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Abstract

Big data era has large volumes of data generated at high velocity from different data sources. Finding frequent
subgraphs from the graph streams can be a challenging task as streams are non-uniformly distributed and
continuously processed. Its applications include finding strongly interacting groups in social networks and
sensor networks. To find frequent subgraphs, we proposed static single-window technique and dynamic
sliding window techniques. We also proposed enhancements by extending proposed static approach with its
variations and extending dynamic approach in variations of incremental strategy to find frequent subgraphs.
We also solved the sub problem to extract frequent subpaths from sequence of paths. Its applications include
finding congested sections in traffic analysis. We applied our proposed static and dynamic techniques to
extract the frequent subpaths from sequence of paths. We experimented the proposed dynamic and static
approaches with real and benchmark datasets.
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1. Introduction
In Big data era, we find large amounts of data generated
from different data sources very fast. For instance,
there are 22.2 million Twitter users in India and 152
million daily active Twitter users all over the world [14].
Data stream model deals with such Big data and data
stream algorithms [6] make very few passes and takes
lesser space. Data streams constitute of structured,
semi-structured and unstructured data which are time
consuming as streams are continuous and are also
unbounded. Massive graphs are rendered as streams
of graphs to analyze and extract useful and unknown
information. Graph streams as dynamic stream model
has been studied in the literature [1, 3, 8] which are the
sequence of ‘m’ edges between ‘n’ nodes with the edges
being updated sequentially. Processing graph streams
are challenging as they have large volume and are
highly dynamic in nature. In this paper, we review the
problem of finding frequent subgraphs from the graph
streams. A frequent subgraph is a connected subgraph
that occurs above the given threshold in the sequence
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of graph streams. The problem of finding frequent
subgraphs is defined as follows: Given a sequence of
graph streams and a minimum support threshold, the
problem is to find the frequent subgraphs having useful
information from the graph streams efficiently. One
of the applications of finding frequent subgraphs can
be in social networks [9]. For instance, we can derive
the groups of users who are frequently communicating
in the social network. In bio-informatics, based on
the frequent interactions between molecules, we can
predict protein functions and identify types of diseases.

We also solve another sub-problem of extracting
frequent subpaths from sequence of paths. The
applications for finding frequent subpaths can be in IP
routing in which we can find the frequent paths of data
flows across multiple networks. In a traffic network,
we can find the paths/sub paths that are frequently
traversed by commuters.

Alfredo Cuzzocrea et al. [10] proposed two algo-
rithms to discover collections of frequent subgraphs,
one of which is the direct 1-step algorithm based verti-
cal mining approach using Data Stream Matrix (DSMa-
trix). Besides, this approach [10] used sliding window
technique to process the graph streams in finding the
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frequent subgraphs. This sliding window technique has
the limitation of repeated calculations. To overcome
this limitation, Kyoungsoo Bok et. al. [11] proposed
an incremental frequent subgraph detection technique.
The limitation of Kyoungsoo Bok et al. [11] approach
is that their approach did not completely resolve the
duplicate calculations.

We observed that the above solutions have certain
limitations which include the partially resolved dupli-
cate calculations. Another possible limitation, frequent
subgraphs in the past can be infrequent due to incom-
plete storage of edges in the sliding window. To over-
come these limitations, we proposed static and dynamic
approaches to find the frequent subgraphs. The key
contributions of this work include

• Proposed static and dynamic techniques to extract
frequent subgraphs

• Compared the proposed techniques with the con-
ventional approach thus evaluating the efficiency

This paper is a revised and extended version of
our BigDML 2019 paper [16]. Our additional key
contributions of this paper include the following:

• We improved and proposed static approach by
computing actual minimum support.

• We also proposed partition based static approach
with actual minimum support for sequential and
parallel environments.

• We improved and extended the dynamic sliding
window filtering technique with variable batch
size described in Section 5.2.

• We solved the sub-problem to find frequent sub-
paths from sequence of paths described in section
5.3 by applying our proposed static and dynamic
techniques.

• We analysed our proposed static and dynamic
techniques for efficiency on real and synthetic
datasets in section 6.

The above key contributions of proposed approaches
and its variations are also given in Table 1.

