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Abstract

The application of machine learning and deep learning in the field of vulnerability detection is a hot topic in
security research, but currently it faces the problem of lack of dataset. Considering vulnerable code can be
obtained from vulnerability fix commits, we propose an automatic vulnerability commit identification tool
based on hierarchical attention network (HAN) to expand existing vulnerability dataset. HAN can model the
input data at the word and sentence levels respectively and pay attention to the changes in the characteristics
of different words in different categories, which improves the classification performance. Experimental results
show that the accuracy and F1 of our model both achieve 92%. Through the vulnerability fix commit,
researchers can quickly locate the vulnerable code. And extracting vulnerable code from open-source software
can effectively expand the current dataset due to the enormous number of open-source software.
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1. Introduction
To improve the efficiency of software development,
most developers use open-source software in their sys-
tem or some open source components in their soft-
ware. However, as open-source code has becoming more
and more common in commercial software products
and some internal applications of institutions, attacks
against vulnerabilities in the open-source software are
increasing rapidly. Traditional vulnerability detection
methods, such as static analysis and dynamic analysis,
mostly require a large amount of professional security
researches involvement. The detection efficiency mainly
depends on the researcher’s expertise.

As a result of that, lots of researchers are beginning
to pay more attention to improve the efficiency of
vulnerability detection. An important research topic
is to apply machine learning to source code based
vulnerability detection. Li et al.[1] use deep learning to
train a classification predictive model for vulnerability
detection. They use a bidirectional LSTM network on
the SARD data set. But the code structure in this dataset
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is too simple and has a big gap with real vulnerable
code, which makes the model not perform well on
real programs. After that, Zhou et al.[2] proposed a
vulnerability detection method using a graph neural
network on real vulnerability dataset which costs them
600 person-hours, and the accuracy of their method
achieves 72.26%.

The data used in the above studies either has a large
gap with real vulnerabilities or takes a lot of time to
collect. Moreover, there is no benchmark dataset in the
area of vulnerability detection. When some researchers
build their own dataset, they need to manually verify
the data one by one to ensure the accuracy of vulnerable
code extracted, which is challenging to automate.
The enormous workload and low efficiency of manual
collection caused by the diversity of vulnerabilities
make it difficult for others to reproduce existing work
or conduct further research.

It’s not difficult to see that the biggest challenge in
the application of machine learning on vulnerability
detection is the lack of dataset. An efficient method
for collecting vulnerability data that can reflect the
real code structure is the key to this problem.
Only when the amount of data that reflects the
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actual vulnerabilities is large enough can machine
learning show its superiority and then promote the
realization of efficient and automatic detection of
vulnerabilities. After the preliminary research, we
found that the commits for vulnerability fixing can
help us locate vulnerable code more efficiently. We
can quickly locate the vulnerable code based on
the modified code in commits. And the significant
number of commits in open-source software makes it
easier to collect. Therefore, we construct a system to
identify vulnerability fix commit automatically. Our
experiments on the collected commit data show that
the vulnerable function can be positioned in the range
of one or two functions when collecting vulnerability
code via commit, thereby significantly improving the
efficiency of extracting the vulnerability code.

In short, we chose the commit as the entry point
based on the following facts: First, in most open source
projects, each commit usually addresses only one issue,
especially bug fix. Second, vulnerability fix commits are
significantly different from other commits, such as new
feature commits. The vulnerability fix commits usually
modify fewer files and fewer lines than other commits.
Third, analyzing the modified locations in commits
can shorten the time cost in locating vulnerable code.
Fourth, the information of source code before and
after modifications are well included in commits,
so we can easily access the fixed vulnerability-free
code, furthermore, improve the quality of vulnerability
dataset.

