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Abstract 

One-to-one Pickup and Delivery Problem (PDP) with loading constraints is studied. Mathematical model is presented 
using combinatorial configurations approach for pickup and delivery and the phi-function technique for loading 
constraints. Two-stage solution strategy is used. The first stage has two levels: a) clustering the set of pickup and delivery 
points regarding to the set of vehicles and b) solving the PDP problem with 3D loading constraints for each vehicle within 
the appropriate cluster. The second stage improves the solution found at the previous stage and is based on the cyclic 
transfer approach and cyclic permutations.  Computational results are presented to support efficiency of the approach. 
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1. Introduction

Vehicle routing problem (VRP) has different applications 
in logistics management and the list of references on VRP 
is quite extensive (see, e.g. [1]-[6]) and the references 
therein). Although different classes of VRP correspond to 
various practical situations, all of them aimed at efficient 
use of a fleet of vehicles to serve customer needs.  

Along with routing vehicles, the real-world 
transportation includes loading vehicles. One of these 
integrated problems was introduced in [7] and is referred 
to as the capacitated vehicle routing problem (CVRP) 
with three-dimensional (3D) loading constraints (3L-
CVRP). In 3L-CVRP a customer requires transporting a 
number of parallelepipeds (boxes) characterized by their 
3D rectangular loading spaces and weights. Note, that in 
the classical CVRP only weights of the boxes are taking 
into account. The up-to-date state-of-the-art in modeling 
and solution techniques for integrated vehicle routing and 
loading problems one can find in, e.g., [8], [9]. 

In Pickup and Delivery Problem (PDP) a customer 
requires to pick up units at one location and deliver to 
another (see, e.g., [10]-[13]). This problem arises, e.g., in 
urban courier services and door-to-door transportation 
systems (see, e.g., [14]).  

In PDP the fleet of vehicles have to serve 
transportation requests between origins (pickup points) 
and destinations (delivery points). Every route has to 
start/finish at a certain depot and must satisfy pairing and 
precedence constraints: the origin should precede the 
destination while every pickup-delivery pair has to be 
visited by the same vehicle.  

Additional constraints include, time windows and time 
constraints related to vehicles availability (see, e.g., [10], 
[13], [15] [16]), LIFO and/or FIFO buffers (see, e.g. [17], 
[18]), 2D/3D loading constraints (see, e.g., [19]-[21]). 

Different heuristic/metaheuristic approaches are used 
to solve PDP: reactive tabu search, tabu embedded 
simulated annealing, squeaky wheel optimization, 
grouping genetic algorithm, construction heuristic, hybrid 
algorithm (simulated annealing and large neighborhood 
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search, adaptive large neighborhood search, indirect local 
search with greedy decoding, guided ejection search(see, 
e.g. [22]-[30]).

In this paper a mathematical model for PDP with 3D
loading constraints is formulated using the concept of the 
combinatorial sets (see, e.g., [31]). A new approach to 
improve the local solution is presented based on the cyclic 
transfer theory presented in [32] and the cyclic 
permutation concept (see [33] and [34] for details).  

2. Problem formulation

The classical PDP on the complete graph ( , )G V A=  is 
considered in [35]. Therein V  is the set of all vertices, 

{0,1,..., 2 1}V n= +  ( 0  and 2 1n +  correspond to the 
depot) and A  is the set of all arcs. It is assumed that 
every arc ( , )i j  is equal to the arc ( , )j i  and can be 
replaced by one edge (symmetric case).  

The fleet of N vehicles is available.  Each vehicle has 
a cuboidal loading space defined by its width W , height 
H  and length L , as well as the weight capacity Q . The 
transportation request ni J∈ , {1,2,..., }nJ n=  consists in 
pickup or delivery of a cuboidal unit of width iw , height 

ih  and length il  with total weight iq  ( iq  is positive for 
pickups and is negative for delivery points). 

The following 3D-constraints have to be fulfilled for 
loading vehicles: 

1. Inside a vehicle the units can only be placed
orthogonally. That is, they can be rotated by 90°
on the width-length plane.

2. The unit has to be placed on the vehicle floor or
on top of another unit. In the latter case the
superior unit has to be completely supported by a
lower one.

