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Abstract

With the explosive growth in the number of pictures taken by smartphones, organizing and searching
pictures has become important tasks. To efficiently fulfill these tasks, the key enabler is annotating images
with proper keywords, with which keyword-based searching and organizing become available for images.
Currently, smartphones usually synchronize photo albums with cloud storage platforms, and have their
images annotated with the help of cloud computing. However, the “offloading-to-cloud” solution may cause
privacy breach, since photos from smart photos contain various sensitive information. For privacy protection,
existing research made effort to support cloud-based image annotation on encrypted images by utilizing
cryptographic primitives. Nevertheless, for each annotation, it requires the cloud to perform linear checking
on the large-scale encrypted dataset with high computational cost.

This paper proposes a cloud-assisted privacy-preserving image annotation with randomized k-d forest, namely
CPAR. With CPAR, users are able to automatically assign keywords to their images by leveraging the power
of cloud with privacy protected. CPAR proposes a novel privacy-preserving randomized k-d forest structure,
which significantly improves the annotation performance compared with existing research. Thorough analysis
is carried out to demonstrate the security of CPAR. Experimental evaluation on the well-known IAPR TC-12
dataset validates the efficiency and effectiveness of CPAR.
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1. Introduction

The widespread use of smartphones causes photogra-
phy boom in recent years. According to a recent report
from Forever’s Strategy & Business Development team
[1], the number of photos taken by smartphone is
estimated to be 8.8 trillion in 2018. To facilitate the
storage of photos, majority of smartphones today are
synchronizing their photo albums with cloud storage,
such as Apple’s iCloud, Samsung Cloud, and Google
Photos. Besides the storage service, these cloud stor-
age platforms also help annotate users’ photos with
proper keywords, which is the key enabler for users

∗Corresponding author. Email: jyuan@umassd.edu

to perform popular keyword-based search and organi-
zation over their photos. Although the cloud storage
offers a set of decent features, it also raises privacy
concerns since many users’ photos may contain sensi-
tive information, such as personal identities, locations,
and financial information [2]. To protect the privacy
of photos, encrypting them with standard encryption
algorithms, e.g., AES, is still the major approach for
privacy protection in cloud storage [3, 4]. However, this
kind of encryption also sacrifices many other attractive
functionalities of cloud storage, especially for keyword-
based search and management for imagery files.

In order to enable keyword-based search and man-
agement on encrypted data in cloud, keyword-based
searchable encryption (SE) has been widely investigated
in recent years [5–9]. An SE scheme typically provides
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encrypted search indexes constructed based on proper
keywords assigned to data files. With these encrypted
indexes, the data owner can submit encrypted keyword-
based search request to search their data over cipher-
texts. Unfortunately, these SE schemes all assume that
keywords are already available for files to be pro-
cessed, which is hard to be true for photos taken by
smartphones. Specifically, unlike text files that support
automatic keyword extraction from their contents, key-
words assignment for imagery files relies on manual
description or automatic annotation based on a large-
scale pre-annotated image dataset. From the perspec-
tive of user experience, manually annotating each image
from users’ devices is clearly an impractical choice.
Meanwhile, automatic image annotation that involves
large-scale image datasets is too resource-consuming
to be developed on smartphones. Although currently
several cloud storage platforms offer image annotation
services [10, 11], these platforms require access to unen-
crypted images. Therefore, how to provide efficient
and privacy-preserving automatic annotation for smart-
phones’ photos becomes the foundation of SE schemes
applications on smartphones. To address this problem,
our preliminary research proposes a scheme called
CAPIA [12]. By tailoring homomorphic encryption over
vector space, CAPIA offloads the image annotation pro-
cess to the public cloud in privacy-preserving man-
ner. Nevertheless, for every single annotation request,
CAPIA requires the linear processing of all encrypted
records in a large-scale dataset, which hence becomes
its performance bottleneck for practical usage.

This paper proposes a cloud-based privacy-
preserving image annotation scheme using the
power of cloud computing with significantly enhanced
efficiency, namely CPAR. To turbocharge the annotation
efficiency with privacy protected, CPAR designs a novel
privacy-preserving randomized k-d forest structure.
Specifically, CPAR first integrates operations for image
annotation with the data search using randomized
k-d forest [13]. Then, by proposing a set of privacy-
preserving comparison schemes, CPAR enables the
cloud server to perform image annotation directly
over an encrypted randomized k-d forest structure.
Compared with the existing solution - CAPIA, CPAR
offers an adjustable speedup rate from 4× to 43.1×
while achieving 97.7% to 80.3% accuracy of CAPIA.
Our privacy-preserving randomized k-d forest design
can also be used as independent tools for other
related fields, especially for these requiring similarity
measurement on encrypted data. Moreover, considering
the same keyword may have different importance for
the semantic description of different images, CPAR
also proposes a privacy-preserving design for real-
time keywords ranking. To evaluate CPAR, thorough
security analysis and numerical analysis are carried out
first. Then, we implement a prototype of CPAR and

conduct an extensive experimental evaluation using the
well-known IAPR TC-12 dataset [14]. Our evaluation
results demonstrate the practical performance of CPAR
in terms of efficiency and accuracy.

The rest of this paper is organized as follows: In
Section 2: we present the system model and threat
model of CPAR. Section 3 introduces backgrounds of
automatic image annotation and technical preliminar-
ies for CPAR. The detailed construction of CPAR is
provided in Section 4. We analyze the security of CPAR
in Section 5. Section 6 evaluates the performance of
CPAR. We review and discuss related works in Section
7 and conclude this paper in Section 8.

2. Models
2.1. System Model
As shown in Fig.1, CAPR is composed of two entities:
a Cloud Server and a User. The user stores his/her
images on cloud, and the cloud helps the user to
annotate his/her images without learning the contents
and keywords of images. In CPAR, the user first
performs a one-time system setup that constructs an
encrypted randomized k-d forest with a pre-annotated
image datasets. This encrypted randomized k-d forest
is offloaded to the cloud server to assist future privacy-
preserving image annotation. For resource-constrained
mobile devices, this one-time setup process can be
performed using desktops. Later on, when the user has
a new image to annotate, he/she generates an encrypted
request and sends it to the cloud. After processing
the encrypted request, the cloud returns ciphertexts of
top related keywords and auxiliary information to the
user. Finally, the user decrypts all keywords and ranks
them based on their real-time weights to select final
keywords.

!"#

Figure 1. System Model of CPAR

2.2. Threat Model
In CPAR, we consider the cloud server to be “curious-
but-honest”, i.e., the cloud server will follow our scheme
to perform storage and annotation services correctly,
but it may try to learn sensitive information in user’s
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data. The cloud server has access to all encrypted
images, encrypted image features, encrypted keywords,
encrypted RKDF, the user’s encrypted requests, and
encrypted annotation results. We also assume the
user’s devices are fully trusted and will not be
compromised. The research on protecting user devices
is orthogonal to this work. These assumptions are
consistent with major research works that focus on
search over encrypted data on public cloud [7–9]. CPAR
focuses on preventing the cloud server from learning
following information: 1) contents of the user’s images;
2) features extracted and keywords annotated for each
image; 3) request linkability, i.e., tell whether multiple
annotation requests are from the same image.