Based on the above analysis and the composition
of a commit, each has a brief description that
contains at least one sentence in natural language
summarizing the purpose of this commit. We choose the
hierarchical attention mechanism that can characterize
the data from word and sentence level to identify the
vulnerability fix automatically. HAN has two layers, one
for word-level, another for sentence-level. Each layer
has an encoder with attention mechanism. With the
attention mechanism, it can assign different weights
to each word in the sentence, and then integrate
each word and its weight to form a sentence vector,
generate the document vector in the same way as
sentence vector. Finally, it passes the document vector
into a fully connected layer with sigmoid to get
the class probability distribution of the document.
To our knowledge, we were the first to use it for
vulnerability fix commits classification and prediction.
And the experiment achieved a good result with an
accuracy of 92.81%, F1 of 92.71%. All the commits
data are collected from open-source projects in C/C++
programming language on GitHub1, the world’s biggest
hosting platform for open-source projects. Besides,

1https://github.com/

we cross-compares the descriptions of vulnerabilities
in the National Vulnerability Database(NVD)2 and
Common Vulnerabilities and Exposure(CVE)3 with the
commits log of open-source projects, to determine
which commits are about vulnerability fix. We use the
commit message as the feature of a commit, and utilize
the hierarchical attention network as our vulnerability
fix commits prediction model. We use the method in
this paper to construct our own dataset of vulnerable
function code about CWE-119 (Buffer Error) and CWE-
399 (Resource Management Error), which cost our 100
person-hours.

In Summary, the major contributions of this paper are
as follows:

• An approach of recognizing vulnerability fix com-
mits based on a hierarchical attention network,
which achieves the accuracy of 92.81%, F1 of
92.72%.

• A vulnerability fix commit dataset that reflects
the real environment opens to other researchers,
which contains commit hash, commit message,
the number of changed files, the number of
insertion code lines, and the number of deletion
code lines. Researchers can build their own
vulnerability dataset efficiently based on our
commit dataset.

2. Approach
In this section, we describe the detail of our
vulnerability fix commit recognition system.

First, we need to collect enough vulnerability data
from open source projects. Considering the authority
and accuracy of the vulnerability information, we
choose NVD and CVE as our data source. The NVD
and CVE’s databases record a lot of information
about vulnerabilities, such as description, vulnerability
type, reference hyperlink, release time, etc. Each
vulnerability has a unique identifier named CVE ID. In
the beginning, we crawled all the information, indexed
them by CVE ID, traversed to remove the duplicate
records. Then we filter out the vulnerabilities unrelated
to open-source software. Only the software with source
code located on GitHub was retained because our
research is mainly focused on GitHub commits.

In this way, we initially established a vulnerability
database for open-source software. However, this is just
a vulnerability descriptive database, which only records
descriptive information about the vulnerabilities and
contains no trigger code or fix code. Then, we
extract the vulnerability fix information from all the

2https://nvd.nist.gov/
3https://cve.mitre.org/
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descriptive information and access the commit content
in the corresponding GitHub repository, which requires
cloning the entire GitHub repository and extracting all
commits in the project. Except for the vulnerability
fix commits, other commits serve as negative samples
of the commit data set. Next, we extract features to
characterize each commit.

As for the classification predictive model, we
use a hierarchical attention network to learn the
characteristics of the vulnerability fix commit.

The detailed process steps are as follows.

2.1. Data Collection

After the vulnerability is disclosed, developers tend to
fix the vulnerability as much as possible and commit the
repair code to the project repository. After that, most
bug reports will update the information about these
fixes or patches. In these data, GitHub patches account
for the largest proportion, and the patches on GitHub
are all in diff format, which is convenient for direct
text analysis. Therefore, we want to collect as many of
GitHub patches as possible for experimental input data.

To gather the patch, we need to identify the
commit where the patch is located. To collect the
vulnerability fix commits, first, we crawled all the
descriptive vulnerability data in NVD and CVE’s
database. Second, we deduplicated the vulnerability
information according to the CVE id and dropped
the withdrawn vulnerabilities. Third, we classified the
vulnerability data based on whether the reference
hyperlink contains the keywords of “github.com”. It is
not difficult to see that the vulnerability with GitHub
hyperlink is a vulnerability of the open-source software
whose source code is hosted on GitHub. In this way,
we got 3,423 open-source software vulnerabilities from
126,185 vulnerabilities.

Among the vulnerability descriptive information,
we put our mind to the external reference hyperlinks
marked as “PATCH” by NVD. And keep only links
whose domain is hosted on GitHub and contains
the keyword “commit”. Then we normalize the URL
string by removing unnecessary information and
only retain the information required in the form of
"https://www.github.com/vendor_name/product_name/co-
mmit/SHA-1". After doing this, we can easily get the
software name, the vendor name, and the hash code of
this commit by splitting the normalized URL with “/”.
The SHA-1 hash code is a cryptographic string that is
generated based on the information contained in the
commit. It is a commit’s id and can uniquely represent
a commit object. So, we can request the content of
a commit using the command “git show SHA-1” in a
repository. Here the content of a commit is a patch
output, the difference introduced by the commit.