3. The units have to be easily unloaded at the
delivery point, namely:

• the unit A is allowed to be arranged under the unit B
if the projection of the base of A belongs to the
projection of the base of B. The unloaded unit can
not be stacked under other units in the vehicle;

• the unloaded unit can not be blocked by the units
assigned to clients that will be visited later.

The objective is to find N  routes (one per vehicle) 
such that: each route begins at the depot, visits all clients 
and ends up at the depot; each client (i.e., pickup and 
delivery point pair) is served by the same vehicle; total 
weight of transported units does not exceed the vehicle 
capacity; units are loaded in the vehicle to satisfy the 3D 
constraints; the total cost of N routes is minimized.  

Let N  be the number of vehicles. Each vehicle j  has 

the capacity jQ   and loading space 

3{( , , ) :|0 ,0 ,0 }j j j
j x y z R x L y W z HΛ = ∈ ≤ ≤ ≤ ≤ ≤ ≤

, 
where , ,j j jW H L  are dimensions (width, height and 

length) of the loading space jΛ  of the vehicle j  for 

Nj J∈ . 
Let P be the set of pickup vertexes, 

1 2{ , ,..., }nP p p p= , while D be the set of delivery 
vertexes, 1 2{ , ,..., }nD d d d= , ( ) 2card P D n∪ = . 

The set of pickup-delivery pairs is denoted by 
{( , ), }i i nC p d i J= ∈ , ip P∈ , id D∈ , i id p n= + , 

ni J∈ . 
Let 

3{( , , ) :|0 ,0 ,0 }i i i ix y z R x l y w z hλ = ∈ ≤ ≤ ≤ ≤ ≤ ≤ ,  

be the i unit corresponding to ( , )i ip d  for ni J∈ . Here 

iw , ih , il  denote width, height and length (dimensions) of 
the unit.  

The vehicle load iq  is associated with the vertex i  
assuming 0iq >  at pickup vertex for ni J∈ , and 0iq <  
at delivery vertex for 2 \n ni J J∈ . 

Let 
1

N

j
j

C C
=

=  , i jC C∩ =∅ , Ni J∈ , Nj J∈  be a 

partition of C , where each subset 
{( , ), 1,..., }j j

j ji iC p d i n= =  corresponds to the vehicle j

which serves this set of clients, Nj J∈ , j jn Card C= , 

Nj J∈ , 
1

N

j
j

n n
=

=∑ .

( , )c i j is the cost of travelling through the edge ( , )i j ; 

1 2 2{ , ,..., }
j

j j j
j nV i i i=  is the set of numbers 1 2 2, ,...,

j
j j j

ni i i

of renumbered pickup and delivery points ,j j
i ip d ,

included in the cluster jC ; 

( )jP V  is the set of permutations of elements from jV
which describe all possible routes of vehicle j;  

( )j
kQ i  is the current load of the vehicle j  at the

moment of arrival to the vertex 2,
j

j
nki k J∈ ;

0 0 0 0( , , )j j j ju x y z=  is the origin of the global coordinate
system of the placement area for a vehicle j . 

The decision variables of the problem are as follows: 
1 2( , ,..., )NU U U U= , where 1 2( , ,..., )

j
j j jj

nU u u u= ,

( , , )j j j j
i i i iu x y z=  is a vector of placement parameters of 

the unit i  in the vehicle j ; 
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( )j
jP Vπ ∈  is the route of the vehicle j; 

( , ),j
i ii o hν =  is the vector of the unit i  dimensions in the 

vehicle j , ji V∈ , Nj J∈ , ( , )i i io l w=  or ( , )i i io w l= . 
To state analytically the placement constraints for the 

problem the concept of phi-functions is used (see, e.g., 
[36]-[40]). 