Section 2 deals with the preliminaries and problem
definitions. Section 3 deals with literature survey of
frequent subgraph algorithms and extracting frequent
sub-paths from sequence of paths. Section 4 describes
our proposed static and dynamic techniques to
extract frequent subgraphs. Section 5 discusses the
enhancements to our proposed techniques by solving
the problem of finding frequent sub-paths from paths
data for the directed graph. Section 6 describes the

Table 1. Proposed Approaches and its variations

Static Approach Dynamic Approach

1. Single window with
minimum support

1. Incremental approach
with fixed batch size of
graph data with relative
support

2. Single window
approach with actual
minimum support

2. Incremental approach
with variable batch size
of graph data with
relative support

3. Partition based
approach with actual
minimum support in
sequential and parallel
environments

Figure 1. Sequence of graph streams G1, G2, G3, G4, G5, G6

experiments and evaluation of results. Finally, in
section 7, we conclude with future research directions.

2. Preliminaries
Definition 1. (Graph stream) "Graph stream is defined
as the sequence G1, G2, . . .. Gi . . .Gs, where each graph Gi
is a set of edges. We assume that the edge set Gi contains
only a small fraction of the underlying nodes" [2].

Definition 2. (Frequent Subgraph) A subgraph
Gs(Vs, Es) is a part of a graph G(V,E) such that Vs
⊂ V and Es ⊂ E. A frequent subgraph is a connected
subgraph that occurs above the given threshold (th) in
the sequence of graph streams.

Definition 3. (Path) "Given a graph G(V, E), a path p
of length k from a vertex u to u′ is a sequence (v0, v1, . . . ,
vk) of vertices such that vi ∈V, v0 = u and vk = u′ and (vi−1,
vi) ∈ E for i = 1, 2, . . . , k" [4].

Definition 4. (Subpath)"A path Q in G is said to be a
subpath of P if Q = (w0,w1, . . .,wk′ ), where (w0, w1, . . .
,wk′ ) is a contiguous sub-sequence of path P(v0, v1, . . . ,
vk), i.e., if, for some i such that 0 ≤ i ≤ i+k′ ≤ k, we have w0
= vi , w1 = vi+1, . . . , wk′= vi+k′" [4].

Definition 5. (Minimum Support) Minimum sup-
port is defined as the threshold specified by the user.
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Figure 2. Directed Graph, G

Definition 6. (Actual Minimum Support) Actual
minimum support is defined as the minimum support
based on user’s mining requirements which is appropri-
ate to the database to be mined [17].

Definition 7. (Relative Support) We define the
relative support as the partial minimum support
assigned to subset of data. In this paper, we adopt the
filtering threshold [19] to find the relative support.

2.1. Problem Definitions
In this paper, we propose techniques to find frequent
subgraphs from graph stream data and to find frequent
subpaths from sequence of paths for a directed graph
efficiently.

Finding frequent subgraphs from graph stream data. Given
a sequence of graph streams, for a minimum support
threshold (th), the problem is to find the frequent
subgraphs from the graph streams efficiently.

For instance, for the sequence of graph streams,
shown in Fig. 1, with th=3, the set of frequent
subgraphs include { <(v1, v2), (v1, v4)>, <(v1, v2), (v1,
v5)>, <(v1, v2), (v3, v4)>, < (v1, v4), (v3, v4) >, <(v1,
v4), (v1, v5) > , <(v1, v2), (v1, v4), (v1, v5) >, < (v1, v2),
(v1, v4), (v2, v3)>}

Finding frequent sub-paths from paths data. Given a
sequence of paths of a graph, for a minimum support
(th), the problem is to extract frequent sub-paths from
paths data.

For instance, for the sequence of paths in table 2 of
the graph in Fig. 2., the set of frequent sub paths with
th=3 are {(v5, v6, v7), (v3, v5, v6)}.

Table 2. Data of Paths

S.No. Paths
1 (v1, v2, v5, v6)
2 (v1, v3, v5, v6, v7)
3 (v1, v2, v4)
4 (v1, v2, v4, v5)
5 (v2, v4, v5)
6 (v2, v5, v6)
7 (v2, v4, v6, v7)
8 (v4, v5, v6, v7)
9 (v4, v6, v8)

10 (v3, v4, v5, v6)
11 (v3, v5, v6)
12 (v3, v5, v6, v7)

3. Literature Survey
Massive graphs are considered as streams of data
to analyze and extract useful information. Henzinger
et. al. [7] were the first to introduce graph streams
and they also considered graph problems of paths
and connectivity. Andrew McGregor [1] presented a
detailed survey of graph streams. Due to the dynamic
nature [12], [3] and the large volume of graph
stream data, Nan Tang et. al. [8] proposed graph
summarization sketch that can store frequent counts
and paths of graph streams.

