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Abstract

The collection of personal information about individuals, including the minor members of a family, by closed-
circuit television (CCTV) cameras creates a lot of privacy concerns. Revealing children’s identifications or
activities may compromise their well-being. In this paper, we propose a novel Minor Privacy protection
solution using Real-time video processing at the Edge (MiPRE). It is refined to be feasible and accurate to
identify minors and apply appropriate privacy-preserving measures accordingly. State of the art deep learning
architectures are modified and repurposed to maximize the accuracy of MiPRE. A pipeline extracts face from
the input frames and identify minors. Then, a lightweight algorithm scrambles the faces of the minors to
anonymize them. Over 20,000 labeled sample points collected from open sources are used for classification.
The quantitative experimental results show the superiority of MiPRE with an accuracy of 92.1% with near-
real-time performance.
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1. Introduction
With the increasingly ubiquitous deployment of smart
surveillance cameras throughout urban areas where
majority of the population live, privacy issues are
coming into focus [1–3]. Privacy often defines the
boundaries to limit access to an individual’s private
information and body. Today, we live in an information
society where vast quantities of data about us are
gathered and analyzed through automated processes
and cameras. A lot of private attributes and personal
information about individuals are collected by closed-
circuit television (CCTV) cameras and streamed to
remote cloud servers and viewing stations with no
privacy protection mechanism enforced [4].

Surveillance cameras are deployed in important
locations to ensure public safety and physical security
on top of providing concrete evidence for forensic
analysis [5, 6]. The users may vary from the public
safety authorities, law enforcement agents to a house
owner. If video streams are transmitted by the
edge cameras unprotected through the communication
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network, they may be subject to attacks. As a
consequence, these large amount of data collected
by the cameras could be intercepted and abused by
adversaries. An example of a privacy breach is when
a man in the middle manages to view the raw frames
on transit [7, 8]. This has caused the public to be more
concerned and to demand for change in the way video
surveillance works [9, 10].

Specifically, the practice of mass-surveillance can
have a profound effect on the understanding of minors
about privacy in their later lives [11]. Usually children
learn through experience; hence, they should grow up
in a privacy-aware environment in order to learn what
privacy is and how it works. Besides, many argue that
the right experience of privacy is very important to
a child’s future success and good decision-making in
setting correct safety measures and privacy boundaries.
Hence, today’s pervasive surveillance systems must
have the means to protect minor’s privacy.

Privacy protection is one of the active research areas
in the rise of Internet of Things (IoT) [12], where a
huge number of sensors and low powered processors are
being connected to the network with none or minimal
security measures. One of the more important aspects
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of this research is to protect the identity of the people
in case the data is compromised. Hence, any effort to
address the privacy problems in a surveillance system
must have techniques for both identifying private
attributes on images and for protecting them [13, 14].

Private attributes like face are detected through the
use of machine learning or deep learning networks
[13]. Following the detection process, these private
attributes of individuals are scrambled using apropos
cryptographic schemes. These schemes ensure that
video streams are not accessed by means of interception
attacks and abused by unauthorized people while
being transmitted from the cameras to the fog/cloud
servers and viewing centers. From the various privacy-
preserving requirements, minor children’s identity and
face protection is more essential to every family to
protect the minors from attackers or abusers [15–17].

In this paper, we propose a novel Minor Privacy pro-
tection solution using Real-time video processing at the
Edge (MiPRE). The MiPRE basically comprises a face-
object detector built based on Deep Neural Network
(DNN) and a lightweight scrambling algorithm. The
face detection method employs the Multitask Convo-
lutional Neutral Network (MTCNN) [18] to detect and
align the faces. The face recognition process is realized
using the FaceNet model [19], designed by Google. It is
employed to extract the important features of minors’
faces. The lighter scrambling scheme is designed based
on a chaotic map, which is highly sensitive to ini-
tial conditions. Then, the face-object detector model
is loaded to edge cameras to check every frame so as
to detect faces and classify them as adults or minors.
Following every successful detection and classification
of faces, the scrambling algorithm is called into action
to securely denature the children faces before the raw
video is transmitted over the communication network
to the consumers or storage sites.