The mathematical model of the One-to-One PDP with 
3D loading constraints can be presented in the form 

min ( )
U W

Uκ
∈

,              (1) 

where 
2 1

1 1 2
1 1

( ) [ (0, ) ( , ) ( , 2 1)]
j

j

nN
j j j j

k k n
j k

U c i c i i c i n
−

+
= =

= + + +∑ ∑κ ,

W is a feasible region defined by the system of the 
following constraints: 

1
( ) ( )

s
j j
k k

k
Q i f i Q

=
= ≤∑ ,  2 jns J∀ ∈ , Nj J∈ ,    (2)

( , , , ) 0, , , ,j j j j j
ni iik k ku u v v i k J i kΦ ≥ ∈ <            (3) 

0 ( , ) 0,j j j
nk k ku v k JΦ ≥ ∈ , Nj J∈ .

In the problem (1)-(3) 1(0, )jc i  denotes the distance
between the depot (fictive vertex 0) and a first vertex 

visited by the vehicle j, 2( , 2 1)
j

j
nc i n +

is the distance 
between the last visited vertex and the depot (fictive 
vertex 2n+1). Note that fictive vertexes 0 and 2n+1 

correspond to the same depot; in (2) 
( ) ,j

k

j
k i

f i q=
if 

j
ki n≤ , i.e. the vertex

j
ki  is a pickup;

( ) ,j
k

j
k i

f i q= −
if 

j
ki n≤ , i.e. the vertex

j
ki is a delivery; in (3) 

( , , , )j j j j j
i iik k ku u v vΦ  is the phi-function to describe non-

overlapping of unit ( , )j j
i i iu vλ  (having the variable

translation vector 
j

iu  and the fixed orientation 
j

iv ) and

unit ( , )j j
k k ku vλ  (having the variable translation vector 

j
ku

and the fixed orientation 
j

kv ); 0 ( , )j j j
k k ku vΦ – is the phi-

function to describe containment of the unit ( , )j j
k k ku vλ  in

the placement area 0( )j
j uΛ

(the vehicle loading area). 

The inequality ( , , , ) 0j j j j j
i iik k ku u v vΦ ≥  provides non-

overlapping units ( , )j j
i i iu vλ  and ( , )j j

k k ku vλ  for
,ni k J< ∈ , Nj J∈ . The inequality 0 ( , ) 0j j j

k k ku vΦ ≥

provides that each unit ( , )j j
k k ku vλ  is placed fully inside

the vehicle loading area 0( )j
j uΛ

for nk J∈ , Nj J∈ .

3. Solution strategy

We propose a solution strategy that involves two related 
stages. The first stage involves two levels: clustering the 
set of pickup and delivery points regarding to the set of 
vehicles (upper level); solving the PDP problem with 3D 
loading constraints for each vehicle within the appropriate 
cluster (lower level). The second stage improves the 
solution found at the previous stage using the cyclic 
transfer approach. The latest employes the cyclic 
permutations. 

3.1. Stage 1 

Two-level strategy for the Stage 1 
Upper level - clustering the set of pickup and delivery 
points regarding to the set of vehicles. At the upper level 
the set C  is divided into N clusters 1 2, ,..., NC C C  using 
the k-means algorithm introduced in [41].  

Each cluster jC  contains the pickup-delivery pairs 

( , )i ip d  which are served by the vehicle j. To form 
clusters ,jC  Nj J∈ , each pair ( , )i ip d  is substituted by 

a single point ( , )
i ii k kk x y  defined as the midpoint

between ( , )
i ii p pp x y  and ( , )

i ii d dd x y :
2

i i
i

p d
k

x x
x

+
= , 

2
i i

i
p d

k
y y

y
+

= .  Therefore to each pair ( , )i ip d  of the 

cluster jC  corresponds the point ( , )
i ii k kk x y   for

1,..., ji n= , Nj J∈ . 
Lower level – solving the PDP problem with 3D 

loading constraints for each vehicle within the appropriate 
cluster.  For each cluster jC  the route of the vehicle j for 

all pairs ( , )i ip d , 1,..., ji n= , Nj J∈ , is constructed. The 

permutation jπ ( )jP V∈  describes the route of the

vehicle j, where 1 2 2{ , ,..., }
j

j j j
j nV i i i= . The vehicle route

also defines the order of loading and unloading of units 
for the vehicle j .  

Every route jπ  has to meet all constraints represented 
in Section 2. To describe unit rotations in the width-length 
plane each element of jπ  (which is the pickup/delivery 
point) is substituted by a vector io , ji V∈ . This 
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combinatorial configuration, called the composition of 
permutations, is introduced in [42]. 