3. Preliminaries

3.1. Image Feature Extraction
In this paper, we adopt global low-level image features
as that are utilized in the baseline image annotation
technique [15], because it can be applied to general
images without complex models and subsequent
training. Color features of an image are extracted in
three different color spaces: RGB, HSV, and LAB. In
particular, RGB feature is computed as a normalized 3D
histogram of RGB pixel, in which each channel (R,G,B)
has 16 bins that divide the color space values from 0
to 255. The HSV and LAB features can be processed
similarly as RGB, and thus we can construct three
feature vectors for RGB, HSV and LAB respectively
as VRGB, VHSV , and VLAB. Texture features of an
image are extracted using Gabor and Haar wavelets.
Specifically, an image is first filtered with Gabor
wavelets at three scales and four orientations, resulting
in twelve response images. Each response image is
then divided into non-overlapping rectangle blocks.
Finally, mean filter response magnitudes from each
block over all response images are concatenated into a
feature vector, denoted as VG. Meanwhile, a quantized
Gabor feature of an image is generated using the mean
Gabor response phase angle in non-overlapping blocks
in each response image. These quantized values are
concatenated into a feature vector, denoted as VGQ.
The Haar feature of an image is extracted similarly
as Gabor, but based on differently configured Haar
wavelets. HaarQ stands for the quantized version of
Haar feature, which quantizes Haar features into [0,-
1,1] if the signs of Haar response values are zero,
negative, and positive respectively. We denote feature
vectors of Haar and HaarQ as VH and VHQ respectively.
Therefore, given an image, seven feature vectors will
be extracted as [VRGB,VHSV ,VLAB,VG,VGQ,VH ,VHQ].
For more details about the adopted image feature
extraction, please refer to ref [15].

3.2. Integer Vector Encryption (IVE)
In this section, we describe a homomorphic encryption
scheme designed for integer vectors [16], which will
be tailored in our construction to achieve privacy-
preserving image annotation. For expression simplicity,
following definitions will be used in the rest of this
paper:

• For a vector V (or a matrix M), define |max(V)| (or
|max(M)|) to be the maximum absolute value of its
elements.

• For a ∈ R, define dac to be the nearest integer of a,
dacq to be the nearest integer of a with modulus q.

• For matrix M ∈ Rn×m, define vec(M) to be a
nm-dimensional vector by concatenating the
transpose of each column of M.

Encryption: Given a m-dimensional vector V ∈ Zmp and
the secret key matrix S ∈ Zm×mq , output the ciphertext of
V as

C(V) = S−1(wV + e)T (1)

where S−1 is the inverse matrix of S, T is the transpose
operator, e is a random error vector, w is an integer
parameter, q >> p, w > 2|max(e)|.
Decryption: Given the ciphertext C(V), it can be

decrypted using S and w as V = d (SC(V))T

w cq.
Inner Product: Given two ciphertexts C(V1),C(V2) of
V1,V2, and their corresponding secret keys S1 and
S2, the inner product operation of V1 and V2 over
ciphertexts can be performed as

vec(ST1 S2)dvec(C(V1)C(V2)T )
w

cq = wV1VT
2 + e (2)

To this end, vec(ST1 S2) becomes the new secret key and

d vec(C(V1)C(V2)T )
w cq becomes the new ciphertext of V1VT

2 .
More details about this IVE encryption algorithm and

its security proof are available in ref [16].

3.3. Order-Preserving Encryption (OPE)
Order-preserving symmetric encryption (OPE) is a
deterministic encryption scheme whose encryption
function preserves numerical ordering of the plaintexts.
Given two integers a and b in which a < b, by encrypting
with OPE, the order of a and b is preserved as OPE(a) <
OPE(b). More details about this OPE encryption scheme
and its security proof are available in ref [17, 18].

4. Construction of CPAR
4.1. Scheme Overview
The core idea of automatic image annotation is built
on the hypothesis that images contain similar objects
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are likely to share keywords. The distance between
the feature vectors of two images is used to measure
the probability that they contain similar objects [15].
Given a large-scale pre-annotated image dataset, the
annotation process for a new image can be treated
as a process of finding a set of images with shared
objects and transferring keywords from those images.
As a result, the annotation efficiency becomes heavily
dependent on the performance of finding the image
with shared objects. To boost the search efficiency,
CPAR adopts randomized k-d forest as the searching
index [13]. In addition, novel privacy-preserving
schemes are designed to address the privacy concerns
when integrating the randomized k-d forest into CPAR.
Different from many other index structures that are
only efficient for low-dimensional data, Randomized
k-d forest (RKDF) is featured by its performance in
handling high-dimensional data. In CPAR, data vectors
are over 1300-dimension and thus making RKDF an
effective selection.

As depicted in Figure 2, a RKDF is composed of
a set of parallel k-d trees. For each Nodei in a k-
d tree [19], it stores a feature vector Vi of dataset
image Ii . In addition, each non-leaf node also stores a
split field si to generate a hyperplane that divides the
vector space into two parts. Each Nodej in left sub-
tree of Nodei has Nodej [si] ≤ Nodei[si] and vice versa,
as described in ref [19]. To search nodes that store
vectors with top-smallest distances to a request vector
Vreq, a parallel search among all trees in the forest
is performed. Specifically, each tree is traversed in a
top-down manner by comparing the split field values
of Vreq and the vector Vi stored in each Nodei as
an example shown in Fig.2(a). The traversal selects
the left branch to continue if Vreq[si] ≤ Vi[si] and
vice versa. Once the traversal reaches a leaf node,
the vector stored in that leaf node is pushed into a
priority queue Queue as a current close candidate to
Vreq. Note that during the search process, this Queue
keeps updating to hold L closest vectors to Vreq and
is shared by all trees in the forest. After that, a back
trace search starts by iterating all the nodes in the
path from the parent of the current node to the root
node as an example shown in Fig.2(b). When reaching
a Nodei during the back trace, a same queue push
is executed to judge whether to add Nodei to Queue
as illustrated in Algorithm 1. For each Nodei in this
path, a distance comparison between Dis(Vreq,Hi) and
Dis(Vreq,VqL) is compared, where Dis(Vreq,Hi) is the
distance between Vreq and a Nodei ’s hyperplane. Hi can
be considered as the projection vector of Vreq on Nodei ’s
hyperplane. VqL is the Lth vector in Queue which
meets Dis(Vreq,Vqi) ≤ Dis(Vreq,VqL),∀Vqi ∈ Queue. If
Dis(Vreq,Hi) > Dis(Vreq,VqL), the back trace continues
to the next node in this path. Otherwise, the sibling

branch of Nodei needs to be searched using the top-
down traversal. In RKDF, once a node has been searched
in one k-d tree, it will be marked and does not need
to be checked again in the other trees. To further
enhance the search efficiency of a RKDF, approximated
search strategy can be adopted. In particular, based on
the hypothesis that feature vectors of similar images
are likely to be grouped in the same branch, there
is a high probability that the targeted optimal top
similar vectors will be visited well before visiting all
nodes in each k-d tree. In Section 6, we will evaluate
the relationship among the approximation strength,
accuracy, and efficiency. The detailed search of a RKDF
is provided in Algorithm 1. For more details about the
RKDF, please refer to ref [13].

To protect the privacy of user’s data during the
cloud-based annotation, the image data associated with
the RKDF need to be encrypted. Furthermore, these
encrypted data shall support corresponding search
operations in RKDF, which include:

• The comparison between Vreq[si] and Vi[si] in the
top-down traversal for path selection.

• The comparison between Dis(Vreq,Hi) and
Dis(Vreq,VqL) during the back trace process.

• The comparison between Dis(Vreq,Va) and
Dis(Vreq,Vb), i.e., distances from the request
vector to two different images’ feature vectors,
which is used in the queue push process.