The rest of this paper is organized as follows. In
section 2, we discuss several methods for children
detection as well as the historical efforts in the detection
and recognition of human faces. Section 3 presents
the system architecture of our MiPRE scheme and
its function blocks in detail, including the multi-step
pipeline face detection, children recognition, and face
scrambling for privacy-protection using a lightweight
scheme. Section 4 reports the model training process
and the performance of the MiPRE scheme. Finally,
Section 5 concludes this paper.

2. Related Work
2.1. Age Recognition based on Face Recognition
With the development of machine learning, computers
are becoming more widely used in many vision
processing tasks, which reduce manual workload and
guarantees high recognition rate [20, 21]. In addition,

the community is witnessing the migration of powerful
machine learning algorithms to the IoT environments
by developing lightweight solutions [6, 22, 23] in recent
years.

In the field of face recognition, researches mainly
focus on two aspects, authentication [24, 25] and
recognition [26, 27]. Then, irrespective of whether it is
recognition or authentication, a well-known top-down
approach that comprises three major stages is pursued.
Firstly, the face object is detected and boxed. Secondly,
the important features are extracted from the face. At
last, the comparison of features is performed [28] for
the purpose of recognition and authentication. Human
age recognition is a well-studied sub-area [29] in the
process of face recognition. Classifiers are trained to
detect the age of the subject or to predict the facial
appearance in certain age-group.

Face recognition-based age recognition is the process
of extracting age-related facial features to create an age
classification model [30, 31]. Then, use this model to
evaluate the age range of a given person to categorise
this person into different age groups. However, the
ability to build an age-recognition model through face
recognition is limited due to the fact that human aging
and changes are not exclusively attributed to time.
Aging is a complex process that could also be affected
by health and people’s living conditions.

Although the research on face recognition started
earlier, there are only few studies on the establishment
of age classification models. While some previous
works have proposed methods of age classification,
the accuracy of their models is far from satisfactory.
Today’s top-performing techniques of face recognition
are based on Multi-task convolutional neural networks.
Both Facebook’s DeepFace [32] and Google’s FaceNet
[19] architectures have the highest accuracy. DeepFace
uses 6 convolutional (conv.) layers followed by two fully
connected layers (FC) that are used to detect and map a
face in 3-D space and to map 67 fiducial points on the
face. The Facenet is based on an approach of detecting
faces that belong to the same person using illumination
and Pose invariance architecture. Hence, the MTCNN
and FaceNet architectures are employed in our model
so as to achieve performance results comparable to the
performance of the state-of-the-art techniques.

2.2. Privacy Features Protection Mechanism
These days many people are very concerned about
the invasion of their privacy by the widespread use
of CCTV cameras [33, 34]. Huge amount of sensitive
information is collected by the CCTV cameras and
transmitted over an insecure communication channel
to cloud servers for video analytics. Consequently, they
could be intercepted by adversaries that undermine the
privacy of individuals. Besides, they could be misused
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Figure 1. MiPRE system architecture.

by the people in control of the surveillance system.
Hence, it is necessary to have a secure video-privacy-
preserving measure implemented at the edge. The
image/video frame privacy protection usually includes
two tasks. Firstly, the detection of private attributes,
and secondly enforcing measures to protect these
sensitive attributes through de-identification. Machine
learning or deep learning techniques are employed for
the detection of the sensitive contents of frames or
images. Then, the process of de-identification is done
using scrambling schemes.

However, the preexisting stream ciphers like Rivest
Cipher 4 (RC4) and block ciphers like advanced
encryption standard (AES) are not convenient for
the encryption and decryption of information-rich
images due to their high computational resource
requirements and their inability to handle the strong
correlations amongst adjacent pixels of images. On
the contrary, chaotic scrambling schemes have high
degree of sensitivity and randomness. Then, these
characteristics make them the more feasible options for
video enciphering. However, existing chaotic schemes
are slow and they need to be redesigned so as
to fit into the resource constrained environment
of edge computing [35]. Hence, we focused on
designing lightweight scrambling schemes based on
computationally simple but robust chaotic schemes.
In this paper, we investigated the characteristics of
the Peter de Jong map [36] and proposed a secure
lightweight minor’s face scrambling technique based on
it.