After the above processing, we finally collected
3,704 GitHub commits from 933 open-source projects.
Among them, Linux contributed the most significant
number of commit data, accounting for 15% of the
total amount. 2% of these 933 open source projects
contributed 41.7% of commits.

We randomly selected 200 commits from all the
3,704 commits for manual review to verify whether
these commits are real vulnerability fixes. The review
shows that they are all vulnerability fixes. Therefore,
we believe that the commits data obtained by the above
method is reliable enough to be directly used as positive
samples. We identify the programming language based
on the suffix of the file modified in the patch. According
to our statistics, the number of patches that modify
code files programming in C/C++ is 2,014, accounting
for 48% of total patches, which is the largest. The
second most is PHP (18%), and then is JavaScript (5%).
In this paper, we focus on the open-source software
programming in C/C++ because we want to extract
vulnerable code based on these patches in the next work
and C/C++ has the largest amount of data, and there
are several open-source parsing tools for C/C++, such
as Clang4.

Negative samples are collected in the following way.
First, run "git log –stat" command in the GitHub
repository directory to get all the commit records and
abbreviated stats for each commit, including commit
hash, commit message, the number of files modified,
the number of deleted lines, and the number of inserted
lines and so on.

Except for the positive samples, the rest are
candidates for negative samples. Then we apply regular
expression shown in the table 1 to the commit message
of the candidate negative sample to confirm that there is
no commit obviously related to a vulnerability fix. After
that, a total of 4,774,882 commits were collected, of
which 2,925 were positive samples, that is, vulnerability
fix commits.

Table 1. The regular expression used to check the candidate
negative commits

Regular Expression Statement

denial of service, dos, ReDos, DDos, remote code
execution, open.*?redirect, XSS, XXE, XSRF, CSRF,
SQL injection, CVE, NVD, malicious, attack, exploit,
directory.*traversal, clickjack, hijack, advisory,
insecure, security, unauthorize, attacker

4https://clang.llvm.org/
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2.2. Feature selection
The log of commits contains information including
commit id, date, author, commit message, the number
of modified files, the number of deleted lines, the
number of inserted lines. We finally choose commit
message as the feature for a commit. A commit message
consisted of two parts, title and thorough description.
The title is the text up to the first blank line in the
message. It is a single line less than 50 characters, which
summarizes the changes. The thorough description is
optional. It details the content and purpose of this
commit. Here we use the whole message as the feature,
title, and thorough description (if any).

Lines 5-17 of Figure 1 is an example of commit
message. The message is written in natural language,
and it briefly describes the purpose of this commit. The
result would not be affected by the type of vulnerability
if using the commit message as the feature.

1 From a206b0ea12eb4606b93323268fc81a4f1f952531 Mon Sep 17 00:00:00 2001

2 From: Pieter Wuille <pieter.wuille@gmail.com>

3 Date: Fri, 17 Feb 2012 17:58:02 +0100

4
5 Do not allow overwriting unspent transactions (BIP 30)

6
7 Introduce the following network rule:

8 * a block is not valid if it contains a transaction whose hash

9 already exists in the block chain, unless all that transaction’s

10 outputs were already spent before said block.

11
12 Warning: this is effectively a network rule change, with potential

13 risk for forking the block chain. Leaving this unfixed carries the

14 same risk however, for attackers that can cause a reorganisation

15 in part of the network.

16
17 Thanks to Russell O’Connor and Ben Reeves.

18 ---

19 src/main.cpp | 26 ++++++++++++++++++++++++--

20 1 file changed, 24 insertions(+), 2 deletions(-)

21
22 diff --git a/src/main.cpp b/src/main.cpp

23 index 995195289f8c..20aa069a7931 100644

24 --- a/src/main.cpp

25 +++ b/src/main.cpp

26 ...

Figure 1. An example of commit message

2.3. Data Processing
Each commit message has a corresponding label of
"0" or "1", where "1" means it is a description for
vulnerability fix commit, 0 means not. We randomly
select a certain number of negative samples to address
the problem of a serious imbalance between positive
and negative samples. After a few comparative tests, we
decide to use the dataset with a positive and negative
ratio of 1:7 and use random oversampling for data
enhancement. Finally, we have 20,584 samples used in
the model learning.

