝜃𝜃0
𝑠𝑠

,
𝑑𝑑𝜃𝜃
𝑑𝑑𝑥𝑥
�
𝑒𝑒=𝑑𝑑

= 0,0 ≤ 𝑥𝑥

≤ 𝑑𝑑,𝑅𝑅𝑒𝑒(𝑠𝑠) > 0. 

(29) 

By using the boundary conditions defined in Eq. (29) 
in Eq. (24), the exact solution is obtained as: 

�̅�𝜃(𝑥𝑥, 𝑠𝑠) = 𝜃𝜃0
𝑠𝑠
cosh 𝜂𝜂(𝑒𝑒−𝑑𝑑)
cosh 𝜂𝜂𝑑𝑑

+ 𝜁𝜁4
cosh 𝜂𝜂𝑒𝑒
cosh𝜂𝜂𝑑𝑑

+

𝜁𝜁5
sinh 𝜂𝜂𝑒𝑒
ηcosh 𝜂𝜂𝑑𝑑

− 𝜁𝜁1
𝜂𝜂2

+ 𝜁𝜁2𝑒𝑒
−𝑘𝑘1𝛿𝛿 𝑥𝑥

𝑘𝑘1
2−𝜂𝜂2

+ 𝜁𝜁3𝑒𝑒
−𝑘𝑘2𝛿𝛿 𝑥𝑥

𝑘𝑘2
2−𝜂𝜂2

 , 

(30) 

Where 
𝜁𝜁4 = 𝜁𝜁1

𝜂𝜂2
− 𝜁𝜁2

𝑘𝑘1
2−𝜂𝜂2

− 𝜁𝜁3
𝑘𝑘2
2−𝜂𝜂2

, (31) 

𝜁𝜁5 = 𝜁𝜁1
𝜂𝜂2
− 𝜁𝜁2𝑒𝑒

−𝑘𝑘1𝛿𝛿 𝑑𝑑

𝑘𝑘1
2−𝜂𝜂2

− 𝜁𝜁3𝑒𝑒
−𝑘𝑘2𝛿𝛿 𝑑𝑑

𝑘𝑘2
2−𝜂𝜂2

, 

The thermal damage i.e. evaluation of burn caused by 
laser radiation, following Jasiński[37], Askarizadeh 
& Ahmadikia[38] is given by,  

Ω = ∫ 𝐵𝐵𝑒𝑒−
𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅𝑑𝑑𝑡𝑡𝑒𝑒

0 , (32) 

4. Results and discussion

Following Askarizadeh & Ahmadikia[38] for numerical 
results, the specific values of different parameters are 

𝜌𝜌𝑏𝑏 = 1060𝑘𝑘𝑘𝑘𝑚𝑚−3, 
𝑐𝑐𝑏𝑏 = 3860𝐽𝐽𝑘𝑘𝑘𝑘−1𝐾𝐾−1,  
𝜔𝜔𝑏𝑏 = 1.87 × 10−3𝑠𝑠−1,  
𝑇𝑇𝑏𝑏 = 37𝑜𝑜𝐶𝐶, 
𝑄𝑄𝑚𝑚 = 1.19 × 103𝑊𝑊𝑚𝑚−3, 
𝑘𝑘 = 0.9, 

𝜇𝜇𝑠𝑠 = 12000𝑚𝑚−1, 
𝑅𝑅 =  8.313 𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚 · 𝐾𝐾  
𝐸𝐸𝑎𝑎 =  6.28 ×  105 𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚 
𝑐𝑐 = 4187𝐽𝐽𝑘𝑘𝑘𝑘−1𝐾𝐾−1, 
𝜌𝜌 = 1000𝑘𝑘𝑘𝑘𝑚𝑚−3,  
𝑘𝑘 = 0.628𝑊𝑊𝑚𝑚−1𝐾𝐾−1,  
𝜏𝜏𝑝𝑝 = 10𝑠𝑠, 
𝐿𝐿 = 0.03𝑚𝑚, 
𝜇𝜇𝑎𝑎 = 40𝑚𝑚−1, 
𝑇𝑇0 = 37𝑜𝑜𝐶𝐶, 
𝐵𝐵 =  3.1 ×  1098 𝑠𝑠−1.  