The distance Dis(·) between two vectors is calculated
with a combination of L1 distance and KL-Divergence
[15]. Specifically, the distance Disab of two vectors is
computed as

Disab =DL1RGBab +DL1HSVab +DL1Gab +DL1GQab
+DL1Hab +DL1HQab +DKLLABab

where each vector has seven low-level color and texture
feature vectors as discussed in Section 3.1, and DL1
and DKL denote L1 distance and KL-Divergence of two
vectors after data normalization.

In order to address the privacy challenges while
utilizing RKDF for cloud-assisted automatic image
annotation, a challenge needs to be resolved: The
original privacy-preserving comparison scheme for L1
distance (P L1C) and KL-Divergence (P KLC) in CAPIA
cannot be simply re-used in CPAR. That’s because P L1C
and P KLC can only support the privacy-preserving
distance comparison between two vectors. However,
while searching in a RKDF, the distance comparison
between a vector and a hyperplane needs to be
supported in the back trace process and queue push
process of RKDF. In order to resolve this issue, we re-
design P L1C and P KLC to get P L1C − RF and P KLC −
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Figure 2. Vreq is the request vector and each Vi is stored in each tree node i. Dis(·) is an arbitrary distance calculation function
and Dis(Vreq,Hi) is the distance between the request vector Vreq and Nodei ’s hyperplane. VqL is the least closest vector to Vreq in
priority queue Queue. (a) represents top-down traversal and (b) represents back trace search.

RF, standing for P L1C and P KLC for RKDF. P L1C − RF
and P KLC − RF enable the aforementioned privacy-
preserving distance comparison between two vectors
as well as between one vector and one hyperplane.
In addition, we integrate order-preserving encryption
[17, 18] into CPAR to protect the comparison of split
field values in the top-down traversal of RKDF.

4.2. PL1C-RF: Privacy-preserving L1 Distance
Comparison for Randomized k-d Forest

In P L1C − RF, we consider two types of L1 distance
comparison that are required in the queue push and
back trace process of RKDF: 1) DL1ac and DL1bc for
three image feature vectors Vi , i ∈ {a, b, c}; 2) DL1hc and
DL1bc for a hyperplane projected vector Ha and two
image feature vectors Vb,Vc. DL1hc is measured by the
L1 distance between Ha[sa] and Vc[sa], where sa is the
split field of the Nodea. To be more specific, DL1hc is
calculated by projecting Vc on Nodea’s hyperplane and
then calculating the L1 distance between Vc and the
projected vector Ha.

Data Preparation: Given an image feature vector
Vi = [vi1, · · · , vim], the user first converts it to a
mβ-dimensional binary vector Ṽi = [F(vi1), · · · , F(vim)],
where β = |qL(Vi)|, and F(vij ) = [1, 1, · · · , 1, 0, · · · , 0]
such that the first vij terms are 1 and the rest β − vij

terms are 0. The L1 distance between Va and Vb now
can be calculated as

DL1ab =
∑m
j=1 |vaj − vbj | =

∑mβ
j=1(ṽaj − ṽbj )2

Then, the approximation introduced in ref [20] is
applied to Ṽi to update its dimension from mβ to
m̂ = αm logβ+1

γ based on the Johnson Lindenstrauss (JL)
Lemma [21]. By denoting the approximated vector as
V̂i , we have DL1ab =

∑mβ
j=1(ṽaj − ṽbj )2 ≈

∑m̂
j=1(v̂aj − v̂bj )2.

The correctness and accuracy of such an approximation
have been proved in ref [20]. According to our
experimental evaluation in Section 6, we sets α = 1 and
γ = 100 in CPAR to balance accuracy and efficiency.

The detailed construction of the rest stages in PL1C-
RF is presented in Fig.3. The user first encrypts the
image feature vectors and its corresponding hyperplane
projected vector (if exists), and then stores them in
the cloud. Later on the user can generate encrypted
L1 distance comparison request and ask the cloud to
conduct privacy-preserving comparison. On receiving
the request, the cloud can conduct two types of L1
distance comparison using ciphertext only according to
user’s request.

It is worth to note that P L1C − RF is only
interested in which distance is smaller during the
comparison. Therefore, instead of letting the cloud get
exact L1 distances for comparison, P L1C − RF adopts
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Construction of PL1C-RF

Data Encryption:

1. Append 3 elements to an approximated V̂i as
V̂i = [v̂i1, v̂i2, · · · , v̂im̂, r − 1

2
∑m̂
j=1 v̂

2
ij , εi ,−1], i ∈ {a, b},

where r is a random number and εi is a small random
noise.

2. If V̂i is stored in a non-leaf node, generate
a (2m̂ + 2)-dimensional hyperplane projected vec-
tor as Ĥi = [0, · · · , v̂isi , · · · , 0, r −

1
2 v̂

2
isi
, ε
′
i , 0, · · · , 0 −

1, 0 · · · , 0], where r − 1
2 v̂

2
isi

is the (m̂ + 1)th element, −1
is the (m̂ + 2 + si )th element, and si is the split field of
node i.

3. Encrypt V̂i and Ĥi using the Encryption algorithm
of IVE as C(V̂i ) = S−1(wV̂i + ei )T and C(Ĥi ) =
S
′−1(wĤi + e

′
i )
T . C(V̂i ),C(Ĥi ), and w are outsourced

to the cloud.

Request Generation:

1. Append approximated request vector V̂c as V̂c =
[rc v̂c1, · · · , rc v̂cm̂, rc , 1, 1

2 rc
∑m̂
j=1 v̂

2
cj ], in which rc is a

positive random number.

2. Generate Ĥc = [rc v̂c1, · · · , rc v̂cm̂, rc , 1, 1
2 rc v̂

2
c1, · · · ,

1
2 rc v̂

2
cm̂] as hyperplane projected vector.

3. V̂c and Ĥc are encrypted as C(V̂c) = S−1
c (wV̂c + ec)T

and C(Ĥc) = S
′−1
c (wĤc + e

′
c)
T . C(V̂c), C(Ĥc), ST Sc and

S
′T S

′
c are sent to the cloud as request.

Distance Comparison:
Type-1: Compare DL1ac , DL1bc

1. Given C(V̂a), C(V̂b) and C(V̂c), compute

d vec(C(V̂a)C(V̂c)T )
w cq , d vec(C(V̂b)C(V̂c)T )

w cq and decrypt

them as V̂aV̂Tc and V̂bV̂Tc as Eq.2.

2. Compare the approximated L1 distance comparison

as V̂bV̂Tc − V̂aV̂Tc ≈
rc
2 (DL1ac −DL1bc) + (εb − εa).

Type-2: Compare DL1hc , DL1bc ,

1. Given C(Ĥa), C(V̂b), C(V̂c) and C(Ĥc), compute

d vec(C(Ĥa)C(Ĥc)T )
w cq , d vec(C(V̂b)C(V̂c)T )

w cq and decrypt

them as ĤaĤT
c and V̂bV̂Tc as Eq.2.

2. Compare the approximated L1 distance comparison

as V̂bV̂Tc − ĤaĤT
c ≈

rc
2 (DL1hc −DL1bc) + (εb − ε

′
a).

