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Abstract 
The Multi-mode Resource Constrained Project Scheduling Problem is characterized by a set of tasks, resources and an 
objective function. All tasks of a project must be organized carefully taking into account precedence relations, the mode in 
which they are performed and availability of resources at all times. At present, around 71% of the projects related to the 
software industry are renegotiated or canceled causing negative impacts on both, social and economic areas. Among the root 
causes of these failures, deficiencies in planning processes and a lack of tools to help generate quasi-optimal project 
schedules are found. This kind of problem can be presented as an optimization problem subjected to two groups of 
restrictions: precedence relations and resource constraints. This paper aims at proposing a new Estimation of Distribution 
Algorithm applied for the resolution of the Multi-mode Resource Constrained Project Scheduling Problem. In particular, 
this algorithm is based on Factorized Distribution Algorithm in which the precedence relations of the problem are represented 
by the factorization. A comprehensive computational experiment is described, performed on a set of benchmark instances 
of the well-known Project Scheduling Problem Library (PSPLIB) in its Multi-mode variant. The results show that the 
proposed algorithm can find similar or sometimes even shorter makespans than others reported in bibliography. 
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1. Introduction

The project management keeps on a growing trend during 
recent years. Generally, investment processes are organized 
as projects with a high impact on society and economy. In this 
sense, factors such as technological changes, economic 
pressures, work in multidisciplinary teams, limited resources 
and time, are essential elements that must be carefully 
coordinated to achieve project objectives with an adequate 
balance between costs and time [1]. 

Within this context, the planning and construction process 
of optimal or quasi-optimal project schedules is a constant 
concern of the project managers. It is generally identified that 
the Project Scheduling Problem (PSP) is a complex problem 
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of the NP-hard type [2], where numerous factors and 
variables are involved. 

The difficulties of planning in project management 
continue and, for example, in the field of software 
development, they are clearly manifested in the CHAOS 
Reports of the Standish Group [3], [4]. These studies show 
that, in the last years, the software industry projects have 
behaved as follows: 

• The number of unsatisfactory projects remains in a high
range between 66% and 71%.

• The root causes of project failure [5] can be frequent
errors in the planning processes, scope, time or logistics
[6], [7], [8]. Furthermore, poor management of control
and monitoring processes [9], [10] causes delays and
quality problems.
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This situation can be mitigated by actions aimed at improving 
the quality of planning, supported in the construction 
processes of project schedules. 

There are several schools that try to standardize the 
concepts and practices associated with project management 
and enhance the construction of project plans adjusted to the 
needs of the projects. Some of these institutions are the 
Software Engineering Institute with its CMMI proposal [11], 
[12], the Project Management Body of Knowledge (PMBOK) 
[13], and the ISO 21500 standard developed by the 
International Standards Organization ISO [14], [15]. 

These schools propose new techniques and in their recent 
versions, they have introduced the need for simulation 
techniques, data analysis and resource optimization in the 
construction of project schedules. However, some difficulties 
still persist, such as: 

• They do not propose concrete optimization techniques
for the construction of project schedules.

• They explain the need to consider restrictions on the
availability of resources, but do not take into account
restrictions related to the competences of human
resources or other specific characteristics of resources
that influence the duration of the tasks of a project.

• PERT and CPM classic techniques for project
scheduling do not explicitly consider the allocation of
resources to tasks, but rather constitute tools to help
graph and analyze the schedules once they have been
built [16].

The aim of this work is to present the Constraint-based 
Learning Factorization of Distribution Algorithm (CLFDA) for 
the resolution of the Multi-mode Resource Constrained 
Project Scheduling Problem (MMRCPSP). The experiments 
were done on a set of benchmark instances of the Project 
Scheduling Problem Library (PSPLIB) in its Multi-mode 
variant. 

The rest of the paper is structured as follows: In section 2, 
a background to the study is presented where the different 
categories of PSP and formulate the Multi-mode Resource 
Constrained Project Scheduling Problem (MMRCPSP) are 
explained. Section 3 provides the algorithm proposed, while 
results and analysis are described in Section 4. Section 5 
presents the conclusions and suggests directions for future 
research.  

2. Project Scheduling Problems

Four theoretical PSP are listed below: 

Resource Constrained Project Scheduling Problem (RCPSP) 
It consists of establishing the sequence of a set of tasks of 

a single project, subjected to two types of constraints, 
precedence relations and the number of resources available to 
perform the tasks in every moment. In this problem, the 
objective is to minimize the makespan of the project [17]. A 
limitation of this problem is that it does not distinguish 

between the particularities of these resources that can 
significantly influence the duration of the tasks. 

Resource Constrained Multi-project Scheduling Problem 
(RCMPSP) 

It is a generalized case of the RCPSP where it is desired to 
develop multiple project schedules simultaneously with 
limited resources [18]. Unlike the previous case, a new 
variable emerges that is the priority among projects for the 
consumption of the resources.  