3. MiPRE: Minor Privacy Protection at the Edge

3.1. System Overview
Figure 1 presents the architecture of our MiPRE system.
It consists of three major function blocks: (1) face
detection using a multi-step pipeline model, (2) face
recognition based on the extracted features to identify
children faces, and (3) face scrambling to protect
children’s privacy. Each module is implemented in
a docker container which promises scalability and

faster updates in parts of the system using micro-
services architecture [37, 38]. The design rationales
and technical details are presented in the following
subsections.

3.2. Face Detection
While there are many face detection methods like
Dlib, OpenCV, and OpenFace, we adopted MTCNN
approach for two main reasons. Firstly, it achieves a
high detection accuracy of frontal and lateral faces.
Secondly, the FaceNet model was built with an MTCNN
interface for face objects detection, which allows us to
focus on our target. Basically, the MTCNN is a deep
learning model for face detection based on a multi-
task cascaded Convolutional Neural Network (CNN). It
exploits the inherent correlation between detection and
alignment to boost up its performance. In particular,
to predict face and landmark locations in a coarse-to-
fine manner, the framework used in this paper leverages
a cascaded architecture with three stages of carefully
designed deep conv. networks [18, 32].

Given an input image, an image pyramid is built by
rescaling the image into different scales through a bi-
linear interpolation. This step insures scale invariation.
Figure 2 shows an example of three cascaded-stages of
the MTCNN following the scaling step.

• P-Net: This is a full convolutional neural network
(FCN). The feature map obtained at each position
by a forward propagation is a 32-D feature vector
used to determine whether a 12 × 12 grid area
contains a face or not. If it contains human face, a
bounding box is regressed and the corresponding
area in the original image is grabbed. Next, the
bounding box with the highest score is retained
by a non-maximum suppression (NMS) step and
all other bounding boxes with excessively large
overlapping area are discarded.

• R-Net: It is a simple CNN stage. Similar to the
last stage of the O-Net, the 24 × 24 box is up-
scaled to a 48 × 48 box in order to have the highest
confidence of bounding box detection and facial
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Figure 2. MTCNN: Built to have cascaded architecture to ensure
best performance in human face detection and bounding box
regression.

landmark extraction when input to the R-Net
stage.

• O-Net: This is employed to achieve higher
accuracy. In this stage, the 12 × 12 input box
produced by P-Net is first up-scaled to 24×24
box using a bilinearly interpolated method. Then,
it is input to the O-Net to determine whether a
human face exists. If a human face is detected, the
regression of bounding box is performed followed
by the NMS step.

Figure 3 presents the architecture of the layers
employed in each stage of the cascaded MTCNN model.
Each step uses different sizes of Conv. filters and
different number of layers to produce the same class
of results. The outputs have three categories. The
face classification score is presented as the first set
of outputs using two neurons: one for the presence
of a face and the other as its score. Another part of
the output is the bounding box regression where the
upper left and lower right of the bounding box are
represented by four neurons (dx1, dy1, dx2, and dy2).
Facial landmark localization regresses the position of
five points on left eye, right eye, nose, left mouth corner,
and right mouth corner. So, it is a 10-D variable that
needs ten neurons for representation.

During the training phase, all the three networks
use the landmark positions as supervised signals to

Figure 3. MTCNN: Stage architecture of the model used for face
detection and landmark extraction.

guide the learning of the network. In the prediction
phase, however, the P-Net and R-Net conduct only
face detection; they do not output landmark positions
because they are inaccurate in these phases. The
landmark position is only outputted in the O-Net.
Bounding box and landmarks coordination outputs are
normalized relative to the input image.

As mentioned above, there are three tasks that
MTCNN archives. They are face classification, bound-
ing box regression and facial landmark localization.
Thus, the loss function of the algorithm also has
three parts, briefly described in what ensues. Readers
interested in getting more details are referred to [32].
The cross-entropy loss function shown in Eq. (1) is
employed for face classification.

Ldeti = −(ydeti log(pi) + (1 − ydeti )(1 − log(pi))) (1)

where ydeti is the ground truth for the ith object and pi is
the network output for the face detection.