Figure 3. Construction of P L1C − RF

approximated distance comparison result scaled and
obfuscated by rc, εb − εa and εb − ε

′
a as shown in

4.2. As rc is a positive random number, the sign of
rc
2 (DL1ac −DL1bc) and rc

2 (DL1hc −DL1bc) are consistent
with DL1ac −DL1bc and DL1hc −DL1bc respectively.
Meanwhile, since rc >> εb − εa and rc >> εb − ε

′
a, the

added noise term has negligible influence to the sign
of DL1ac −DL1bc or DL1hc −DL1bc unless these two
distances are very close to each other. Fortunately,

instead of finding the most related one, our CPAR
design will utilize P L1C − RF to figure out top 10
related candidates during the comparison. Such a
design makes important candidates (say top 5 out of top
10) not be bypassed by the error introduced in εb − εa
and εb − ε

′
a. This hypothesis is further validated by our

experimental results in Section 6.

4.3. PKLC-RF: Privacy-preserving KL-Divergence
Comparison for Randomized k-d Forest
In P KLC − RF, we also consider two types of KL-
Divergence comparison similar to P L1C − RF: 1) DKLac
and DKLbc for three image feature vectors Vi , i ∈
{a, b, c}; 2) DKLhc and DKLbc for a hyperplane projected
vector Ha and two image feature vectors Vb,Vc.
Given twom-dimensional vectors Vi , i ∈ {a, b}, their KL-
Divergence DKLab is calculated as

DKLab =
m∑
j=1

vaj × log(
vaj
vbj

) (3)

=
m∑
j=1

vaj × log(vaj ) −
m∑
j=1

vaj × log(vbj )

where log(
vaj
vbj

) = log(vaj ) = log(vbj ) = 0 if vaj = 0 or
vbj = 0. In addition, the KL-Divergence DKLhc between
a image feature vector and a hyperplane is measured
by the KL-Divergence between Ha[sa] and Vc[sa], where
sa is the split field of Nodea. Similar with P L1C −
RF, P KLC − RF is also calculated by projecting Vc
on Nodea’s hyperplane and then calculating the KL-
Divergence between Vc and the projected vector Ha.

The detailed construction of P KLC − RF is presented
in Fig.4. In the data encryption stage, the image feature
vectors and corresponding hyperplane projected vector
(if exists) are encrypted and stored in the cloud.
On receiving the encrypted KL-Divergence comparison
request from the user, the cloud conducts two types
of privacy-preserving KL-Divergence comparison using
ciphertext only according to user’s request. Similar
to our P L1C construction, we have rc > 0 and rc >>
(εb − εa). Therefore, the cloud can figure out which
KL-Divergence is smaller based on the scaled and
obfuscated comparison result.

4.4. Detailed Construction of CPAR
CPAR consists of five major procedures. In the System
Setup, the user selects system parameters, extracts, pre-
processes feature vectors of images in a pre-annotated
dataset and uses these feature vectors to build a
RKDF. Then, the user executes the RKDF Encryption
procedure to encrypt all data associated with nodes in
the RKDF. Both the System Setup procedure and the
RKDF Encryption procedure are one-time cost in CPAR.

6 EAI Endorsed Transactions on 
Security and Safety 

08 2019 - 05 2020 | Volume 6 | Issue 22 | e5



CPAR: Cloud-Assisted Privacy-preserving Image Annotation with Randomized k-d Forest

Construction of PKLC-RF

Data Encryption:

1. Given an image feature vector Vi , append
m + 2 elements as Vi = [vi1, vi2, · · · , vim, vi1 ×
log(vi1), · · · , vim × log(vim), r, εi ], where r is a random
number and εi is a small random noise. If Vi is
stored in a non-leaf node in RKDF, its corresponding
hyperplane projected vector is processed as Hi =
[0, · · · , visi , · · · , 0, · · · , visi × log(visi ), · · · , 0, r, ε

′
i ],

where si is the split field of the node, visi ,
visi × log(visi ) and r are the si th, (m + si )th and
(2m + 1)th elements respectively.

2. Encrypt Vi and Hi with the Encryption algorithm
of IVE as C(Vi ) = S−1(wVi + ei )T and C(Hi ) =
S−1(wHi + e

′
i )
T .

Request Generation:

1. Given request image feature vector Vc , replace its
elements vcj with −rc × log(vcj ) and append m +
2 elements to it as Vc = [−rc × log(vc1), · · · ,−rc ×
log(vcm), G(vc1), · · · , G(vcm), rc ,−1], where G(vcj ) ={
rc , vcj , 0
0, vcj = 0

, rc is a positive random number changing

for every request.

2. Using the Encryption algorithm of IVE to encrypt Vc
as C(Vc) = S−1

c (wVc + ec)T . C(Vc) and ST Sc are sent
to the cloud as request.

KL-Divergence Comparison:
Type-1: Compare DKLac , DKLbc

1. Compute d vec(C(Va)C(Vc)T )
w cq , d vec(C(Vb)C(Vc)T )

w cq and

decrypts them as VaVTc and VbVTc using the
Decryption of IVE in Section 3.2.

2. Compare KL divergence as VaVTc −VbVTc =
rc(DKLac −DKLbc) + (εb − εa).

Type-2: Compare DKLhc , DKLbc

1. Compute d vec(C(Ha)C(Vc)T )
w cq , d vec(C(Vb)C(Vc)T )

w cq and

decrypts as HaVTc and VbVTc using the Decryption of
IVE as Eq.2.

2. Compare KL divergence as HaVTc −VbVTc =
rc(DKLhc −DKLbc) + (εb − ε

′
a).

Figure 4. Construction of PKLC-RF

Later on, the user can use the Secure Annotation Request
procedure to generate an encrypted annotation request.
On receiving the request, the cloud server performs
the Privacy-preserving Annotation on Cloud procedure to
return encrypted keywords for the requested image. At
the end, the user obtains final keywords by executing
the Final Keyword Selection procedure.

System Setup. To perform the one-time setup
of CPAR system, the user first prepares a pre-
annotated image dataset with n images, which can
be obtained from public sources, such as IAPR

TC-12 [14], LabelMe [22], etc. For each image
Ii in the dataset, the user extracts seven feature
vectors [Vi,RGB,Vi,HSV ,Vi,LAB,Vi,G,Vi,GQ,Vi,H ,Vi,HQ].
Compared with other five feature vectors that have
dimension up to 256, Vi,H and Vi,HQ have a high
dimension as 4096. To guarantee the efficiency while
processing feature vectors, Principal Component
Analysis (PCA) [23] is utilized to reduce the dimension
of Vi,H and Vi,HQ. According to our experimental
evaluation in Section 6.3, PCA-based dimension
reduction with proper setting can significantly improve
the efficiency of CPAR with slight accuracy loss. After
that, L1 normalization will be performed for each
feature vector, which normalizes elements in these
vectors to [-1,1]. Besides Vi,LAB, the user also increases
each element in Vi,k , k ∈ {RGB,HSV ,G,GQ,H,HQ}
as vi,k,j = vi,k,j + 1 to avoid negative values. Six
feature vectors that use L1 distance for similarity
measurement are concatenated as a mL1-dimensional
vector Vi,L1. Vi,LAB is denoted as a mKL-dimensional
vector Vi,KL for expression simplicity. It is easy to verify
that DL1L1

ab = DL1RGBab +DL1HSVab +DL1Gab +DL1GQab +

DL1Hab +DL1HQab .
After that, the user constructs a RKDF with feature

vector space {Vi}1≤i≤n, in which each node in a single
tree is associated with one Vi . For each non-leaf node in
RKDF, its split field element Vi[si] is stored in a set SF .
In CPAR, the RKDF contains ten parallel k-d trees.