Multi-mode Resource Constrained Project Scheduling 
Problem (MMRCPSP) 

It is an extension of the RCPSP that involves the selection 
of a performance mode for each task, where each mode is 
associated with a duration and a quantity of renewable and 
non-renewable resources required for the performance of that 
task. Moreover, this problem takes into account restrictions 
such as the precedence between tasks and the availability of 
resources. The use of modes helps to identify, for example, 
that similar resources, but with different characteristics, can 
have a significant impact on the duration of the tasks [19], 
[20]. 

Multi-mode Resource Constrained Multi-project Scheduling 
Problem (MMRCMPSP)  

It combines the two previous concepts [21]. 

Considering the complexity involved in solving these 
problems, many authors make use of soft computing 
methods, especially meta-heuristics techniques [2, 21]. Some 
authors [22],  [23] propose algorithms based on Particle 
Swarm Optimization (PSO), others propose techniques based 
on Tabu Search [24], [25], while the most used meta-heuristic 
is the based on Genetic Algorithms (GA) [26], [27], [16], 
[28]. 

Ayodele [29][30] and collaborators apply an Estimation of 
Distribution Algorithm (EDA), but based on static learning, 
where new individuals are generated from exploring the most 
promising areas in the search space, based on the distribution 
of the best individuals of the previous generation. In this 
algorithm, a solution is coded using mode assignment and a 
list of tasks. 

These algorithms implement known mechanisms such as, 
data pre-processing, instance generation using Sequence 
Generator Scheme (SGS), and a penalty function for the 
violation of restrictions associated with the availability of 
resources. 

While these metaheuristics provide solutions to simple 
PSP, in the MMRCPSP case, they do not adequately handle 
the work with restrictions, especially they fail in problems 
with a high level of complexity. This fact means that the 
solutions obtained are not the best regarding the optimization 
of the execution time of the projects. In addition to this, they 
do not handle the difference between human resources 
competencies to execute each type of task, an element that 
significantly influences the execution time and the cost of the 
projects.
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2.1. MMRCPSP Modelling 

Multi-mode Resource Constrained Project Scheduling 
Problem (MMRCPSP) is a generalized version of RCPSP. 
The term multimode indicates that project tasks can be carried 
out in different ways (modes); each mode has a specific 
duration and corresponds to a certain number of resources.  
Due to this approach, planners take into account situations in 
which, for example, incorporating new resources for a task 
with the objective of minimizing its duration. So, the 
computational time required to solve the MMRCPSP problem 
is much more than the one needed in RCPSP. 

A project contains a set of 𝑗𝑗 ∈ 𝐽𝐽 tasks. These tasks have a 
set 𝑀𝑀 = {1, … ,𝑚𝑚} processing modes. A task 𝑗𝑗, performed in 
mode 𝑚𝑚 takes a period of time 𝑑𝑑𝑗𝑗𝑗𝑗, needs a certain number 
of resources 𝑅𝑅 and 𝑁𝑁 (renewable and non-renewable). 

The first mathematical formulation of the MMRCPSP 
problem that took into account non-renewable resources was 
presented by Talbot in [31]. He proposes a linear model with 
binary variables and defines the variables as follows: 𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗 =
1 if the task 𝑗𝑗 has started in mode 𝑚𝑚 and is completed in 
period 𝑡𝑡 ∈ [𝐸𝐸𝐸𝐸𝑗𝑗 , 𝐿𝐿𝐸𝐸𝑗𝑗], and 0 in other cases. The parameters are 
summarized in Table 1. See [32] For more understanding of 
these parameters.  

Table 1. Notation and definitions 

J Set of tasks 

Mj Number of modes task 𝑗𝑗 can be performed in 

djm Duration of task 𝑗𝑗 being performed in mode 𝑚𝑚 

R / 
N Set of renewable/ nonrenewable resources 

T Upper bound on the project's makespan 

𝐾𝐾𝑟𝑟
𝜌𝜌 Number of units of renewable resource 𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅, 

available in period t, t = 1 . . . T 

𝐾𝐾𝑟𝑟𝑣𝑣 Number of units of non-renewable resource r, 𝑟𝑟 ∈ 𝑁𝑁 

𝐾𝐾𝑗𝑗𝑗𝑗𝑟𝑟
𝜌𝜌  Number of units of renewable resource 𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅, 

consumed by task 𝑗𝑗 being performed in mode 𝑚𝑚  

𝐾𝐾𝑗𝑗𝑗𝑗𝑟𝑟
𝑣𝑣  Number of units of non-renewable resource 𝑟𝑟, 𝑟𝑟 ∈ 𝑁𝑁 

used by task 𝑗𝑗 being performed in mode 𝑚𝑚 

Hj Set of immediate predecessors of task 𝑗𝑗 

ESj Earliest start time of task 𝑗𝑗 

EFj

Earliest finish time of task 𝑗𝑗, calculated by using 
minimal task durations and ignoring resource 
consumption 

LSj 
Latest start time of task 𝑗𝑗, calculated by using 
minimal task durations taking into account the upper 
bound T on the project's duration 

LFj Latest finish time of task 𝑗𝑗, calculated by using 
minimal task durations and ignoring resource usage 

The formulation of this problem following a linear model 
in integers is represented as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 � � 𝑡𝑡𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗

𝐿𝐿𝐿𝐿𝑗𝑗

𝑗𝑗=𝐸𝐸𝐿𝐿𝑗𝑗𝑗𝑗∈𝑀𝑀

  (2.1.1) 

Where the completion time 𝑡𝑡 of all tasks is minimized 
(minimization of the project's makespan), subjected to the 
following restrictions:  

� � 𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗 = 1

𝐿𝐿𝐿𝐿𝑗𝑗

𝑗𝑗=𝐸𝐸𝐿𝐿𝑗𝑗𝑗𝑗∈𝑀𝑀

  ∀𝑗𝑗 ∈ 𝐽𝐽  (2.1.2) 

Equation 2.1.2 controls that all tasks are accomplished in a 
processing mode and at some point during the progress of the 
project. 