To search for the optimized route for the vehicle j, a 

permutation 
jπ ( )jP V∈

 minimizing the objective (1) has
to be found. 

Exact algorithm for the lower level 
The algorithm proposed in [43] for generating 
permutations jπ , ,Nj J∈   is used. Let us denote the

complete route of the vehicle j by jt π= . We denote the 
first i vertexes of the route t, called an incomplete route, 
by 1 2( , ,..., )i

it t t t= .
Let us describe the key idea of the recursive algorithm. 

The algorithm adds the vertex 1it +  to the end of the 

current incomplete route 1 2( , ,..., )i
it t t t=  at i-th level, 

obtaining the incomplete route 1
1( , )i i

it t t+
+=  at the next

level for 0
2 1 {0,1...2 1}ni J n−∈ = − . The algorithm

generates the complete route 2nt t=  at the level 
2 1i n= − . 

The element 1it +  is chosen as follows. The algorithm 

1) defines the set 1 2{ , ,..., }i
k jS s s s V= ⊂  of allowable 

pick up and delivery vertexes for 0
2 1nk J −∈ , 0

2 1ni J −∈ , 2)
adds a new element  1i jt s+ = , for kj J∈ , to a current 

incomplete route  1 2( , ,..., )i
it t t t=  and recursively calls 

itself with the incomplete route 
1

1 2 1( , ,..., , ) ( , ) ( , )i i i
i j j it t t t s t s t t+

+= = = .

The following constraints for iS  have to be fulfilled 

for each PDP route: the vertex repetition in it  is not
allowed; for each pickup-delivery pair a vehicle should 
visit the pickup point before the corresponding delivery 
point; the next unit will be loaded into the vehicle and 3D-
constraints have to be monitored if  a) 1it +  is a pickup 
vertex,  b) constraints (2) are provided for 1it + . 

The algorithm allows the unit rotation in the width-
length plane for the packing (see [44] for details).  

The algorithm produces a recursive tree. Each node of 
the tree corresponds to incomplete route at the level 

2 1i n< − and each node of the tree corresponds to 
complete routes at the last level 2 1i n= − . 

Heuristic algorithm for the lower level 
To manage recursive tree, the beam search heuristic 
proposed in [45] can be applied. Beam search heuristic 
introduced in [46] is an adaptation of the branch and 
bound algorithm where only some nodes of the search tree 
are evaluated. Only the promising nodes of the current 
level of the tree are kept for further branching and 
remaining nodes are pruned off permanently. Beam 
search heuristic employs evaluating nodes for solving the 

problem (1)-(3). The evaluation of each node is associated 
with extending the incomplete route to the complete with 
the points from the set iS . Firstly, some predefined “best” 
elements from iS  (called beam width) are taken into 
account for further construction of the tree and 
elimination of the rest part of the elements of iS . 

For the purpose of the paper the modification of the 
heuristic is used making the beam width a relative value 
by taking a certain percent of tree nodes. This approach is 
referred to as a relative beam width (RBW).  

Let us consider the key idea of the beam search 
heuristic algorithm. 

Step 1: Range elements from the set iS  by ascending 
the distance between each point and the last node of the 
current incomplete route or the depot, if  i=0. 

Step 2: Set predefined parameter RBW. Take a 
collection of promising nodes for the current level of the 
solution tree employing recursively the algorithm for the 
first X% of elements from the set iS , where X =RBW. 
The rest part of the nodes are pruned off. 

Step 3: Verify 3D constraints (3) for the last level 
2 1i n= − of the solution tree. 