RKDF Encryption. In this stage, the user is responsible
for encrypting the constructed RKDF. Given an image Ii
in the pre-annotated dataset, its keywords {Ki,t} are first
encrypted using AES by the user. Then, its processed
feature vectors Vi,L1,Vi,KL are encrypted with our
P L1C − RF and P KLC − RF schemes as C(Vi,L1) and
C(Vi,KL) respectively. C(Vi,L1) and C(Vi,KL) are then
stored in the corresponding Nodei of the RKDF. For each
non-leaf node, encrypted hyperplane projected vectors
C(Hi,L1),C(Hi,KL) are generated and added into Nodei
using the data encryption processes described in our
P L1C − RF and P KLC − RF. In addition, for the split
field element Vi[si] of each non-leaf node, an order-
preserving encryption is executed and the ciphertext
OPE(Vi[si]) is stored in Nodei . After the encryption,
each node in the RKDF only contains encrypted data
as

• Non-leaf Node: [C(Vi,L1),C(Vi,KL),C(Hi,L1),C(Hi,KL),
OP E(Vi [si ]), AES({Ki,t})]

• Leaf Node: [C(Vi,L1),C(Vi,KL), AES({Ki,t})]

During the encryption process, same secret keys SL1,
S
′
L1, SKL, public parameter w, and random number r

will be used for all images. However, different error
vector ei , e

′
i and noise term εi , ε

′
i are generated for

each image Ii correspondingly. The user also computes
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STL1Ss,L1, S
′T
L1S

′
s,L1 and STKLSs,KL, in which Ss,L1, S

′
s,L1

and Ss,KL are secret keys for the encryption of later
annotation requests. The encrypted RKDF, STL1Ss,L1,
S
′T
L1S

′
s,L1 and STKLSs,KL are outsourced to the cloud.

Secure Annotation Request. When the user has a new
image Is for annotation, he/she first extracts seven fea-
ture vectors as Vs, s ∈ [RGB,HSV , LAB,G,GQ,H,HQ].
These vectors will be processed to output Vs,L1 and
Vs,KL as that in the System Setup procedure. Vs,L1 and
Vs,KL are encrypted as C(Vs,L1), C(Hs,L1), and C(Vs,KL)
using the Request Generation of P L1C − RF and P KLC −
RF schemes respectively. For each annotation request,
the user generates a new positive random number rs and
new error vectors es, e

′
s. Meanwhile, for each element sfj

in the split field set SF generated in System Setup, the
user encrypts Vs[sfj ] using order-preserving encryp-
tion as OPE(Vs[sfj ]). C(Vs,L1), C(Hs,L1), C(Vs,KL) and
{OPE(Vs[sfj ])} are sent to the cloud as the annotation
request.

Privacy-preserving Annotation on Cloud. On receiving
the encrypted request, the cloud first performs a
privacy-preserving search over the encrypted RKDF. As
described in Algorithm 1, the cloud conducts parallel
search over each encrypted tree in the RKDF. There are
three places that require the cloud to conduct privacy-
preserving computation over encrypted data:
• During the top-down traversal, as the split field

element of each non-leaf node is encrypted using order-
preserving encryption, the cloud can directly compare
their ciphertexts (line 7) to determine which node to be
checked next.
• In the back trace process, the cloud needs to

perform privacy-preserving comparison to determine
whether the current node’s sibling branch needs to be
searched (line 24 to 29). In particular, given C(Vs,L1),
C(Hs,L1), C(VqL,L1), C(Hparent,L1), C(Vs,KL), C(VqL,KL),
and C(Hparent,KL), the cloud first uses type-2 distance
comparison in P L1C − RF and P KLC − RF to compute

VqL,L1VT
s,L1, VqL,KLVT

s,KL,

Hparent,L1HT
s,L1, Hparent,KLVT

s,KL

Then, the distance comparison is executed as

CompqL = −2(VqL,L1VT
s,L1) + VqL,KLVT

s,KL

Comph = −2(Hparent,L1HT
s,L1) + Hparent,KLVT

s,KL

CompqL − Comph (4)

= rs(DL1L1
qL,s −DL1L1

parent,s) + 2(ε
′
parent − εqL)

+rs(DKL
LAB
qL,s −DKL

LAB
parent,s) + (ε

′
parent − εqL)

= rs(Dis(VqL,Vs) −Dis(Hparent ,Vs))

+3(ε
′
parent − εqL)

where VqL is the least closest vector to Vreq in priority
queue Queue. As rs is a positive value and rs >>
(ε
′
parent − εqL), the sign of CompqL − Comph is consistent

with Dis(VqL,Vs) −Dis(Hparent ,Vs).
• In the Queue push process (line 30-37), privacy-

preserving distance comparison is needed to determine
whether a new node shall be added. Specifically, given
C(Vs,L1), C(VNode,L1), C(VqL, L1), C(Vs,KL), C(VNode,KL),
C(VqL, KL), the cloud use type-1 distance comparison
in P L1C − RF and P KLC − RF to perform distance
comparison as

CompNode = −2(VNode,L1VT
s,L1) + VNode,KLVT

s,KL

CompqL = −2(VqL,L1VT
qL,L1) + Vcur,KLVT

s,KL

CompNode − CompqL (5)

= rs(DL1L1
Node,s −DL1L1

qL,s) + 2(εqL − εNode)

+rs(DKL
LAB
Node,s −DKL

LAB
qL,s ) + (εqL − εNode)

= rs(Dis(VNode,Vs) −Dis(VqL,Vs))

+3(εqL − εNode)

To this end, the cloud is able to perform all
operations required by a RKDF search in the privacy-
preserving manner, and obtain a Queue of nodes that
stores data of top related images to the request. The
cloud returns distance comparison candidates (type-
1 distance) Compi , i ∈ Queue as well as corresponding
encrypted keywords back to the user.

Final Keyword Selection. The user first decrypts
encrypted keywords and obtains Ki,t , i ∈ Queue, where
Ki,t is the t-th pre-annotated keyword in image Ii . Then,
the user computes distances Dis(Vi ,Vs), i ∈ Queue as

Dis(Vi ,Vs) = (2r +
∑mL1
j=1 v

2
s,L1,j ) + Compi

rs
(6)

= (2r +
∑mL1
j=1 v

2
s,L1,j ) +

−2(Vi,L1VT
s,L1)+Vi,KLVT

s,KL
rs

To achieve higher accuracy in keywords selection, we
consider that keywords in images that have smaller
distance to the requested one are more relevant. Thus,
we define a real-time weightWt for each keyword based
on distances Dis(Vi ,Vs) as

WIi = 1 − Dis(Vi ,Vs)∑
i∈RST Dis(Vi ,Vs)

(7)

Wt =
∑

WIi , f or Ii contains Ki,t (8)

Specifically, we first figure out the weight WIi of each
image according to their distance-based similarity. As
our definition in Eq.7, images with smaller distance
will receive a larger weight value. Then, considering
the same keyword can appear in multiple images, the
final weightWt of a keyword Ki,t is generated by adding
weights of images that contain this keyword. Finally,
the user selects keywords for his/her image according
to their ranking of weight Wt .