� � t .𝑥𝑥ℎ𝑗𝑗𝑗𝑗

𝐿𝐿𝐿𝐿ℎ

𝑗𝑗=𝐸𝐸𝐿𝐿ℎ𝑗𝑗∈𝑀𝑀

≤ � � (𝑡𝑡 − 𝑑𝑑𝑗𝑗𝑗𝑗)

𝐿𝐿𝐿𝐿𝑗𝑗

𝑗𝑗=𝐸𝐸𝐿𝐿𝑗𝑗

𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗    ∀(ℎ, 𝑗𝑗) ∈ 𝐽𝐽 ,ℎ ∈ 𝐻𝐻    (2.1.3)
𝑗𝑗∈𝑀𝑀

 

Restriction 2.1.3 ensures that the precedence relations are 
taken into account, where H is the set of predecessors of task 
j. 

� � 𝐾𝐾𝑗𝑗𝑗𝑗𝑟𝑟
𝜌𝜌

𝑗𝑗∈𝑀𝑀𝑗𝑗∈𝐽𝐽

� 𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗 ≤

𝑗𝑗𝑚𝑚𝑚𝑚�𝑗𝑗+𝑑𝑑𝑗𝑗𝑗𝑗,−1, 𝐿𝐿𝐿𝐿𝑗𝑗�

𝑗𝑗=𝑗𝑗𝑚𝑚𝑚𝑚�𝑗𝑗, 𝐸𝐸𝐿𝐿𝑗𝑗�

𝐾𝐾𝑟𝑟
𝜌𝜌       ∀𝑟𝑟 ∈  𝑅𝑅, 𝑡𝑡 = 1, … ,𝑇𝑇   (2.1.4) 

Equation 2.1.4 guarantees that the per-period availabilities of 
the renewable resources are not exceeded. The value of 𝑇𝑇 is 
upper bound, in days, on the project's makespan. 

� � 𝐾𝐾𝑗𝑗𝑗𝑗𝑟𝑟𝑣𝑣

𝑗𝑗∈𝑀𝑀𝑗𝑗∈𝐽𝐽

� 𝑥𝑥𝑗𝑗𝑗𝑗𝑗𝑗 ≤ 𝐾𝐾𝑟𝑟𝑣𝑣
𝐿𝐿𝐿𝐿𝑗𝑗

𝑗𝑗=𝐸𝐸𝐿𝐿𝑗𝑗

  ∀𝑟𝑟 ∈ 𝑁𝑁  (2.1.5) 

Finally, restriction 2.1.5 is the one that controls that the 
number of consumable (non-renewable) resources available 
is not exceeded.  

3. Design of EDA for the resolution of the
MMRCPSP

The Estimation of Distribution Algorithms (EDA) has been 
developed in 1996 by the authors Muehlenbein, Mahnig and 
Ochoa [33]. In general, EDA constitutes a family of 
algorithms to solve various optimization problems [34] and 
arises as an alternative to the difficulties of Genetic 
Algorithms (GA). These difficulties are associated with the 
fact that GA, by their nature, do not explicitly express the 
interdependencies between the variables of the problem and 
do not use this information sufficiently during the search 
process [35], [36]. The main characteristic of EDA is the 
identification of probabilistic distribution functions that 
model the dependency relations among the variables of the 
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problem to be solved and the generation of new individuals 
from that distribution. 

This section presents CLFDA which constitutes an EDA 
algorithm. It includes the constraint handling inside the 
probabilistic model, for the resolution of the MMRCPSP 
problem presented in the previous section. A brief analysis is 
carried out that shows the differences between the CLFDA 
(Algorithm 2) and an EDA in its classical form (Algorithm 
1).  

Algorithm 1. Pseudo-code of an EDA algorithm in its 
classical form 

1. t ← 1
2. R = load constraints
3. p(t) = Initialize Population
4. Evaluate Population (p(t), R)
5. WHILE the stop criterion does not be met, DO

a. pS(t) = Select Individuals (p(t))
b. gp = Estimate Distribution (pS(t))
c. p(t + 1) = Generate new individuals from (gp)
d. Evaluate Population (p(t + 1), R)
e. t ←t + 1

6. END WHILE
7. Return p(t)

The fundamental characteristics of CLFDA can be defined as 
follows: 

• Estimation of the probabilistic model, inspired by the
FDA algorithm [37], which describes the dependency
relations among variables of the selected individuals.