Next is the bounding box regression loss where the
euclidean distance loss function is employed as stated
in Eq. (2).

Lbbxi = ||(ŷbbxi − ybbxi ||
2
2 (2)

Lastly, the same regression loss function is employed
for each of the L landmark of each sample i as depicted
in Eq. (3).

Llandmarki = ||(ŷlandmarki − ylandmarki ||22 (3)

3.3. Children Faces Recognition
There are several ways to compare the similarity of
two images. The euclidean distance metric is one of the
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Figure 4. Model structure: This network consists of a batch input
and output layer and a deep CNN followed by L2 normalization,
which results in the face embedding. This is followed by the triplet
loss during training.

most used metric because of the ease in implementation
and in-expensive computation. Given a feature map
where the features are extracted from the face, this
metric is going to show the similarity in the features
between the feature set and a known set. This idea is the
prime focus of this section. The faces extracted by the
face detection step are going to be fed to the FaceNet.
Then, the resulting feature map is compared with the
datasets that comprise known positive and negative
images of children’s faces. At last, a similarity threshold
is computed and picked to give a final label to the face.

FaceNet is a universal system that can be used for face
authentication, recognition and clustering. It learns to
map images to an Euclidean space through CNNs. A
spatial distance is directly related to the similarity of
pictures. Different images of the same person have a
small spatial distance; but images of different people
have a larger spatial distance. Once the mapping is
done, the face recognition task becomes simple [39].

The preexisting DNN-based face recognition models
use an FC classification layer. The middle layer in the
FC layers, after the Conv. layers, or the last Conv.
layer is a vector map of the face image. The FC
classifier layer is then placed on top of this vector map.
The disadvantages of such methods are indirectness
and inefficiency. In contrast, FaceNet directly uses the
loss function of triplets-based Large Margin Nearest
Neighbor (LMNN) to train the neural network, and
the network directly outputs a 128-D vector space.
The triplets we selected contain two matching face
thumbnails and one non-matching face thumbnail. The
goal of the loss function is to distinguish positive and
negative classes by distance boundaries. The model
structure is shown in Fig. 4.

The purpose of the model is to embed the 2-D face
image X into the Euclidean space with D dimensions
where f (X) ∈ Rd . In this vector space, the anchor image
of a face xai (anchor) is close to other images with the
same facial expressions (xpi (positive)) and far from
faces with different characteristics (xni (negative)). As
illustrated by Fig. 5, the training process migrates the
network’s behavior from the left side to the right side.

To reach this goal, a triplets loss function is calculated
from the triplet of three pictures. The triplet is

Figure 5. Training goal of the FaceNet network.

composed of Anchor (A), Negative (N), and Positive (P)
images. Any image can be used as a base point (A).
Then, images which have the same facial characteristics
as the base are considered as its (P) and those images
that do not share the same characters are considered
as its (N). Triplets Loss minimizes the distance between
an anchor and a positive, both of which have the same
identity, but it maximizes the distance between the
anchor and a negative image. Mathematically, the loss
function can be formulated as stated in Eq. 4:

L =
N∑
i

[||f (xai ) − f (xpi )||22 − ||f (xai ) − f (xni )||22 + ε] (4)

where ε is the safe boundary between the positive and
negative images.

Theoretically speaking, the best images for training
purposes are those with the highest distance between
the (A) and (N) but lowest distance between the (A)
and (P). However, in practice this approach creates
a local minimum and a global solution is not going
to be reached. A remedy to this problem is to select
all positive image-pairs in a mini-batch, which can
make the training process more stable. The selection
of the (N), on the other hand, is made according to the
condition set in Eq. (5) to train the network.

||f (xai ) − f (xpi )||22 < ||f (xai ) − f (xni )||22 (5)

Training: The network was trained using 10,000 images
of children and 10,000 images of adult faces collected
from an open source [40]. The children ages are variable
between 6 to 14 years old (dictated by the datasets). For
the positive selection, we selected 100 face images for
each of the children and adult categories. The images
are fed through the MTCNN to have a Bounding Box
around the face. The face rectangle is then fed to the
FaceNet for euclidean distance calculation. Figure 6
presents the data flow of our model for minor’s face
detection.