Considering the structure of HAN, we have per-
formed tokenization on sentence-level and word-level.
There’s no way to split the message text directly because
of the title line without end punctuation. So, we first
split the title and the detailed description, then utilize
NLTK’s[3] sentence tokenize API on each section and
merge them.

Next, we use the word tokenizer to tokenize the
sentences. There we get a dataset in the form of
document-sentence-word. Finally, we convert all words
to lower case, remove stop words and words whose
length is less than three. To prevent the influence
of affixes required, e.g., Grammatical role, tense, we
remove the morphological affixes from words, leaving
only the stem of the word.

2.4. Classification Model
We use the hierarchical attention network (HAN)[4]
as our classification model to identify vulnerability
fix commits. The commit message is like a document.
Each commit message contains at least one sentence;
each sentence contains more than one word. Words and
sentences that consist commit message describes the
purpose of this commit together. Anyone of these words
or sentences may mean different things in different
contexts. HAN has a comprehensive consideration of
word-level and sentence-level, which would result in
better performance. The structure of HAN is shown in
Figure 2.
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Figure 2. The structure of HAN

The attention mechanism lets the model pay more or
less attention to individual words and sentences when
constructing the representation of the document. Words
or sentences that are more important to the document
will get more attention and higher weight values, which
enables HAN to generate a vector representation for
the entire document based on the different importance
of each word and sentence. HAN’s two layers both
have a bidirectional GRU encoder to represent words
or sentences and a corresponding attention mechanism.
GRU (gated recurrent units)[5] is a gating mecha-

nism in recurrent neural networks. Similar to LSTM[6],
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it is proposed to solve problems about long-term mem-
ory and vanishing gradient.

GRU has two gates, update gate and reset gate. The
update gate determines how much information should
pass in the past, and the reset gate decides how much
information should be discarded in the past.

The update gate used the sigmoid function to decide
which values to pass. At time step t, the update gate zt :

zt = σ (W (z)xt +U (z)ht−1)

The reset gate generates the value it wants to
discard from the previous time step by multiplying the
concatenated value of the previous time step and the
current time step by rt .

rt = σ (W (r)xt +U (r)ht−1)

The current memory is:

h′t = tanh(Wxt + rt �Uht−1)

The final memory of the present time step is:

ht = zt � ht−1 + (1 − zt) � h′t

Bidirectional GRU can be seen as two unidirectional
GRUs.The current hidden layer state is jointly deter-
mined by the current input xt , the input of the forward
hidden state, the output of the inverted hidden state at
time t − 1.

−→
ht = GRU (xt ,

−−−→
ht−1 ) (1)

←−
ht = GRU (xt ,

←−−−
ht−1 ) (2)

The hidden layer state at time t is obtained by the
weighted sum of the forward hidden layer state and the
reverse hidden layer state:

ht = wt
−→
ht + vt

←−
ht + bt

Wt and vt respectively represent the weights of the
forward hidden state ht and the reverse hidden state ht
corresponding to the bidirectional GRU at time t, and bt
represents the bias corresponding to the hidden state at
time t.
Attention mechanism
In the word-level layer, the Attention mechanism can

give different weights to each word in a sentence and
pick the words that are important to the sentence and
integrate these word representations into a sentence
vector s.

uit = tanh(Wwhit + bw) (3)

ait =
exp(uit>uw)∑
t exp(uit>uw)

(4)

si =
∑
t

aithit (5)

Here we use word2vec to train the word vector model
and directly import the word embedding model in the
experiment.

Document vectors are obtained in the same way
as sentence vectors. The sentence-level vector u is
introduced to measure the importance of sentences. The
attention mechanism can reward sentences that have
contributed to document classification.

ui = tanh(Wshi + bs) (6)

ai =
exp(ui>us)∑
i exp(ui>us

(7)

The document vector v synthesizes all the informa-
tion of sentences.

v =
∑
i

aihi

3. Experiment

Environment We implement the hierarchical attention
network in Python by using Pytorch and using NLTK[3]
to preprocess text data, Gensim to training pre-trained
word embedding models. We run our experiments on a
server with NVIDIA GeForce RTX 2070 GRU and Intel
Xeon E5-2650 v4 CPU.
Training We use the data collected in section 2 to

train the hierarchical attention network. After tuning
the parameters for our models, we set the hidden size
of word level and sentence level attention to 200, the
number of layers in GRU to 2, the dropout to 0.5.