• Construction of the probabilistic model by considering
the problem constraints.

Algorithm 2. The pseudo-code of the algorithm proposed in 
this work 

1. t ← 1
2. R = load_constraints
3. p(t) = Initialize Population (R)
4. Evaluate Population (p(t), R)
5. WHILE the stop condition is not met, DO

a. pS(t) = Select Individuals (p(t))
b. gp = Estimate Distribution (pS(t))
c. gpR = Incorporate restrictions to the model (gp)
d. p(t + 1) ←Best elitism (pS(t))
e. p(t + 1) ← Generate new individuals from (gpR)
f. Evaluate Population (p(t + 1), R)
g. t ← t + 1

6. END WHILE
7. Return p(t)

A detailed explanation of the proposed model is provided 
below: 

(i) The constraints of the optimization problem are
presented as follows:
• Precedence restrictions, where are known, from

each task its successor tasks.
• Restrictions associated with the number of

renewable and non-renewable resources available
for project accomplishment.

• Each task mode contains the duration and
constraints of renewable and non-renewable
resources.

(ii) Population definition: each population has a fixed size
specified as a parameter. The initial population is
randomly generated.

(iii) Design of the individual: each individual constitutes a
possible solution to the scheduling problem and is
formed by a sequence of tasks (see Figure 1). Each task
has two relevant features: start date of the task (s) and
the mode (m) it was performed in. In addition, there is a
set of complementary attributes of each task that are
estimated from the mode and the start date. For example,
the closing date of a task can be calculated from the
starting date and the mode duration of the task.

(iv) Evaluation method and objective function: individuals
are evaluated taking into account the objective function
described in equation 3.1, where:
• 𝑚𝑚 ∈ 𝐼𝐼 represent the individuals of each population.
• 𝑓𝑓𝑗𝑗 represents the final day of task 𝑗𝑗.
• 𝑓𝑓𝑚𝑚𝑗𝑗 represents the closing date of task 𝑗𝑗 of individual 𝑚𝑚.
• 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑚𝑚𝑗𝑗  represents the cost of carrying out the task 𝑗𝑗 of

the individual 𝑚𝑚 calculated from the sum of the costs of
the resources associated with that task.

(v) Definition of the selection strategy: the selection method
is based on Pareto optimization [38] or ranking,
considering the cost and time objectives. The selection
process is carried out by iterations until an amount equal
to 30% of the population size.

(vi) Elitism: it was applied the best elitism.
(vii) Definition of the stop condition: it finds the optimum or

reach the maximum number of generations.

The objective function realizes the minimization of the 
project's makespan and cost. 

Minimize (𝑂𝑂1,𝑂𝑂2)  (3.1) 
Where: 

𝑂𝑂1 =  �𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑚𝑚𝑗𝑗
𝑗𝑗∈𝐽𝐽

    (3.2) 

𝑂𝑂2 = max
𝑗𝑗∈𝐽𝐽 

𝑓𝑓𝑗𝑗   (3.3) 

Subjected to the following restrictions: 

�𝑔𝑔(𝑟𝑟𝑘𝑘 , 𝑗𝑗)
𝑗𝑗∈𝐽𝐽

≤ 𝑅𝑅𝑘𝑘  ∀𝑘𝑘 ∈ 𝐾𝐾𝑚𝑚𝑣𝑣      (3.4) 

�𝑔𝑔(𝑟𝑟𝑘𝑘 , 𝑗𝑗, 𝑡𝑡)
𝑗𝑗∈𝐽𝐽

≤ 1  ∀𝑘𝑘 ∈ 𝐾𝐾𝑣𝑣 , 𝑡𝑡 = 1, … ,𝑇𝑇  (3.5) 
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Figure 1. MMRCPSP proposal model 

𝑐𝑐𝑗𝑗 ≤ 𝑓𝑓𝑗𝑗  ∀𝑗𝑗 ∈ 𝐽𝐽  (3.6) 

𝑓𝑓ℎ ≤ 𝑐𝑐𝑗𝑗    ∀ℎ ∈ 𝐻𝐻,∀𝑗𝑗 ∈ 𝐽𝐽  (3.7) 

Equation 3.4 presents the restriction that ensures that the use 
of available material (non-renewable) resources is not 
exceeded. Where 𝑔𝑔(𝑟𝑟𝑘𝑘 , 𝑗𝑗) represents the number of times the 
resource 𝑘𝑘 ∈ 𝐾𝐾𝑚𝑚𝑣𝑣 is being used considering all the tasks 𝑗𝑗 ∈ 𝐽𝐽 
during the project progress. 

Equation 3.5 presents the restriction that guarantees the 
per-period availabilities of human resources and equipment 
𝑟𝑟𝑘𝑘  at time t for the execution of task 𝑗𝑗 ∈ 𝐽𝐽 (resource 𝑘𝑘 ∈ 𝐾𝐾𝑣𝑣  is 
not shared for more than one task at the same time t). 
𝑔𝑔(𝑟𝑟𝑘𝑘 , 𝑗𝑗, 𝑡𝑡) represents the number of times resource 𝑘𝑘 is being 
used considering all tasks 𝑗𝑗 ∈ 𝐽𝐽 at one time t. 