4. Stage 2. The cyclic transfer approach
In this section we propose the approach that is able to 
improve the solution of the One-to-One PDP with 3D 
loading constraints found at Stage 1. The approach is 
based on the cyclic transfer theory and the cyclic 
permutation concept. 
We give an overview of the basic results that will be used 
for the further presentation of the theory of cyclic 
transfers, according to the works [32] and [47]. When 
using cyclic transfers in combinatorial optimization 
methods, the solving process is divided in two stages. At 
the first stage the initial partition of the problem data set 
into clusters is found (see, e.g., [41], [48], [49]) to search 
for initial solution of the combinatorial optimization 
problem. The initial partition can be determined 
depending on the constraints of the problem, for example, 
on the number of vehicles in routing problems VRP or 
PDP. The effectiveness of the initial solution is estimated 
using the objective function of the combinatorial 
optimization problem. In the framework of the theory of 
cyclic transfers, the cost of the solution, which is 
minimized, is considered as the efficiency factor. The 
second stage is aimed to improve the initial solution using 
the concept of cyclic transfers. A cyclic transfer is a cyclic 
permutation of some selected elements of the clusters. 
The choice of elements from the appropriate clusters for 
the cyclic permutation (forming a cyclic transfer) is a non-
trivial problem.  

The difference between the cost of the initial solution 
and the cost of the solution obtained by applying the 
cyclic transfer is considered as the cost of the cyclic 
transfer. If the new solution has a lower cost than the 
initial solution cost then the corresponding transfer is 
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called a cyclic transfer of negative value. The employing 
a cyclic transfer of negative value corresponds to the 
exchanging the choosing elements between appropriate 
clusters. That leads to improving the initial solution. 
Thompson and Orlin in [32] developed a general 
neighborhood search method using cyclic transfers. This 
method is based on replacing the search for a cyclic 
transfer of negative value by the search for an acceptable 
cycle of negative value in the auxiliary graph (see [47] for 
details). The auxiliary graph is constructed from the 
elements of the problem data set, which form the set of 
vertices of the graph. The edges of the auxiliary graph 
connect only the vertices that correspond to elements 
belonging to different clusters of the initial partition. The 
cost of each edge (i, j) of the auxiliary graph is 
determined by changing the cost of the problem solution 
while element i is removed from the corresponding cluster 
and element j is added to this cluster. An acceptable cycle 
of negative value found from the auxiliary graph 
corresponds to the transition from the current solution to 
the “neighbor” solution. The cost of the cyclic transfer is 
equal to the cost of the corresponding acceptable cycle in 
the auxiliary graph. In some cases it is impossible to 
estimate the cost of the edges and the cost of the cycles in 
the auxiliary graph and therefore the cost of the 
corresponding cyclic transfers.  

We propose a general solution strategy using cyclic 
transfers that can be employed to the One-to-One PDP 
with 3D loading constraints. It is considered as a 
modification of the approach introduced in [32].  

Let us consider the key idea of the strategy. From each 
of the chosen clusters an element is selected to be 
exchanged with one of the selected elements from the 
other clusters based on the problem data set analysis. The 
selected cluster elements are considered as the generating 
elements of the cyclic permutation set. Each cyclic 
permutation corresponds to the cyclic transfer. The cyclic 
permutation set describes all possible cyclic transfers for 
the selected elements.  

The resulting cyclic transfers are applied to the initial 
partition to clusters (initial clusterization). A new solution 
of the initial problem for each cyclic transfer is obtained 
in the neighborhood of the initial solution.  

The problem is solved for a new partition into clusters. 
Then the increasing or decreasing of the solution cost is 
evaluated. Thus, a set of new solutions are obtained. The 
cardinality of the set  corresponds to the power of the 
cyclic permutation set. The best solution is selected which 
is considered as a step of our iterative procedure. The best 
solution is taken as the initial clusterization for further 
steps. We stop our procedure according to some criteria 
(e.g. time limit, accuracy, efficiency improvement).  

4.1 The combinatorial optimization problem 

Let us consider the following combinatorial optimization 
problem: 

( ) min
x D E

F x
∈ ⊂

→ , (4) 

where E  be combinatorial set in a combinatorial space 
Y , 1 2( , , ..., )kx x x x E= ∈ , 1:F E R→ , and the set D
is described by a system of constraints on variables 
x E∈ . 

To solve problem (4), we apply a strategy using the 
cyclic transfer approach.  

Let i
i

E E= , iE E⊂ , {1, 2, ..., }ni J n∈ = , where 

i jE E∩ =∅  for ni j J< ∈ . 