8 EAI Endorsed Transactions on 
Security and Safety 

08 2019 - 05 2020 | Volume 6 | Issue 22 | e5



CPAR: Cloud-Assisted Privacy-preserving Image Annotation with Randomized k-d Forest

Value of 
(a)

0 100 200 300 400 500 600 700 800 900 1000

L
1

 D
is

ta
n

c
e

 E
rr

o
r 

R
a

te
 (

%
)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Set  = 1

Value of 
(b)

0 100 200 300 400 500 600 700 800 900 1000

D
im

e
n

s
io

n
 o

f 
A

p
p

ro
x

im
a

te
d

 V
e

c
to

r

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Set  = 1

Value of 
(c)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

L
1

 D
is

ta
n

c
e

 E
rr

o
r 

R
a

te
 (

%
)

0

5

10

15

Set  = 100

Value of 
(d)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

D
im

e
n

s
io

n
 o

f 
A

p
p

ro
x

im
a

te
d

 V
e

c
to

r

0

500

1000

1500

2000

2500

3000

Set  = 100

Figure 5. Error rate of Approximation and Dimension of Approximated Vector (P CA − 32)

Discussion - Personalization. In real-world use cases,
for the purpose of enabling more accurate privacy-
preserving cloud-assisted image annotation for per-
sonal imagery data, we suggest users to perform one
additional initial preparation step. Instead of directly
using well-known pre-labeled dataset to build RKDF,
the user can select a few images from his/her own
photo library, manually label them with personalized
keywords and then add those images and keywords to
the pre-labeled dataset. For example, user Lisa prefers
to annotate her dog as "Mike" instead of "dog". Then
during this initial step, Lisa only needs to add a few
Mike’s photos to the dataset and label them as "Mike"
so that when there’s a new photo of Mike waiting for
annotation, our scheme could be able to target the
existing photos of Mike in the dataset as similar images
and thus picking the keyword "Mike" to appear in
the final keyword selection. Note that this initial step
only changes the size of the dataset and keyword set
and would not affect the following RKDF building and
searching process.

5. Security Analysis
In CPAR, we have the following privacy related data:
feature vectors {Vi,L1,Vi,KL}1≤i≤n, hyperplane projected
vectors Hi,L1, Hi,KL of each non-leaf node associated
with Vi,L1, Vi,KL, the split field element of each non-
leaf node, keywords of image Ii in the pre-annotated
dataset, and feature vectors Vs,L1, Hs,L1, Vs,KL of the
image requested for annotation. As keywords are
encrypted using standard AES encryption, we consider
them secure against the cloud server as well as outside
adversaries. For the split field element of each non-
leaf node, it is encrypted using the order-preserving
encryption [17, 18], which has been proved to be
secure. With regards to Vi,L1, Hi,L1, Vi,KL, Hi,KL, Vs,L1,
Hs,L1 Vs,KL, they are encrypted using the encryption
scheme of IVE [16] after pre-processing as presented
in our P L1C − RF and P KLC − RF schemes. The IVE
scheme [16] has been proved to be secure based on the
well-known Learning with Errors (LWE) hard problem
[24]. Thus, given the ciphertexts C(Vi,L1), C(Hi,L1),
C(Vi,KL), C(Hi,KL), C(Vs,L1), C(Hs,L1), C(Vs,KL) only,
it is computational infeasible for the cloud server

or outside adversaries to recover the corresponding
feature vectors.

5.1. Security of Outsourcing STL1Ss,L1, S′TL1S′s,L1 and
STKLSs,KL
As STL1Ss,L1, S

′T
L1S

′
s,L1, and STKLSs,KL are used in the same

manner, we use ST Ss to denote them for expression
simplicity. Different from the original encryption
algorithm of IVE, the user in CPAR also outsources
ST Ss to the cloud besides ciphertexts. As all elements
in S and Ss are randomly selected, elements in their
multiplication ST Ss have the same distribution as these
elements in S and Ss [25]. Thus, given ST Ss, the cloud
server is not able to extract S or Ss directly and use
them to decrypt ciphertexts. By combining ST Ss with
ciphertexts C(Vi,L1) and C(Vs,L1) (same as that for
C(Hi,L1), C(Hs,L1), C(Vi,KL), C(Hi,KL) and C(Vs,KL)), the
cloud can obtain

ST SsC(Vi,L1) = ST SsS
−1(wVi,L1 + ei)

T

ST SsC(Vs,L1) = ST SsS
−1
s (wVs,L1 + es)

T

= ST (wVs,L1 + es)
T

From the above two equations, it is clear that the
combination of ST Ss, C(Vi,L1) and ST Ss, C(Vs,L1) only
transfer them to the ciphertexts of Vi,L1 and Vs,L1 that
encrypted using the IVE scheme with new keys ST SsS−1

and ST respectively. As ST SsS−1 and ST are random
keys and unknown to the cloud, recovering Vi,L1, Vs,L1
from ST SsC(Vi,L1), ST SsC(Vs,L1) still become the LWE
problem as proved in ref [16]. To this end, ST Ss only
helps the cloud perform distance comparison in CPAR,
but does not bring additional advantages to recover
feature vectors compared with the given ciphertexts
only scenario.

5.2. Request Unlinkability
The request unlinkability in CPAR is guaranteed by the
randomization for each request. Specifically, each query
request {Vs,L1,Hs,L1,Vs,KL} is element-wise obfuscated
with different random error terms es, e

′
s and random

number rs during the encryption, which makes the
obfuscated Vs,L1,Hs,L1,Vs,KL have the same distribution
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Algorithm 1: Privacy-preserving RKDF Search
Input : Encrypted Search Request (Req) for Vs,

Encrypted RKDF with a set of Trees {Tk},
approximation power AP − X

Output: Encrypted Nodes Associated with Top Related
Images to the Request.

1 Initialization Queue = [], P ath = [] (Searched Path), V is
= [] (Visited Nodes), Nodek=Tk .root;

2 Each tree Tk executes topDownTraversal() and
backTraceSearch() in parallel, Queue and V is are
shared among all trees;

3 Function topDownTraversal(Req, Nodek):
4 if Nodek is not null then
5 return;

6 Vi ←− Nodek .Vi ;
7 if OPE(Vs[si ]) ≤ OPE(Vi [si ]) then
8 Nodek = topDownTraversal(Nodek .left-child);
9 else

10 Nodek =
topDownTraversal(Nodek .right-child);

11 if Nodek < V is then
12 V is.push(Nodek);
13 Queue.push(Nodek);

14 P ath.push(Nodek);
15 return Nodek ;

16 Function backTraceSearch(Req, Nodek):
17 if V is.length() > AP − X× Nodes Number then
18 return Queue;

19 if P ath is not null then
20 parent←− P ath.pop();

21 if parent < V is then
22 V is.push(parent);
23 Queue.push(parent);

24 //Privacy-preserving distance comparison is
achieved by P L1C − RF and P KLC − RF, VqL is the
least closest vector to Vs in Queue

25 if Dis(VqL,Vs) < Dis(Hparent ,Vs)) then
26 backTraceSearch(Req, parent);
27 else
28 Nodek =

topDownTraversal(Req,Nodek .sibling);

29 return Queue;

30 Function Queue.push(Node):
31 //Each Nodeq in Queue are ordered by

Dis(Vs,VNodeq )

32 if Queue.length() < Defined Size L then
33 Add Node into Queue by order;
34 else
35 if NodeqL in Queue has

Dis(Vs,VNode) < Dis(Vs,VqL) then
36 Remove NodeqL from Queue;
37 Add Node into Queue by order;

as in these random values es, e
′
s and rc [25]. Thus, by

changing es, e
′
s and rc during the encryption of different

requests, CPAR outputs different random ciphertexts,
even for requests generated from the same image.