Equation 3.6 represents the restriction that the starting task 
moment 𝑗𝑗 is always less than that of its completion day. 

Equation 3.7 represents the restriction that ensures that the 
precedence relations among tasks are not violated, where h is 
the set of the predecessor tasks of 𝑗𝑗. 

4. Experimental results and discussion

This section presents the results of the application of the 
proposed algorithm in solving the Multi-mode Resource 
Constrained Project Scheduling Problem (MMRCPSP). The 
main objective is to minimize the duration of the project, 
taking into account restrictions associated with the 
precedence among tasks and restrictions on resource 
constraints, whether renewable or nonrenewable. 

The experiments were performed on the datasets 
"j30_17.mm", "c15_9.mm", "c15_10.mm" and "c15_12.mm" 
from the PSPLIB repository (Project Scheduling Problem 
Library) [32], [39] in its variant of multiple modes. The 
number of tasks, resources, modes and constraints have been 
selected to present a diverse set of problems. Each dataset 
consists of ten instances with two types of renewable 

resources and two non-renewable resources. The number of 
tasks varies between 16 and 30, and the number of modes is 
three for all instances.  

The PSPLIB library available at http://www.om-
db.wi.tum.de/psplib contains sets of instances that represent 
different categories of scheduling problems. These instances 
were generated using the ProGen generator. In addition, 
PSPLIB presents for each instance, the optimal solution and 
the best solution reached by different authors so far. Datasets 
can be used by researchers to evaluate their procedures for 
solving scheduling problems.  

The general format of the file proposed by PSPLIB as a 
problem instance is described below: 

• Number of tasks (jobs).
• Number of modes in which each task can be

executed (#modes).
• Number of types of renewable resources existing in

the problem (renewable).
• Maximum availability of each type of renewable

resources (RESOURCEAVAILABILITIES).
• Number of types of non-renewable resources

existing in the problem (nonrenewable).
• Number of successors of each activity (#successors).
• Set of successor tasks of each task (successors).
• Duration of each task (completion time).
• The minimum possible time to carry out the project

(duedate), which represents the optimum makespan
value to be achieved.

In the experiments, the results of the CLFDA algorithm are 
compared with: 

• A genetic algorithm (GA).
• A Univariate Marginal Distribution Algorithm

(UMDA).
• The optimal makespan to reach (Optimum).
• The best results reported in the PSPLIB repository

(Reported_Bibliography).
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The validation stage used two optimization strategies crucial 
to this study. The first strategy is called just_time where the 
optimization process is based only on the time objective, and 
therefore the objective function only evaluates the solutions 
with respect to the makespan variable. While the second 
optimization strategy is based on the Pareto Optimal (pareto) 
approach and is oriented simultaneously on the time 
(makespan) and cost objectives, in this case, the optimization 
of plans based on equation (3.1) was used. 

For a fair comparison, the following common parameters 
are established for all the algorithms: 

(i) The initial population was built randomly with a size of
100 individuals.

(ii) Thirty percent of the individuals were selected for the
generation of the new population.

(iii) Elitism was applied.
(iv) In the case of the GA, the crossover probability is 0.8,

while the mutation probability is 0.2.
(v) The stop condition was to reach 100 generations.

The experiments have been performed by running each 
algorithm 20 times for every instance of the four datasets. The 
results of the algorithms were evaluated with respect to the 
following variables:  

• Mean_Makespan: average makespan considering the 20
runs for each dataset instance.

• StdDev_Makespan: standard deviation to the optimum
value over the 20 runs for each dataset instance.

• %Optimum: percent of times where the algorithm finds
the optimal makespan of the dataset over the 20 runs.

• Execution_time: average time used by the algorithm to
execute 100 iterations.

In order to compare the algorithms, authors used SPSS 
version 25 and the Wilcoxon's non-parametric test for two 
samples related, with 95% of confidence interval and 0.05 
significance level.  

In the comparison, the groups of algorithms were 
organized according to the quality of the results, that means 
"Group A results" > "Group B results" > "Group C results" > 
"Group D results". The algorithms in the same group did not 
have significant differences between them. 

Table 1, 2, 9 and 10 show the descriptive analysis and the 
results of comparisons using Wilcoxon test for the 
Mean_Makespan variable. 

 For StdDev_Makespan variable, comparison results are 
summarized in Table 3, 4, 11 and 12. Findings for the 
%Optimum variable are presented in Table 5, 6, 13 and 14. 

Finally, Tables 7, 8, 15 and 16 show the same statistical 
analysis for the Execution_time variable. 