We construct a set 1 2{ , , ..., }nA a a a= , i ia E∈ , 

ni J∈ . The set A  is used as a set of generating elements 

for the set of cyclic permutations ( )c
nP A , c

i np P∈  , 

1 2
( , , ..., )

ni i i ip a a a= , where 1 2( , , ..., )ni i i  is ordering 

of index set nJ . 
Based on the definition a cyclic permutation is a 

permutation of n elements of the set A such that it 
contains a unique cycle of length n (see [33] for details). 

At the first stage of the cyclic transfer approach, the 
initial partition of the set E  into clusters is formed 

0 0
i

i
E E= . Let a feasible initial solution 0x of the

problem (4) be found on the initial partition 0E  . The 
estimation of the efficiency of the solution is 0 0( )F x E . 

Then we form the generating elements set 
0 0 0 0

1 2{ , , ..., }nA a a a=  for cyclic permutations 0( )c
nP A ,

such as 0 0
i ia E∈ , ni J∈ . The choice of elements of the

set 0A  depends on the characteristics of the problem (4). 
Some heuristic rules for selecting elements of set 0A  are 
proposed and discussed in Subsection 5.2 for the One-to-
One PDP with 3D loading constraints. Each element of 
the set 0( )c

i np P A∈  is one of the cyclic permutations 
that describes which elements of which clusters will be 
exchanged in the initial partition.  

Applying cyclic permutation 0( )c
i np P A∈  to the 

initial partition 0E  results in a new partition 1( )iE p .
Then the problem (4) takes the form: 

1( ( )) mini
x D E

F x E p
∈ ⊂

→ .     (5) 

Problem (5) is solved by an appropriate combinatorial 
optimization method (see, e.g., [50]). The process of 
changing the initial clusterization and solving the problem 
(4) using cyclic transfers on new partitions can be
repeated.
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In order to search for a cyclic permutation ip  from the 

set 0( )c
nP A , such that the corresponding cyclic transfer

will provide improving the best solution found for the 
partitions 1( )iE p , we formulate the following
combinatorial optimization problem on the set of cyclic 
permutations : 

0
1

( )
( ( )) min

c
i n

i
p P A

F x E p
∈

→ . (6) 

The solution of the problem (6) depends on the 
properties of the set of cyclic permutations that are 
studied in [51], [52]. Solution algorithms of the problem 
(6) are developed in [53] for the linear function

1( ( ))iF x E p . 

Step 8: Perform a cyclic transfer of selected pickup 
and delivery pairs between cluster elements, which is 
described by a cyclic permutation ip . Get a new partition 

( ) ( )k k
i i i

i
E p E p= . 

Step 9: Solve the problem min ( ( ))i
x D E

F x E p
∈ ⊂

. Find 

( )ix p . 

Step 10: If ( ( ))iF x p < ( )k kF x E then  

* ( ( ))iF F x p=  and * ( )ix x p= .
Step 11: If computing resources allow and do not 

iterate over all elements of the set 1( )c k
nP A − , go to step

6, otherwise goto step12. 
Step 12: Set *x , *F  as the problem solution. 

Two heuristics were used to select pairs of 
pickup and delivery vertices ( , )i ip d  from each 
cluster jC . 
Heuristic 1. The element ja  of the generating set A  can 
be expressed as follows:   

* *( , ) arg max [ ( , ) ( , )]j j
j j i j ii i i

a p d g p g d= = ρ +ρ , 

where ( , )i i jp d C∈ , {1, ..., }ji n∈ , 

( , )x yρ  is the Euclidean distance between two points 
2,x y R∈ , ( , )j j jg x y=  is the center of the cluster jC , 

1 1

1 1( ), ( )
j jn n

j j j j
j jix ix iy iy

j ji i
x p d y p d

n n= =
= + = +∑ ∑ ,

j jn Card C= , Nj J∈ , 
1

N

j
j

n n
=

=∑ .

Heuristic 2. The heuristic takes into account the distances 
between the pickup and delivery vertices of different 
clusters jC , Nj J∈  and kC , k J ν∈ , k j≠ . 