In Fig. 6, the positive and negative dataset against
which a test image is compared is prepared beforehand.
This feature set is called embedding dataset that
contains the feature maps of the aforementioned 200
images for comparison. Total inference time, thus, is
divided into two parts: face detection time and feature
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Figure 6. Dataflow in our model shows how the MTCNN is used to detect and crop the faces from each input image and then use
the FaceNet to calculate the euclidean distance between the anchor face and positive and negative images to detect children’s faces.

comparison using the FaceNet network. More details
are presented in Section 4.

3.4. Lightweight Children-Face Protection Scheme
Due to their high sensitivity to slight changes, chaotic
methods are more suitable for image privacy protection
[36, 41, 42]. But existing chaotic methods do not fit into
a resource constrained devices like edge cameras. In
this paper, we developed a lightweight minor’s privacy
protection scheme based on the Peter De Jong Map
[36]. The Peter de Jong map is a type of 2D recursive
system stated in Eq. (6). The choice of parameter values
and initial conditions will generate a different attractor.
It has four parameters and two initial conditions.
However, the Peter de Jong map cannot be used for
chaotic encryption as it is. It does not meet the security
requirements. For instance, Fig. 7 shows a non-uniform
distribution of the pixels of chaos generated by Eq.
(6), signifying that it is insecure to be used as it is for
scrambling purpose.

xn+1 = sin(a ∗ yn) − cos(b ∗ xn)

yn+1 = sin(c ∗ xn) − cos(d ∗ yn)
(6)

After an extensive experimental study, in this paper
we proposed a one-way scrambling of children faces
in video frames using an improved version of De
Jong map and vectorized pixel-array multiplication.
Our proposed scheme is stated in Eq. (7). We added
four more parameters and identified the secure range
for every parameter value. It generates a random and
uniform output that is secure enough to be used for
cryptographic purpose. In other words, it generates
a random chaotic sequence that passes all standard
security tests like entropy, sensitivity, correlation, and
statistical analyses. Besides, it has a key space far

Figure 7. Distribution of the De Jong Chaos: it is not uniform
revealing its weakness against histogram analysis attacks.

greater than the lower secure key space boundary
(128 bits). The key contains eight double-precision
floating value elements giving a key length of 64 bits ×
8 = 512 bits and a key space of 2512.

key = [k0, k1, k2, k3, k4, k5, k6, k7]

x0, y0 = k0, k1

x1 = sin(k2 ∗ y0) + k3 ∗ cos(k4 ∗ x0)

y1 = sin(k5 ∗ x0) + k6 ∗ cos(k7 ∗ y0)

x0, y0 = x1, y1

(7)

Algorithm 1 shows the scrambling algorithm. A key
comprising eight elements is first generated followed by
the generation of a random chaos used to scramble the
minors’ faces on video frames detected by the object-
detection method. Equation (8) illustrates the secure
range of the eight elements of the key employed for the
generation of a chaos equal to the size of the region of
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interest (ROI). Every element of the key is a double-
precision floating-point value randomly selected from
its respective range defined in Eq. (8). The ranges were
defined after an extensive security analysis and they
produce secure chaotic outcomes when inserted into
Eq. (7). The random chaos generated is of the same
size as the ROI, which is a minor’s face in this case,
and a vectorized point-wise multiplication operation is
performed, which results in secure cipher.

Algorithm 1 Privacy-protection Scheme

1: ROI← Object-dtector(cam.video())
2: procedure generateKey

3: K ← secRand([k0, k1, ..., k9])
4: return← K
5: key← generateKey()
6: procedure generateKey(key, W, H)
7: chaos← Eq.7
8: return← chaos
9: chaos← generateKey(key)

10: procedure denatureFaces(chaos, ROIxy)
11: fdenatured ← np.multiply(ROI, chaos)
12: return← f denatured

key = [k0, k1, k2, k3, k4, k5, k6, k7]

k0, k1 = random(1, 4), random(1, 4)

k2, k5 = random(−1, 1), random(−1, 1)

k3, k6 = random(−1,−0.99), random(−1,−0.99)

k4, k7 = random(−3,−3), random(−3,−3)