Table 1. Descriptive analysis, variable Mean_Makespan for j30_17 dataset 

Algorithm N 
Statistic 

Minimum 
Statistic 

Maximum 
Statistic 

Mean 
Statistic Std. Error Std. Deviation 

Statistic 
CLFDA_just_time 10 26.20 39.15 31.4150 1.21262 3.83464 

Reported_Bibliography 10 26.00 39.00 31.7000 1.24766 3.94546 

UMDA_just_time 10 26.40 39.05 31.8100 1.18528 3.74817 

CLFDA_pareto 10 28.65 39.85 33.2450 1.00657 3.18307 

UMDA _pareto 10 29.10 40.55 33.5300 1.05998 3.35196 

GA_just_time 10 28.10 39.45 33.8300 1.02746 3.24912 

GA_pareto 10 29.65 40.40 35.0850 0.93634 2.96095 

Table 2. Comparison results using Wilcoxon test, variable Mean_Makespan for j30_17 dataset 

Algorithm1 Algorithm2 Signification 
(p-value) Groups 

CLFDA_just_time Reported_Bibliography 0.33 
Group 1: CLFDA_just_time, Reported_ Bibliography 

Group 2: UMDA_just_time 

Group 3: CLFDA_pareto, UMDA_pareto, GA_just_time 

Group 4: GA_pareto 

CLFDA_just_time UMDA_just_time 0.014 

UMDA_just_time CLFDA_pareto 0.037 

CLFDA_pareto UMDA_pareto 0.240 

CLFDA_pareto GA_just_time 0.374 

CLFDA_pareto GA_pareto 0.005 

Regarding variable Mean_Makespan in j30_17 dataset, 
there were not significant differences between 
CLFDA_just_time and results reported in the bibliography. 

The best results were obtained by CLFDA_just_time, 
whereas the worst results were obtained by GA_pareto. 
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Table 3. Descriptive analysis, variable StdDev_Makespan for j30_17 dataset 

Algorithm N 
Statistic 

Minimum 
Statistic 

Maximum 
Statistic 

Mean 
Statistic Std. Error Std. Deviation 

Statistic 
Reported_Bibliography 10 0.00 4.00 1.3000 0.36667 1.15950 

CLFDA_just_time 10 0.39 3.27 1.4998 0.30655 0.96940 

UMDA_just_time 10 0.22 3.13 1.8599 0.28301 0.89495 

CLFDA_pareto 10 1.16 6.36 3.2956 0.44275 1.40008 

UMDA _pareto 10 1.66 6.59 3.5752 0.45077 1.42547 

GA_just_time 10 0.81 5.88 3.7808 0.48026 1.51872 

GA_pareto 10 1.76 7.34 5.1077 0.49409 1.56244 

Table 4. Comparison results using Wilcoxon test, variable StdDev_Makespan for j30_17 dataset 

Algorithm1 Algorithm2 Signification 
(p-value) Groups 

Reported_Bibliography CLFDA_just_time 0.646 
Group 1: Reported_ Bibliography, CLFDA_just_time 

Group 2: UMDA_just_time 

Group 3: CLFDA_pareto, UMDA_pareto, GA_just_time 

Group 4: GA_pareto 

Reported_Bibliography UMDA_just_time 0.037 

UMDA_just_time CLFDA_pareto 0.005 

CLFDA_pareto UMDA_pareto 0.202 

CLFDA_pareto GA_just_time  0.241 

CLFDA_pareto GA_pareto 0.005 

As regards variable StdDev_Makespan in dataset j30_17, 
there are not significant difference between CLFDA_just_time 
and results reported in the bibliography. These algorithms 

reported the best results; whereas the worst results were 
obtained by GA_pareto algorithm. 

Table 5. Descriptive analysis, variable %Optimum for j30_17 dataset 

Algorithm N 
Statistic 

Minimum 
Statistic 

Maximum 
Statistic 

Mean 
Statistic Std. Error Std. Deviation 

Statistic 
CLFDA_just_time 10 15.00 85.00 56.0000 8.81287 27.86874 

UMDA_just_time 10 5.00 95.00 37.5000 7.82624 24.74874 

GA_just_time 10 0.00 65.00 10.0000 6.32456 20.00000 

CLFDA_pareto 10 0.00 40.00 6.0000 3.92994 12.42757 

UMDA _pareto 10 0.00 15.00 3.5000 1.97906 6.25833 

GA_pareto 10 0.00 25.00 2.5000 2.50000 7.90569 

Table 6. Comparison results using Wilcoxon test, variable %Optimum, j30_17 dataset 

Algorithm1 Algorithm2 Signification 
(p-value) Groups 

CLFDA_just_time UMDA_just_time 0.028 Group 1: CLFDA_just_time 

Group 2: UMDA_just_time 

Group 3: GA_just_time, CLFDA_pareto, UMDA_pareto 

Group 4: GA_pareto 

UMDA_just_time GA_just_time 0.005 

GA_just_time CLFDA_pareto 0.161 

GA_just_time UMDA_pareto 0.572 

GA_just_time GA_pareto 0.042 

In dataset j30_17, concerning variable %Optimum, the 
best results were obtained by the algorithm CLFDA_just_time 
and the worst results were obtained by GA_pareto algorithm. 