To reduce the computational overhead and ensure
convergence, we use the minibatch stochastic gradient
descent with the optimization proposed by Kingma et
al.[6]. The batch size is set to 32, and the learning rate
is set to 0.002.

We use the word2vec embedding method[7] to embed
the words to vectors. To get better representation
performance, we decided to use a 200-dimensional
vector to represent the message text and build the
word2vec model on over one million commit messages
that is.

To evaluate the effectiveness of our automatic
vulnerability fix commits recognition system. We
randomly split the dataset into three parts at the ratio
of 8:1:1, which are training set, validation set and test
set.
Evaluation We aimed to construct a classification

model to predict whether a given commit is a
vulnerability fix commit. To measure vulnerability
prediction results, we use the following metrics:
Precision (Pre), Recall (Rec), Accuracy (Acc), F1 score
(F1) and False Positive Rate (FPR). Here is a brief
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definition:

P recision =
T rueP ositive

T rueP ositive + FalseP ositive
(8)

Recall =
T rueP ositive

T rueP ositive + FalseNegative
(9)

F1 =
2 ∗ P recision ∗ Recall
P recision + Recall

(10)

FPR =
FalseP ositive

T rueNegative + FalseP ositive
(11)

(12)

P recision is the ratio of correctly predicted positive
observations to the total predicted positive observa-
tions. Recall is the ratio of correctly predicted positive
observations to the all observations in actual class pos-
itive. A higher P recision ensures that the classifier can
correctly predict as many vulnerability fix commits as
possible. And higherRecall ensures that there are as few
false positives as possible in the observations predicted
to be positive. F1 Score is the weighted average of
P recision and Recall. It takes both false positives and
false negatives into account.

In this paper, we try to keep the FalseP ositiveRate
as low as possible while keeping the high Recall
and high P recision. The high P recision and low
FalseP ositiveRate ensure that all the positive result is
credible. After a set of experiments, our model achieves
a new state-of-art result. Our F1 score is 92.72%,
precision score is 93.27%, recall score is 92.17%,
accuracy score is 92.81%, and false positive rate is
6.56%.

We also compared our method with three existing
method for vulnerability commit identification, Stack-
ing algorithm[8], Voting algorithm[9] and LSTM on
the same dataset. Comparative experimental results are
shown in the Table 2. It can be seen that HAN has an
obvious advantage over other methods.

Table 2. Comparative experimental results with other methods

F1(%) Pre(%) Rec(%) Acc(%)

Stacking 83.46 81.49 85.52 83.06
Voting 65.49 87.89 52.29 72.50
LSTM 57.99 52.82 64.29 51.87
HAN 92.72 93.27 92.17 92.81

The P recision score of our method is significantly
higher than other methods, which means HAN can
correctly predict more vulnerability fix commits.
We also used the collected commit data to build
our own vulnerability database. Practice proved that
this method could greatly improve the efficiency of
collecting and verifying vulnerable code. We costed 100
person-hours to build a dataset of vulnerable code for

vulnerability research in Chinese National Computer
Network Intrusion Protection Center5.
Discussion Compared to other methods, HAN can

have a better understanding of the sample by applying
the attention mechanism at both word and sentence
level to distinguish which word or which sentence is
more important for vulnerability fix commit. We find
that the stacking algorithm and the voting methods
improve the classification effect by increasing the
complexity of the model, but they cannot understand
the natural language text well, resulting in the inability
to achieve the best results. The LSTM model widely
used in the NLP field can only learn the sequence
structure and cannot deeply understand the weight of
different sentences and different words, which leads
to a low precision rate. The false positive rates of
Stacking, Voting, LSTM are 19.39%, 7.19%, 61.41%,
while the false positive rate of our method is 6.56%. We
think that the higher false positive rate of other tools
is because they only consider the words relationships
in the samples, and not segment the sample at
sentence level. The same group of words could express
different meanings in one sentences and in two different
sentences. By segmenting samples at both sentence
level and word level, HAN can identify vulnerability
fix commits in better performance. On the other
hand, some commit messages are not standardized
enough, the comments are not submitted in strict
accordance with the git instructions. The expressions is
too ambiguous that our model can not learn them well
which causes some false positive and false negative.