(8)

Figure 8 demonstrates a sample histogram analysis.
Figure 8(a) is a clear input image and its ciphered
version is shown by Fig. 8(b). Figure 8(c) shows that the
frequency distribution of the input image in Fig. 8(a)
is not uniform. In contrast, the frequency distribution
of scrambled image in Fig. 8(b) has become uniform as
portrayed in Fig. 8(d). This validates that the privacy-
protection scheme is secure against any frequency
analysis attack. Besides, it is computationally efficient
and secure in that it passes all other security tests
described in sub-parts of subsection 4.3.

4. Experimental Results
4.1. Experimental Setup
The multi-level MiPRE architecture is tested in an
environment comprising a fog server and an edge
device. A relatively powerful machine, that has an
AMD Ryzen 7 2700X processor with 8 cores and 3.7
GHz clock, is considered as the edge server; whereas a
Raspberry PI is employed as an edge module. The server
has dual 8GB memory modules and a windows 10
Pro edition operating system is installed on it. During

Figure 8. Histogram: (a) plain image, (b) cipher of plain image
(a), (c) histogram of plain image (a), and (d) randomized histogram
of cipher image (b).

inference, we observed an average CPU utilization
of 18%, which is acceptable considering the need to
connect several edge nodes to an edge server. On the
other hand, the memory utilisation of the process is
higher at about 10GB on average. Given the loading
of several stages of CNN models, the higher memory
need is not surprising. But it should be considered when
deploying this model.

4.2. Accuracy of Face Recognition

We compared the accuracy of our MiPRE model with
the state of the art models for age recognition based on
facial components, as depicted in table 1. The approach
reported in [43] tries to divide faces into multiple
components and uses their changes as the features to
predict the age of the subject face. Levi et al. [44] uses
a CNN to classify primary objects in an image between
gender and age. Meanwhile, a rule based method has
been also proposed that divides the image into sections
and implement privacy measures based on rule sets
[45]. The last method we compared our scheme with is
[46], which tries to extract facial features and accurately
detect the age of each face. As shown by Table 1, our
MiPRE scheme achieves a better performance in terms
of accuracy than the other efforts.

Table 2 shows the ratio at which the multi staged
model we proposed in MiPRE works. The model
achieves a miss detection rate (MDR) of 7.9% in the
testing set, which means that 158 out of 2000 images
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Model Accuracy
Otto et al. [43] 81.27 %
Levi et al. [44] 84.7 %

Teixeira et al. [45] 91.14 %
Du et al. [46] 79.24 %

MiPRE 92.1 %

Table 1. Accuracy of face classification based on the age. Our
multi staged model has achieved a higher average accuracy.

Miss Detection MDR Detection DR
158 0.079 1842 0.921

Table 2. Miss classification rate based on the 2000 images that
are used for testing.

Figure 9. ROC curve.

are classified to the wrong category. The detection rate
(DR) is 92.1%.

Figure 9 is the ROC curve that shows detection
rate, shown as True Positive Rate versus the False
Positive rate. This curve gives some intuitive insight
to the best possible threshold to be set for the child
detection. A bigger area under this curve implies that
the system performs better with higher true positive
and lower false positive rate. During implementation,
for example, if a true positive rate of 0.7 is needed, then
a 0.2 false positive rate is expected.

4.3. Lightweight Face Scrambling Scheme
Functional Test. The privacy-conserving technique was
integrated with the face-detection scheme. Figure 10(a)
shows two minors’ faces accurately detected and
bounded. Figure 10(b) depicts the enciphered faces of
the two minors following the detection process. The
experimental result also verifies that our proposed
minor’s privacy protection scheme is lightweight. It
accomplishes the operation of scrambling a minor’s face
with a size of 150 × 150 × 4 pixels in less than 45 ms.

Figure 10. Detected and Scrambled Minors’ faces

Finally, Fig. 11 and Fig. 12 show some of the
positive samples along with the processing time of each
individual image underneath. In general, face detection
takes about 240 ms, but the recognition process is much
faster at about 37 ms. Moreover, the label that the
machine assigns and the confidence in the score are
reported for each sample. The higher the confidence,
the better the label is. But a confidence of 50% is a
random guess between the outputs.