In this dataset, just_time optimization strategy reports better 
results than pareto optimization.
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Table 7. Descriptive analysis, variable Execution_time, j30_17 dataset 

Algorithm N 
Statistic 

Minimum 
Statistic 

Maximum 
Statistic 

Mean 
Statistic Std. Error Std. Deviation 

Statistic 
GA_just_time 10 16.55 20.42 18.7630 0.35353 1.11797 

GA_pareto 10 16.92 20.95 19.2350 0.37585 1.18853 

UMDA_just_time 10 24.02 29.05 26.9220 0.47009 1.48657 

UMDA _pareto 10 26.88 33.48 29.4730 0.56849 1.79773 

CLFDA_just_time 10 37.49 42.91 40.2670 0.48567 1.53584 

CLFDA_pareto 10 39.98 46.25 42.4040 0.57165 1.80771 

Table 8. Comparison results using Wilcoxon test, variable Execution_time (j30_17 dataset) 

Algorithm1 Algorithm2 Signification 
(p-value) Groups 

GA_just_time GA_pareto 0.017 Group 1: GA_just_time  

Group 2: GA_pareto 

Group 3: UMDA_just_time 

Group 4: UMDA_pareto 

Group 5: CLFDA_just_time 

Group 6: CLFDA_pareto, 

GA_pareto UMDA_just_time 0.005 

UMDA_just_time UMDA_pareto 0.005 

UMDA_pareto CLFDA_just_time 0.005 

CLFDA_just_time CLFDA_pareto 0.005 

In dataset J30_17, respect to variable Execution_time, the 
best results were obtained by the Genetic Algorithms 
approach. In particular, GA_just_time was the fastest 

algorithm; whereas CLFDA were the highest time consume 
algorithms. 

Table 9. Descriptive analysis, variable Mean_Makespan (c15_9, c15_10 and c15_12 datasets) 

Algorithm N 
Statistic 

Minimum 
Statistic 

Maximum 
Statistic 

Mean 
Statistic Std. Error Std. Deviation 

Statistic 
Reported_Bibliography 30 12.00 39.00 22.1333 1.23338 6.75550 

CLFDA_pareto 30 14.70 38.45 22.4333 1.06220 5.81789 

CLFDA_just_time 30 14.30 40.10 22.5567 1.05235 5.76397 

UMDA _pareto 30 15.90 40.90 23.0517 1.09634 6.00489 

UMDA_just_time 30 16.20 42.05 23.3283 1.10486 6.05156 

GA_just_time 30 17.10 42.10 23.5250 1.06103 5.81147 

GA_pareto 30 16.50 41.40 23.8117 1.05626 5.78540 

Table 10. Comparison results using Wilcoxon test, variable Mean_Makespan 
 (c15_9, c15_10 and c15_12 datasets) 

Algorithm1 Algorithm2 Signification 
(p-value) Groups 

CLFDA_just_time Reported_Bibliography 0.33 
Group 1: CLFDA_just_time, Reported_ Bibliography 

Group 2: UMDA_just_time 

Group 3: CLFDA_pareto, UMDA_pareto, GA_just_time 

Group 4: GA_pareto 

CLFDA_just_time UMDA_just_time 0.014 

UMDA_just_time CLFDA_pareto 0.037 

CLFDA_pareto UMDA_pareto 0.240 

CLFDA_pareto GA_just_time 0.374 

CLFDA_pareto GA_pareto 0.005 

As for variable Mean_Makespan in dataset c15 with all 30 
instances from c15_9, c15_10 and c15_12, there were not 
significant differences between CLFDA_just_time and results 
reported in the bibliography. The best results were obtained 

by CLFDA_just_time and the worst results were obtained by 
GA_pareto. EDA algorithms (CLFDA and UMDA) using 
just_time strategy reported better results than the same 
algorithms with the pareto optimization strategy. 
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Table 11. Descriptive analysis, variable StdDev_Makespan (c15_9, c15_10 and c15_12 datasets) 

Algorithm N 
Statistic 

Minimum 
Statistic 

Maximum 
Statistic 

Mean 
Statistic Std. Error Std. Deviation 

Statistic 
Reported_Bibliography 30 0.00 8.00 1.2000 0.33356 1.82700 

CLFDA_pareto 30 0.00 4.73 1.4962 0.23377 1.28044 

CLFDA_just_time 30 0.00 4.24 1.6584 0.26565 1.45501 

UMDA _pareto 30 0.00 5.27 2.0655 0.31213 1.70962 

UMDA_just_time 30 0.00 6.32 2.3699 0.36208 1.98317 

GA_just_time 30 0.00 6.24 2.7220 0.31062 1.70133 

GA_pareto 30 0.00 6.48 2.8390 0.29116 1.59476 

Table 12. Comparison results using Wilcoxon test, variable Stddev_Makespan 
 (c15_9, c15_10 and c15_12 datasets) 

Algorithm1 Algorithm2 Signification 
(p-value) Groups 

Reported_Bibliography CLFDA_pareto 0.13 Group 1: Reported_ Bibliography, CLFDA_pareto,  
CLFDA_just_time 

Group 2: UMDA_pareto  

Group 3: UMDA_just_time 

Group 4: GA_just_time, GA_pareto 

Reported_Bibliography CLFDA_just_time 0.092 

Reported_Bibliography UMDA_pareto 0.016 
UMDA_pareto UMDA_just_time 0.014 
UMDA_just_time  GA_just_time 0.003 
GA_just_time GA_pareto  0.846 

In these datasets, for variable StdDev_Makespan, the 
algorithms Reported_ Bibliography, CLFDA_pareto, 
CLFDA_just_time did not have significant differences, 

whereas the worst results were obtained by GA algorithms. In 
this case, differences between just_time and pareto 
optimization strategies were not found to be significant. 