Alfredo Cuzzocrea et al. [10] studied various
methodologies of mining dense patterns in graph
streams and proposed probabilistic algorithms for
determining such structural patterns effectively and
efficiently. Alfredo Cuzzocrea et al. [10] presented
two algorithms to extract frequent subgraphs - (i)
Indirect 2-step algorithm (ii) Direct 1-step algorithm.
Experimental results by Alfredo Cuzzocrea et al. [10]
stated that mining with DSMatrix consumes lesser
memory due to the information stored in a secondary
storage device as they store the existence of edges in
bit vectors. Kyoungsoo Bok et. al. [11] observed that
the algorithm proposed by Alfredo Cuzzocrea et. al.
[10] has a limitation of duplicate calculations. They
introduced slidenum variable [11] to store the frequency
of edges incrementally for batches of graph streams to
resolve duplicate calculations.

From the literature, we observe that while finding
frequent subgraphs, although sliding window based
techniques execute fast, they may lead to loss of useful
historical information. We also observe that we need to
reduce duplicate calculations further.

We observed that finding frequent sub paths from
paths is another problem in the literature that
can be related to the problem of finding frequent
subgraphs.We identified and formulated ways to apply
our proposed and extended techniques to find frequent
subpaths from sequence of paths. Sumanta Guha [4]

3 EAI Endorsed Transactions on 
Scalable Information Systems 

05 2020 - 10 2020 | Volume 7 | Issue 27 | e11



Bhargavi B. and K. Swarupa Rani

Table 3. DSMatrix for graph streams of Fig. 1

Edge G1 G2 G3 G4 G5 G6
(v1, v2) 1 1 1 1 0 1
(v1, v4) 1 1 1 1 1 1
(v1, v5) 1 1 0 1 1 0
(v2, v5) 1 1 1 0 1 1
(v2, v3) 0 1 1 0 0 1
(v3, v4) 0 0 1 1 1 0

developed Apriori based technique to extract frequent
sub paths from paths in an undirected graph. Schwartz
et al. [5] studied demand of frequent sub paths in
a transportation network traversed by several users.
Hence, there is need to find techniques that discover
frequent subgraphs and frequent sub paths efficiently
by storing useful historical information.

4. Static and Dynamic Techniques for Finding
frequent Subgraphs
We have extended the direct 1-step algorithm of Alfredo
Cuzzocrea et al. [10] by modifying the parameters of
sliding window size and by using relative support.
We have proposed static single window approach and
dynamic approach of sliding window to find frequent
subgraphs from graph streams using DSMatrix.

4.1. DSMatrix
Data Stream Matrix or DSMatrix constitutes assigning
the presence (or absence) of each edge by a bit 1 (or 0)
for each graph of graph stream data [10]. For instance,
consider the sequence of graph streams in figure 1.
Table 3 shows the contents of DSMatrix. We find the
rowsum from DSMatrix to compute the frequency of
every edge in graph stream data.

4.2. Static Single Window Technique
In the static single-window, we consider the entire
data set of graph streams as a single window. We
describe the proposed static single window approach
in StaticFreqSubgraph algorithm. In this algorithm, for
the entire graph streams, it creates a DSMatrix. The
rowsum of the DSMatrix is computed and compared to
the minimum support threshold minsup. If rowsum is
greater than or equal to minsup, the resultant edges are
the frequent singleton edges. Then, combination of edge
pairs are found based on the neighbouring information
(in list, N). The AND operation is performed between
the k-frequent singleton edge combinations’ bit vectors
by checking whether the edges are present for each
graph to form a bit vector for the combination.The sum
of non-zero bits is computed and compared to the given
minimum support to check if it is frequent or not. If

the resultant sum is greater than or equal to minsup,
the k+1-subgraph is frequent. Thus, the algorithm
generates all the possible frequent subgraphs.

Algorithm 1 describes the static single window
approach. Step 2 to step 6 is used to create DSMatrix
(Mat_A). The rowsum is computed in step 7 and
frequent singleton edges are generated through step 8
to step 11. Finally, frequent subgraphs are generated
using step 12-16.

For example, for graph streams of Fig. 1 with
minsup=3, the resultant frequent singleton edges are
{(v1, v2), (v1, v4), (v2, v5), (v1, v5),(v2, v3),(v3, v4)}.
The resultant frequent subgraphs for the graph streams
of Fig. 1 generated using StaticFreqSubgraph algorithm
are { <(v1, v2), (v1, v4)>, <(v1, v4), (v1, v5)>, <(v2, v3),
(v2, v5)>, <(v1, v2), (v2, v3)>, <(v1, v2), (v1, v4), (v1,
v5)>}.