Comparative Security and Performance Analysis. On top
of the histogram and functional analysis, we have
also compared our scrambling scheme with preexist-
ing popular stream and block ciphers like RC4 and
AES, respectively. AES is the most secure and most
widely used block cipher whereas RC4 is a sim-
ple stream cipher. One of the performance metrics
employed is the encryption time. The other security
parameters considered are statistics, key space (Ks), key
sensitivity(Kσ ) measured in terms of Number of Pixels
Change Rate (NPCR) and Unified Average Changing
Intensity (UACI), information entropy (Inf oe), correla-
tions in horizontal (corrh), vertical (corrv), and diagonal
(corrd) directions. The Ks tells us whether a scheme is
resistant against brute force attacks. The Kσ measures
how much the cipher varies when the original key is
slightly changed, like by one bit. The Inf oe measures
how random the pixels are distributed. For an image (I)
comprising 8-bit pixel values, the ideal entropy value is
H(I) = 8. Hence, a scheme that produces an entropy
value closer to 8 is said to resistant to entropy analysis
attack. Lastly, the correlation parameter calculates the
correlation among the adjacent pixels of the cipher
image in horizontal, vertical, and diagonal directions,
which is expected to be very close to zero.

In terms of encryption time, Table 3 shows that our
scheme is faster than both RC4 and AES. Besides, the
ideal mean and standard deviation (STD) of a uniformly
distributed pixels of an image are 127.5 and 73.901.
Table 3 also shows that our scheme has mean and STD
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Figure 11. Sample examples of the proposed children’s face detection model.

Figure 12. Sample examples of the proposed adult’s face detection.

values closer to the ideal value signifying uniformity
in the distribution of the cipher pixels. Generally,
the traditional encryption algorithms like RC4 stream
cipher and block cipher AES are not suitable for
image encryption due to image’s intrinsic properties
such as bulky data capacity, strong redundancy and
strong correlations among adjacent pixels. On the other

hand, chaotic schemes have many properties, including
uniform randomness, unpredictability, aperiodicity,
sensitive dependence on initial conditions. These
properties have helped chaotic systems become popular
in image encryption.
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Table 3. Comparative Security and Performance Analysis

Parameter Our
Scheme

AES RC4

Time(ms) 44.73 94.228 63.169

Ks 2512 2256 22048

Kσ
UACI 48.031% 25.079% 33.227%

NPCR 99.616% 74.730% 99.590%

Inf oe 7.909 bits 6.784 bits 7.991 bits

Corrh 8.899e-5 8.93e-4 0.011

Corrv 5.52e-4 0.0012 0.021

Corrd 0.00812 0.0132 0.0724

Mean 126.501 159.666 159.188

STD 77.554 84.499 84.521

5. Concluding Remarks

As the number of CCTV cameras increases, families
have grown more concerned about the privacy of
their members and data. Minimizing appearance of
the minors in unauthorized videos is one of the
responsibilities of parents. Hence, scrambling face,
the most powerful human identifying attribute, can
effectively anonymize individuals. In this work, a novel
lightweight minor privacy protection scheme named
MiPRE is proposed. The MiPRE scheme is designed
by leveraging multi-stage DNN based face recognition
approaches and a lighweight chaotic scrambling
algorithm. It detects and scrambles children’s faces in
video frames to ensure de-identification of the minors
at the edge of the network, just before the video is
streamed over the Internet to distant monitors. The
MiPRE scheme is tested on a platform consisting of a
smart camera and an edge server, and the experimental
results verified that the MiPRE scheme meets the design
goal. It achieved a high accuracy in children face
recognition, 93%, and is able to finish the secure face-
scrambling operation in 45 ms.

Our on-going efforts mainly focus on identifying
additional attributes that have significant impacts
on children privacy, which allows us to extend the
coverage of the MiPRE scheme. To consider more
privacy-attributes other than faces, we will continue
investigating lightweight machine learning algorithms
to fit the next version of the MiPRE scheme in the edge
environments.
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