Table 13. Descriptive analysis variable %Optimum 
 (c15_9, c15_10 and c15_12 datasets) 

Algorithm N 
Statistic 

Minimum 
Statistic 

Maximum 
Statistic 

Mean 
Statistic Std. Error Std. Deviation 

Statistic 
CLFDA_pareto 30 0.00 100.00 52.6667 6.45379 35.34884 

CLFDA_just_time 30 0.00 100.00 50.0000 6.84391 37.48563 

UMDA _pareto 30 0.00 100.00 41.3333 6.96846 38.16781 

UMDA_just_time 30 0.00 100.00 38.0000 8.07508 44.22903 

GA_just_time 30 0.00 100.00 24.3333 5.63616 30.87051 

GA_pareto 30 0.00 100.00 17.8333 4.30639 23.58708 

Table 14. Comparison results using Wilcoxon test, variable %Optimum 
(c15_9, c15_10 and c15_12 datasets) 

Algorithm1 Algorithm2 Signification 
(p-value) Groups 

CLFDA_pareto CLFDA_just_time 0.173 Group 1: CLFDA_pareto, CLFDA_just_time 

Group 2: UMDA_ pareto, UMDA_ just_time 

Group 3: GA_just_time 

Group 4: GA_pareto 

CLFDA_pareto UMDA_pareto 0.000 
UMDA_pareto UMDA_just_time 0.314 

UMDA_pareto GA_just_time 0.000 

GA_just_time GA_pareto 0.023 

In c15_9, c15_10 and c15_12 datasets and in relation to 
variable %Optimum, the best results were obtained by the 
algorithms CLFDA_pareto, CLFDA_just_time, whereas the 
worst results were obtained by GA_pareto algorithm. In this 

variable, as in Mean_Makespan, there were not significant 
differences between just_time and pareto strategies. The 
worst results were obtained by GA approach. 
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Table 15. Descriptive analysis variable Execution_time 
(c15_9, c15_10 and c15_12 datasets) 

Algorithm N 
Statistic 

Minimum 
Statistic 

Maximum 
Statistic 

Mean 
Statistic Std. Error Std. Deviation 

Statistic 
GA_pareto 30 7.29 12.22 9.0757 0.20911 1.14536 

GA_just_time 30 7.56 12.79 9.2257 0.21902 1.19963 

UMDA _pareto 30 10.37 16.57 12.4103 0.25598 1.40203 

UMDA_just_time 30 10.35 17.47 12.4783 0.30701 1.68155 

CLFDA_just_time 30 16.08 24.12 18.9783 0.32382 1.77365 

CLFDA_pareto 30 16.31 23.27 19.0227 0.28145 1.54156 

Table 16. Comparison results using Wilcoxon test, variable Execution_time 
(c15_9, c15_10 and c15_12 datasets) 

Algorithm1 Algorithm2 Signification 
(p-value) Groups 

GA_pareto GA_just_time 0.064 
Group 1: GA_pareto, GA_just_time 

Group 2: UMDA_ pareto, UMDA_ just_time 

Group 3: CLFDA_just_time, CLFDA_pareto 

GA_pareto UMDA_pareto 0.000 

UMDA_pareto UMDA_just_time 0.51 

UMDA_pareto CLFDA_just_time 0.000 

CLFDA_just_time CLFDA_pareto 0.959 

In c15_9, c15_10 and c15_12 datasets, regarding 
variable Execution_time, the best results were obtained by 
Genetic Algorithms approach, whereas the CLFDA approach 
used a higher time for the same stop criterion (100 
generations). This is because CLFDA algorithms spend more 

time to detect the dependency relation among variables, but 
it is able to find solutions which have never been found by 
GA or UMDA. Furthermore, the objective is to minimize 
the makespan of the project, not to minimize the execution 
time of the algorithms.

5. Conclusion

In this paper, a new approach on Estimation of Distribution 
Algorithms with constraints handling inside the 
probabilistic model to solve the Multi-mode Resource 
Constrained Project Scheduling Problems was developed. 
The proposal was applied to four datasets of PSPLIB in its 
multi-mode variant, which have several complexity 
degrees (task numbers, number of modes, and number of 
resources). The cost component to be optimized along with 
time was added, always looking for a balance between 
them.      

The obtained results prove to be very effective on the 
benchmark instances and improved others reported in the 
bibliography, especially in j30_17, c15_9 and c15_12 
datasets. 

Overall, CLFDA_just_time has been selected as the best 
algorithm. It achieved the best results for the 
Mean_Makespan, StdDev_MakeSpan and %Optimum 
variables. 

Towards further improvement, the flexibility of adding 
different components like project quality to the model 
makes the procedure particularly useful. Moreover, further 
research on different strategies to diversify the search 
process can lead to a superior performance of the 
algorithm. 
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