The results are simulated using MATLAB software 
and illustrated graphically. The impact of laser source on 
the skin surface was incorporated. The proposed 
mathematical models depends on the bio-heat transfer 
found and suitable boundary conditions. The conducting 
heat source, metabolic and perfusions are used in the 
formulations of the mathematical model. Numerical 
results are presented graphically in Figures 1–4 to study 
the influence of memory dependent derivative, kernel 
function K(t−ξ) , the laser exposure time 𝜏𝜏𝑝𝑝 , the thermal 
relaxation time 𝜏𝜏0 and the time delay parameter 𝜒𝜒  on the 
temperature and the thermal damages. The skin tissue is 
considered as .03 m thick and the reference temperature is 
taken equal to skin normal temperature, that is, 𝑇𝑇0 = 𝑇𝑇𝑏𝑏 =
370𝐶𝐶.  

Figure 1 exhibits the deviation of temperature along the 
distance x by keeping the values of  𝜏𝜏0 = 5𝑠𝑠 𝑎𝑎𝑎𝑎𝑑𝑑 𝜏𝜏𝑝𝑝 =
10𝑠𝑠  with different values of memory dependent 
derivative, kernel function K(t−ξ).  It is seen that the 
temperature start rising with the distance and decrease as 
the blood perfusions in skin increases. Figure 2 illustrates 
the thermal damage w.r.t. time t keeping the values of 
𝜏𝜏0 = 5𝑠𝑠 𝑎𝑎𝑎𝑎𝑑𝑑 𝜏𝜏𝑝𝑝 = 10𝑠𝑠  with different values of memory 
dependent derivative, c The kernel function K(t−ξ) when 
a=0, b=0 has the highest effect on the thermal damages.   
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Figure 1. Temperature variations w.r.t. skin depth for different values of  𝐾𝐾(𝑡𝑡 − 𝜉𝜉). 

Figure 3 exhibits the variation of temperature along the 
distance x by keeping the values of 𝜏𝜏0 = 5𝑠𝑠 𝑎𝑎𝑎𝑎𝑑𝑑 𝜏𝜏𝑝𝑝 =
10𝑠𝑠  with different values time delay parameter 𝜒𝜒 for 

kernel function K(t−ξ) =[1 + (𝜉𝜉 − 𝑡𝑡) 𝜒𝜒⁄ ]2 and a=1, b=1. 
It is seen that the temperature start from the utmost value 
and decrease rapidly.    

Figure 2. The variation of thermal damage w.r.t. different values of 𝐾𝐾(𝑡𝑡 − 𝜉𝜉). 

Memory Dependent Derivative of Bio-heat Model effects in Skin Tissue exposed to Laser Radiation 

EAI Endorsed Transactions 
on Pervasive Health and Technology 

01 2020 - 05 2020 | Volume 6 | Issue 22 | e2



6 

Figure 3. Temperature distributions w.r.t. skin depth for different values of time-delay χ at  𝐾𝐾(𝑡𝑡 − 𝜉𝜉) = [1 +
(𝜉𝜉 − 𝑡𝑡) 𝜒𝜒⁄ ]2 

Figure 4 demonstrates the thermal damage w.r.t. time t 
keeping the values of  𝜏𝜏0 = 5𝑠𝑠 𝑎𝑎𝑎𝑎𝑑𝑑 𝜏𝜏𝑝𝑝 = 10𝑠𝑠  with 
different values time delay parameter 𝜒𝜒  for kernel 
function K(t−ξ) =[1 + (𝜉𝜉 − 𝑡𝑡) 𝜒𝜒⁄ ]2 and a=1, b=1. It is 

seen that the thermal damage start from the utmost value 
and decrease rapidly.   It is observed that 𝜒𝜒 = .009 has the 
highest impact on the thermal damage.  

Figure 4. The variation of thermal damage at skin surface with different values of time-delay χ and 𝐾𝐾(𝑡𝑡 − 𝜉𝜉) =
[1 + (𝜉𝜉 − 𝑡𝑡) 𝜒𝜒⁄ ]2 
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4. Results and discussion

The main objective of this research work is to analyze a 
novel bioheat mathematical model on the basis of MDD 
involving time-delay parameter 𝜒𝜒 for the Pennes’ bioheat 
transfer equation and applied to examine the thermal 
properties of the skin tissue for burns caused due to laser 
radiations. The thermal damages can be measured in a 
better way with the MDD model. The blood perfusion 
prevent the tissue damage by developing the cooling 
function. In this research, the memory-dependent 
derivative involving time-delay parameter 𝜒𝜒 becomes a 
new measure of efficiency for bioheat transfer in the skin 
tissues. These results may be beneficial in the study and 
further improvements in the applications of 
thermotherapy in skin tissues. 
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