The element ja  of the generating set A  can be expressed 
as follows:   

* * , 1
( , ) arg min [ ( , ) ( , )]

kn
j j j jk k

j l li ii i i k l
a p d p d

=
= = ρ α +ρ α∑ ,  

where 
( , )j j

ji ip d C∈ , {1, ..., }ji n∈ , k
l kCα ∈ , k J ν∈ , k j≠ .

5 Computational experiments 
To improve the solution obtained in Section 3 the 
algorithm for changing the initial data partition of the 
PDP is incorporated in the software package [54].  

The following procedures are implemented: selecting 
elements that will be “moved” between the clusters; 
constructing a generating set for the set of the cyclic 
permutations; applying cyclic transfers corresponding to 
the elements of the set of cyclic permutations; solving the 
PDP on alternative partitions; finding the best value of the 
objective function.  

Computational experiments for 3, 4, 5N =  clusters 
were performed to demonstrate efficiency of the proposed 
approach. The number n  of pickup and delivery pairs 
was varied from 15 to 50. For a small number of vertices 
and for 3, 4N =  clusters the search beam width of 5% is 
taken (see Subsection 3.1, Heuristic algorithm for the 
lower level). Increasing the dimension problem results in 
a drastic increase of CPU time (the width of the search 
beam was reduced to 1%). 

Results of the computational experiments are provided 
in Tables 1-3. The following notations are used: n  is the 
problem dimension (number of pickup-delivery pairs); SR 
(success rate) is the percentage of problems with a 
reduced objective obtained by application of cyclic 
transfers; AVG (Cost) is the average value of the 
objective decreased by the cyclic transfer approach for all 
problems of the given dimension; AVG (Benefit) is the 
average value of the decreased objective; Benefit% is the 
ratio between AVG (Benefit) and AVG (Cost); RWB is 
the width of the search beam. 

Table 1. Results for 3N =  clusters 

n SR AVG(Cost) AVG(Benefit) Benefit 
% 

15 45% 5 084,549 306,270 6% 

20 40% 6095,300 529,092 8,6% 

30 55% 8057,091 583,622 7,2% 

40 60% 8885,765 434,511 4,8% 

EAI Endorsed Transactions on 
Energy Web 

03 2020 - 05 2020 | Volume 7 | Issue 27 | e5



7 

Table 2. Results for 4N =  clusters 

n SR RWB AVG 
(Cost) 

AVG 
(Benefit) 

Benefit 
% 

20 35% 5% 6 582,775 514,715 7,8% 

30 45% 5% 8 396,427 657,150 7,8% 

40 55% 1% 9 637,011 687,679 7,1% 

50 70% 1% 11 218,095 809,446 7,2% 

Table 3. Results for 5N =  clusters 

n SR RW
B 

AVG 
(Cost) 

AVG 
(Benefit) 

Benefit 
% 

40 60% 1% 10 540,754 887,174 8,4% 
50 70% 1% 11 905,301 1 067,554 9% 

As follows from the tables for n  between 15 and 50 
the objective function decreased in the range from 5 to 
9%.  

6 Conclusions 
A new mathematical model for the one-to-one Pickup and 
Delivery Problem with 3D loading constraints was 
considered. In contrast to boolean variables used in most 
mathematical models, it is based on combinatorial 
configurations. 

The proposed algorithm provides a reasonable balance 
between the CPU time and the solution quality. By 
changing the way of forming the set iF  and the rules of 
“expanding” the solution tree nodes, the algorithm can be 
easily adapted for various combinatorial optimization 
problems. 

By cyclic transfers the solution of combinatorial 
optimization problems on cluster data was improved for 
the cases when it is impossible to construct an auxiliary 
graph. The algorithm uses cyclic permutations to form 
cyclic transfers and search for the best negative value 
cyclic transfer. An alternative strategy to form negative 
value cyclic transfers is developed. It is based on the 
properties of multiple cyclic permutations. Heuristic rules 
for selecting elements to be moved between clusters are 
described.  

The proposed strategy is implemented on PDP routing 
problems. The results of computational experiments show 
the efficiency of the proposed strategy.  

An interesting direction for the future research is 
estimating the loss of optimality arising due to clustering 
[55, 56]. Considering pickup and delivery problem as a 
part of an integrated supply chain system is also an 
interesting and challenging problem [57]. 
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