Algorithm 1: StaticFreqSubgraph
Input : Edges in graph streams, total number of graphs in the whole data and minsup = minimum

support threshold
Output: Set of frequent subgraphs
// m= number of graph streams, n= number of edges in the entire graph streams

sequence

// Mat_A[m][n] = 2-D DSMatrix with m rows and n columns

// rowsum = count of 1s in a row of DSMatrix

1 Create neighbouring list, N for the graph streams by finding common vertex for the stream of edges
2 for each graph gj do

3 if edge i ∈ gj then

4 Mat_A[i][j]=1

5 else
6 Mat_A[i][j]=0

7 Calculate rowsum for each row of Mat_A.
8 if (rowsum(i) ≥minsup) then
9 Edge i is frequent

10 else
11 Edge i is not frequent

12 Join ‘k’ frequent connected edges with common vertices using neighboring list N to get ‘k+1’
frequent subgraphs , fl for all k≤m.

13 Compute freq(fl ) by AND of the bit vectors of ’k’ recurrent edges for the graph streams in the
DSMatrix

14 if freq(fl )≥minsup then
15 fl is frequent.

16 else
17 fl is infrequent.

4.3. Dynamic Approach of Sliding Window Technique
In this approach, we proposed a dynamic sliding win-
dow technique which we describe in DynamicFreq-
Subgraph algorithm. DSMatrix for each batch is cre-
ated and a relative support is applied. For example, if
batch 1 contains 3 graph instances, then we calculate
40% of frequent edges of the 3 graph instances and
store it in the map. This technique is incrementally
applied for the next batches. The frequency thresh-
old for the edges is based on the number of graph
instances. Thus, this approach preserves the previous
history information. After the singleton frequent edges
are calculated, the combination is formed based on
the neighbouring information. DynamicFreqSubgraph
algorithm computes AND operation on the edges and
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Algorithm 2: DynamicFreqSubgraph
Input : Edges in the graph streams, percentminsup
Output: Set of Frequent subgraphs
// n=Total number of graph streams in the entire sequence

// DSMatrix[m][n]= 2D matrix of m rows and n columns

// batchsize = number of graphs in a batch

1 totalbatch= n / batchsize
2 batchpointer=0
3 k=0
4 repeat
5 Compute DSMatrix for each batch of graph streams
6 Calculate edge_count for each batch
7 minsup=percentminsup*(batchpointer*batchsize+1)
8 k=k+1
9 if (edge_count[i] ≥ minsup) then

10 Store < edge i, edge_count[i] > in a map M
11 batchpointer= batchpointer + batchsize
12 until k < totalbatches;
13 relativesup=d(percentminsup*n)e
14 for i=0 to m do
15 if (edge_count[i]≥ relativesup) then
16 Edge i is frequent

17 else
18 Edge i is not frequent

19 Join ‘k’ recurrent connected edges with common edge based on neighbouring information to ‘k+1’
recurrent connected edges by intersecting their bit vectors from DSMatrix, fl for all k≤m.

20 if freq(fl )≥minsup then
21 fl is frequent.

22 else
23 fl is infrequent.

Table 4. Frequent Edges with count for Batch 1

edge count
(v1,v2) 2
(v1, v4) 2
(v1,v5) 2
(v2,v5) 2
(v2, v3) 1

Table 5. Frequent Edges with count for Batch 1 and Batch 2

edge count
(v1,v2) 4
(v1, v4) 4
(v1,v5) 3
(v2,v5) 3
(v2, v3) 2
(v3, v4) 2

calculates the final row sum. If the final row sum
satisfies the minimum support threshold, then it is
marked as frequent. Algorithm 2 describes the dynamic
approach to compute the frequent subgraphs from the
sequence of graph streams.

Illustration for Dynamic Sliding Window Technique. For
instance, in the graph streams of Figure 1, Let batch
size=2. Then, batch 1 constitutes graph streams G1, G2
of Fig. 1. For batch 1, the frequent singleton edges along
with edge count are stored in map M (as shown in step
10 of Algorithm 2) for each edge satisfying 40% of batch
size, i.e., d0.4*2e=1. Thus, the initial map M for Fig. 1
with relative support 1 includes all the edges with count
greater than or equal to 1 as shown in Table 4.

Table 6. Frequent Edges with count for Batch 1, Batch2 and
Batch 3

edge count
(v1,v2) 5
(v1,v4) 6
(v1,v5) 4
(v2,v5) 5

This map is incrementally maintained as shown in
Table 5 for the next batch with relative support 2.
When the batch 3 is encountered, the edge counts are
incremented as shown in Table 6 with relative support
of 4. Thus, the resultant frequent singleton edges by
applying Algorithm 2 with the given minimum support
of 4 are {(v1, v2), (v1, v4), (v1, v5), (v2, v5)}.