6. Evaluation
To evaluate the performance of CPAR, we implemented
a prototype using Python 2.7. In our implementation,
Numpy [26] is used to support efficient multi-
dimension array operations. OpenCV [27] is used to
extract the color-space features of the images and build
the filter kernels to generate the Gabor filter results.
Pywt [28] is adopted to perform Haar wavelet and get
the corresponding Haar results. Sklearn [29] is used to
perform the PCA transformation. FLANN library [13] is
used to act as the non-privacy randomized k-d forest for
comparison. We use the well-known IAPR TC-12 [14]
as the pre-annotated dataset, which contains 20,000
annotated images and the average number of keywords
for each image is 5.7. All tests are performed on a 3.1
GHz Intel Core i7 Macbook Pro with OS X 10.14.2
installed as User and a Microsoft Azure cloud E4-v3 VM
with Ubuntu 18.04 LTS installed as Cloud Server.

In the rest of this section, n is the total number
of images in the pre-annotated dataset, mL1 is the
dimension of pre-processed feature vectors Vi,L1, mKL
is the dimension of pre-processed feature vectors Vi,KL
and their corresponding hyperplane projected vectors
Hi,KL, m

′
L1 is the dimensions of hyperplane projected

vector Hi,L1. We also use DOTm to denote a dot product
operation between to two m-dimensional vectors. AP −
X is used to denote the approximation power during
the RKDF search, which indicates X% of the nodes
will be checked in each tree of RKDF. P CA − X is used
to denote the strength of P CA transformation applied
to Vi,H and Vi,HQ in Vi,L1, which compresses their
dimensions from 4096 to 4096

X . P CA − 128, P CA − 64,
P CA − 32, P CA − 16, and P CA − 8 are evaluated in our
experiments to balance the efficiency and accuracy of
CAPIA.

In our evaluation, we first provide numerical analysis
as well as experimental evaluation for each stage of
CPAR. Then, we compare CPAR with CAPIA proposed
in ref [12] in terms of efficiency and accuracy.

6.1. System Parameter Selection
To perform the one-time setup in CPAR, the user pre-
processes feature vectors of each image in the pre-
annotated image dataset. Specifically, the user first
performs JL-Lemma based approximation over Vi,L1
to make them compatible with our P L1C − RF. As
discussed in Section 4.2, there is a trade-off between
the approximation accuracy of L1 distance and length
of the approximated vector that determines efficiency
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of follow up privacy-preserving operations. To balance
such a trade-off, we evaluate different parameters for
approximation as shown in Fig.5 (a)-(d). According
to our results, we suggest to set α = 1 and γ = 100
which introduces 3.61% error rate for L1 distance
computation, and extends the dimension of Vi,L1 from
864 to 1296 under the setting of P CA − 32. Specifically,
the error rate drops fast when α < 1 and becomes
relative stable when α > 1. Meanwhile, the dimension
of the approximated vector increases linearly to the
value of α. With regards to γ , the dimension of the
approximated vector becomes relative stable when γ >
100, however, the error rate still increases when γ >
100.
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Figure 6. Accuracy Loss with Different PCA Settings

With regards to the selection of P CA parameter, it is
clear that better efficiency of CPAR will be achieved by
increasing the strength of P CA. However, the stronger
P CA setting will also cause accuracy loss due to the loss
of information during the compression. To balance the
efficiency and accuracy, we evaluate of accuracy loss of
annotation with different PCA setting. Compared with
the No − P CA setting, Fig.6 shows the accuracy loss
for P CA − 8, P CA − 16, and P CA − 32 are stable and
bounded in 0.5%. Differently, P CA − 64 and P CA − 128
rapidly raise the accuracy loss. Therefore, P CA − 32 is
adopted by CPAR.

6.2. RKDF Construction and Encryption
To construct an encrypted RKDF, the user first con-
structs an unencrypted RKDF using 20,000 pre-
annotated images, and then replaces data of each node
in the RKDF with their corresponding ciphertexts. The
construction of an unencrypted RKDF with 10 k-d trees
costs 28.56 seconds. Then, for the pre-processed feature
vectors Vi,L1 and Vi,KL of each image, the user can
encrypt them using P L1C − RF and P KLC − RF with
(mL1)DOTmL1

and (mKL)DOTmKL operations respec-
tively, which costs 8.4ms in total in our implementa-
tion. If an image is associated with a non-leaf node in

any tree of the RKDF, encryption for the hyperplane
projected vectors Hi,L1 and Hi,KL with (m

′
L1)DOTm′L1

and (mKL)DOTmKL operations respectively, which costs
54.7ms in total. In addition, for each non-leaf node, an
order-preserving encryption is needed for the split field,
each of which costs 1.4ms. Therefore, to build a 10-tree
encrypted RKDF with a 20,000 pre-annotated image
dataset, it takes 74.78 minutes in our implementation.
It is noteworthy that the encrypted RKDF construction
is one-time offline cost, which does not impact the
performance of later on real-time privacy-preserving
image annotation.

6.3. Real-time Image Annotation

Request Generation: To annotate a new image in a
privacy-preserving manner, the user pre-processes and
encrypts its feature vectors Vs,L1 and Vs,KL using
P L1C − RF and P KLC − RF. Specifically, the encryption
of Vs,L1 requires (mL1)DOTmL1

+ (m
′
L1)DOTm′L1

for
shown in Fig.3, and the encryption of Vs,KL requires
(mKL)DOTmKL operations as shown in Fig.4. In addition,
for each element sfj in the split field element set
SF with size of 348 in our implementation, order-
preserving encryption are executed for Vs[sfj ]. As
a result, the encrypted request can be efficiently
generated with only 534.16ms.
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Figure 7. Privacy-preserving Annotation Cost on Cloud with
Different Approximation Power

Privacy-preserving Annotation on Cloud: On receiving
the encrypted request, the cloud performs privacy-
preserving RKDF search with top-down traversal, back
trace search, and queue push processes. The top-down
traversal only requires a direct comparison between the
ciphertexts under order-preserving encryption, whose
cost is negligible compared with the other two pro-
cesses. In the back trace search, privacy-preserving
type-2 distance comparison needs to the executed
using P L1C − RF and P KLC − RF. In particular, two
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Figure 8. Speedup Rate with Different Approximation Power

comparison candidates CompqL and Comph are com-
puted with (mL1 + 1)DOTmL1

+ (mKL + 1)DOTmKL oper-
ations and (m

′
L1 + 1)DOTm′L1

+ (mKL + 1)DOTmKL oper-
ations respectively. With regards to the queue push
process, privacy-preserving type-1 distance comparison
are executed using P L1C − RF and P KLC − RF, which
requires 2(mL1 + 1)DOTmL1

+ 2(mKL + 1)DOTmKL opera-
tions in total. Another important parameter that affects
the search efficiency is the selection of approximation
power AP − X . As depicted in Fig.7, by increasing the
approximation power from AP − 100 to AP−2.5, the
privacy-preserving annotation using encrypted RKDF
reduces from 143.72 seconds to 2.98 seconds. Com-
pared with CAPIA [12] that requires 218.46 seconds for
one privacy-preserving annotation on cloud and does
not support approximate dataset checking, CPAR can
significantly speed it up as depicted in Fig.8.
Final Keyword Selection: This process only involves

AES decryption and the weights generation that only
requires a small number of additions. As a result, the
final keyword selection can be completed by the user
within 318ms.
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Figure 9. Accuracy (Recall) of CPAR with Different Approxima-
tion Power
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Figure 10. Speedup rate of CPAR with Different Accuracy
Compared with CAPIA

Accuracy: To evaluate the accuracy of CPAR, we
use the standard average recall rates to measure the
accuracy of keywords annotation. To be specific, by
using [K1, K2, · · · , ...Ky] to denote distinct keywords
annotated with CPAR for a set of image annotation
requests, the recall rate for each keyword Kj and the
average accuracy are defined as