4. Related Work
In recent years, more and more works realize the
significance of patches for vulnerability discovery and
exploitation. In the following, we discuss related work
from the aspects of data collection methods and
classification algorithms.

About data collection, Kim et al.[10],Weiss et al.[11]
and other papers[12][13][14] collected vulnerabilities
related commits by retrieving keywords such as "CVE",
"bug", "buffer overflow", etc. in the git log. The
searching process aims at the commit message. The
commit would match the searching conditions when the
commit message contains the keywords, which shows
that our training for the commit message is correct
from the side. However, the set of searching keywords
is highly dependent on the researchers’ professionalism
and it is easy to miss some atypical samples. Locating
vulnerable code areas by simply searching commit and
comments with key words would lead to a relative high
false negative rate. Table 3 shows that the frequency

5http://nipc.org.cn/
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Table 3. The frequency of specific keywords in the vulnerability fix commit

fix cve bug security overflow patch vulnerability

83.90% 23.02% 20.22% 14.56% 10.18% 7.88% 4.76%

of different keywords in the vulnerability fix commits’
comments. We can see that not all fixes contain obvious
vocabulary related to the vulnerability. It is fast to
search for keywords directly, but the accuracy is not
high enough.

Many papers[8][15][16] collected commit data by
mapping from NVD’s description for vulnerabilities
to GitHub. They consider all the reference URLs
in the description which hosted on GitHub as the
vulnerability related commit, whether or not there is
a "PATCH" tag. In this paper, we also start with the
reference link. In addition, we considered the tag of the
reference link. We only used the URLs with a "PATCH"
tag to ensure the accuracy.

About commit classification, Zaman et al.[17] made
a case study on different types of bugs in Firefox.
They analyze the difference between security and
performance bug in Firefox from the following
aspects: the time to fix, the number of authors,
the number of changed lines and changed files.
Tian et al.[12] presented an approach to identify
bug fixing patches in Linux kernel based on both
number information, including the number of files
changed, the number of hunks, the number of loops
added, etc. and commit message. Their classification
algorithm integrates Learning from Positive and
Unlabeled Examples (LPU)[18] and Support Vector
Machine (SVM)[19]. The feature extraction of these
works is somewhat complicated and it is difficult to
realize automated extraction. Besides, Zhou et al.[9]
identify the vulnerability commit based on commit
message using an ensemble learning algorithm. They
use logistic regression to choose the best one of the
six basic classifiers through a set of K-fold stacking
algorithms; the six basic classifiers are Random Forest,
Gaussian Naive Bayes, K-nearest Neighbors, Linear
SVM, Gradient Boosting and AdaBoost. Wang et al.[8]
adopt a voting classifier that ensembles five classifiers,
Random Forest, Bayes Net, Stochatic Gradient Descent,
Sequential Minimal Optimization and Bagging. The
features they used are all number information, such
as the number of changed files, the number of
total/net modified functions. In this paper, we use
the commit message as the only feature and adopted
the hierarchical attention network as the classification
predictive model. HAN can have a better understanding
of the sample by applying the attention mechanism at
both word and sentence level and the experiment shows
that it is better than the nonhierarchical methods.

5. Conclusion
To solve the problem of insufficient data for deep learn-
ing applied to vulnerability detection, we proposed
an automatic approach for vulnerability fix commit
detection.

Considering the commit message’s organizational
characteristics, paragraph consisting of one or more
sentences, describing the purpose of a commit, we
choose to apply bidirectional GRU with attention
mechanism at the word-level and sentence-level
separately. Our method can analyze the commit
message in the entire GitHub repository and identify
the vulnerability fix commit in them. If any developer
uses an existing open-source software code from
GitHub, this approach can help them to discover
secret patches[8] and potential threats in the reference
repositories. Our initial dataset used to train the
hierarchical attention network model is 8,814 commit
messages from 316 open-source software’s source code
repositories. The experiment shows that our model
works well, with F1 of 92.71%, and can significantly
improve the efficiency of vulnerable code collection.

The commit dataset we constructed in this paper
can not only serve as security suggestions for other
researchers but also provide data foundation for source-
based vulnerability detection. In future work, we will
test this model on more open-source software and
extract more vulnerable code based on this dataset.
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