• recallKj =
# of images assigned Kj correctly by CPAR

# of images assigned Kj in the ground−truth

• Accuracy =
∑y
j=1 recallKj

y

In our evaluation, annotation requests for 50 different
images are submitted, in which each requested image
has two or more related images in the pre-annotated
dataset. As shown in Fig.9, the accuracy of CPAR
reduces from 88.42% to 67.59% when the approx-
imation power increases from AP − 100 to AP−2.5.
Compared with CAPIA [12] our scheme achieves the
same accuracy by setting the approximation power
as AP − 100. While the increasing of approximation
power reduces the accuracy of CPAR to some extent, it
also boosts the efficiency significantly as shown in Fig.7.
Compared with CAPIA, Fig.10 shows that CPAR can
speed up CAPIA by 4×, 11.5×, 18.7×, 25.8×, 43.1×when
achieving 97.7%, 91.4%, 88.9%, 84.7%, 80.3% accuracy
of CAPIA respectively. Therefore, CPAR can greatly
promote the efficiency the of CAPIA while retaining
comparable accuracy. To balance the efficiency speedup
and annotation accuracy of CPAR, we suggest to set the
approximation power as AP − 10, i.e. achieves 88.9%
accuracy of CAPIA with 18.7× speedup. Note that
in real world applications, we can opt to launch our
scheme for image annotaiton tasks during device’s idle
time, for instance, when device is charging during user’s
bed time.

In Table 1, we present samples of automatically
annotated images using CAPIA and CPAR with
approximation power as AP − 10. In the last column
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Table 1. Sample Annotation Results

Image CPAR Annotation CAPIA Annotation Human Annotation

floor-tennis-court,
man, grass

floor-tennis-court,
man, woman

floor-tennis-court,
man

highway, sky-blue,
trees, vegetation,

ground, ship,
sky, ocean, bush

sky-blue, highway,
vegetation, ground,

bush, trees,
lake, ocean

highway, sky-blue,
trees, vegetation

group-of-persons,
ground, cloud,
man, sky-light,

mountain, door,
chair, floor-other,

column

cloud, sky-blue,
ground, mountain,

horse man, road,
grass

ground, cloud,
sky-blue, mountain,

snow, grass

group-of-persons,
hat, hill, cloud,

sky-blue, ground,
sky, fabric,

couple-of-persons,
grass

group-of-persons,
sky-blue, ground,
trees, mountain,

ruin-archeological,
hat, cloud, hill

trees, ground,
man, sky-blue,

group-of-persons

In each cell of CPAR and CAPIA annotation results, ground-truth human annotation results are underlined and
bold out.

we list the human annotation results (ground-truth)
for comparison. On one hand, CPAR is highly possible
to assign correct keywords to images compared with
human annotation. This observation also confirms
the high average recall rate of CPAR, since these
ground-truth annotations are likely to be covered
in CPAR. On the other hand, CPAR also introduces
additional keywords that frequently appear together
with these accurate keywords in top related images.
These additional keywords are typically not directly
included in human annotations, but are potentially
related to correct keywords. Compared with CAPIA,
CPAR only misses a small portion of ground-truth
keywords due to the approximation strategy, which
is consistence with our evaluation result in Fig.9 and
Fig.10. Overall, our evaluation results demonstrate
that although CPAR cannot provide perfect keywords
selection all the time compared with human annotation,
it can still maintain comparable accuracy as CAPIA and
is promising for automatically assigning keywords to
images.

Communication Cost: The communication cost in
CPAR comes from two major parts: annotation request
and encrypted results returned from the cloud server.
The encrypted request consists of a mL1-dimensional
vector C(Vs,L1), a m

′
L1-dimensional vector C(Hs,L1),

a mKL-dimensional vector C(Vs,KL) and a set of
encrypted split field elements SF . In the P CA − 32

setting, the total communication cost for a request
is 80KB, in which 26KB for C(Vs), 48KB for C(Hs)
and 4KB for SF . Meanwhile, the returned results
contain encrypted keywords and distance comparison
candidates of top 10 related images. Using AES-
256 for keywords encryption, the total size for the
returned result is 488 Bytes with the average number
of keywords for each pre-annotated image as 5.7.
Therefore, the communication cost for each privacy-
preserving annotation can be efficiently handled in
today’s Internet environment.

7. Related Works
To solve the problem of how to search over encrypted
data, the idea of keyword-based searchable encryption
(SE) was first introduced by Song et.al in ref [5]. Later
on, with the widespread use of cloud storage services,
the idea of SE received increasing attention from
researchers. In ref [6, 7], search efficiency enhanced
SE schemes are proposed based on novel index
constructions. After that, SE schemes with the support
of multiple keywords and conjunctive keywords are
investigated in ref [8], and thus making the search
more accurate and flexible. Recently, fuzzy keyword
is considered in ref [9], which enables SE schemes to
tolerate misspelled keyword during the search process.
While these SE schemes offer decent features for
keyword-based search, their application to images are
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limited given the question that how keywords of images
can be efficiently extracted with privacy protection.
It is impractical for cloud storage users to manually
annotate their images.

To automate the keywords extraction process for
images, a number of research works have been proposed
with the concept of “automatic image annotation”
[15, 30–32]. Chapelle et al. [33] trained support
vector machine (SVM) classifiers to achieve high
annotation accuracy where the only available image
features are high dimensional histograms. In ref [34,
35], SVM was used to learn regional information
as well as helped segmentation and classification
process simultaneously. Different from SVM which
works by finding a hyperplane to separate vector
spaces, Bayesian network accomplishes the annotation
tasks by modeling the conditional probabilities from
training samples. In ref [36, 37], Bayesian networks
were built by clustering global image features to
calculate the conditional probabilities. Another widely
used technique is artificial neural network (ANN).
Take ref [38] as an instance, based on the assumption
that after image segmentation, the largest part of
an image significantly characterizes the entire image,
Park et al. annotated images using a 3-layer ANN.
With the flourish of deeper ANN structures, such
as convolutional neural network (CNN), in various
vision tasks [39–41], these deeper frameworks have
also been applied to image annotation tasks. In
ref [42], Yunchao et al. proposed to solve image
annotation problem by training CNN with rankings.
Jian et al. [43] combined CNN with recurrent neural
network (RNN) to address the problem of the keyword
dependency during annotation. However, all of these
image annotation works raise privacy issues when
delegated to the cloud since unencrypted images need
to be outsourced. Therefore, to address such privacy
concerns, this paper proposes CPAR, which utilizes the
power of cloud computing to perform automatic image
annotation for users, while only providing encrypted
image information to the cloud.

8. Conclusion
In this paper, we propose CPAR that enables privacy-
preserving image annotation using public cloud servers.
CPAR uniquely integrates randomized k-d forest
with a privacy-preserving design, and thus boosting
the annotation efficiency using cloud. Specifically,
CPAR proposes the lightweight privacy-preserving
L1 distance P L1C − RF and KL-Divergence P KLC −
RF comparison schemes, and then utilizes them
together with order-preserving encryption to support
all required operations in image annotation and
randomized k-d forest search. Our P L1C − RF, P KLC −
RF and privacy-preserving randomized k-d forest can

also be utilized as independent tools for other related
fields, especially for efficient similarity measurement
on encrypted data. Thorough security analysis is
provided to show that CPAR is secure in the defined
threat model. Extensive numerical analysis as well as
prototype implementation over the well-known IAPR
TC-12 dataset demonstrate the practical performance of
CPAR in terms of efficiency and accuracy.
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