5. Enhancements to the Proposed Static and
Dynamic Sliding Window Filtering Technique and
Finding Frequent Subpaths
In this section, we describe the improved and extended
dynamic sliding window filtering technique and
address the problem of finding frequent sub paths
from paths data by using our proposed static and
dynamic techniques. We adopt the polynomial strategy
[17] and modify it to compute the actual minimum
support based on dataset information for graph stream
data. We use this minimum support in the proposed
static approach to compute frequent singleton edges.
Besides, we propose partition based sequential and
parallel static approach with actual minimum support.
In addition, we observed that our earlier proposed
dynamic approach may miss some of the frequent
singleton edges for large graph streams with the
iterative increase in relative threshold. To overcome this
limitation, we modified the dynamic approach by using
incremental relative support with variable batch size
which is described in section 5.2.

5.1. Enhancement #1: Computing Actual Minimum
Support for Proposed Static Approach
We consider the minimum support given by the user
as input to compute the actual minimum support
based on distribution of frequent singleton edges in
the graph stream database in the interval [amin, bmax].
amin denotes minimum frequency of the edge and
bmax denotes the maximum frequency of the edge
in the graph stream data. We adopt the approximate
polynomial function of degree i [17] and compute the
actual minimum support (Actualminsup) based on the
user given minimum support (minsup) through the
equation below:

Actualminsupi = minsup ∗ (bmaxi − amini) + amini (1)
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We then apply the proposed static approach (described
in 4.1) with the actual minimum support to com-
pute the resultant frequent subgraphs. For instance,
consider the graph stream data in figure 1, with the
user given minimum support, minsup=0.5, the min-
imum frequency amin=1/6 and maximum frequency
bmax=5/6. The actual minimum support computed
using equation (1) with linear strategy (i=1) is 0.49 and
with cubic strategy (i=3) is 0.83. We use actual mini-
mum support when the user is not an expert about the
minimum support using which the significant frequent
subgraphs are to be retrieved.

Proposed Partition based Static Approach. We modify
our proposed static approach with single window by
partitioning the data into windows of fixed size for
faster execution. We then compute the actual minimum
support for each window used to compute frequent
singleton edges. We can run each partition in parallel
to extract the frequent singleton edges. Algorithm 3
describes our proposed partition based static approach
with actual minimum support.

Algorithm 3: PartitionStaticFreqSubgraph
Input : Edges in graph streams, total number of graphs in the whole data, minsup = minimum

support threshold, partition_no be number of partitions
Output: Set of frequent subgraphs
// m= number of graph streams, n= number of edges in the entire graph streams

sequence

1 amin= 1
m // Mat_A[m][n] = 2-D DSMatrix with m rows and n columns

// rowsum = count of 1s in a row of DSMatrix

2 Create neighbouring list, N for the graph streams by finding common vertex for the stream of edges
3 for each partition p ∈ [1, partition_no] do
4 for each graph gj do

5 if edge i ∈ gj then

6 Mat_A[i][j]:=1

7 else
8 Mat_A[i][j]:=0

9 Calculate rowsum for each row of Mat_A.
10 Compute bmax, maximum frequency of any edge by considering maximum rowsum

11 bmax= bmax
m

12 Compute Actualminsup using (1)
13 for each edge i do
14 if (rowsum(i) ≥Actualminsup) then
15 Add edge i to set F

16 Join ‘k’ recurrent connected edges from F with common edge using neighboring list N and to get
‘k+1’ recurrent connected edges , fl for all k≤m.

17 Compute freq(fl ) by intersecting the bit vectors of ’k’ recurrent edges from DSMatrix and adding
all the resultant non-zero bits

18 if freq(fl )≥Actualminsup then
19 fl is frequent

20 else
21 fl is infrequent

Illustration of Proposed Partition based Static Approach. For
graph streams, with actual minimum support using
linear strategy of 2.774∼3 (given user minsup=2), with
partition size=2, the frequent singleton edges for the
first partition are {(v1, v2), (v1, v4), (v2, v5)}. The
frequent singleton edges for the second partition are
{(v1, v4)}. The resultant frequent subgraphs include {
<(v1, v2), (v1, v4)>, <(v1, v4), (v2, v5)>, <(v1, v2), (v1,
v4), (v2, v5)>}.

5.2. Enhancement #2: Dynamic Sliding Window
Filtering Technique

Algorithm 4: DynamicVarFreqSubgraph
Input : Edges in graph streams, Let rel be percentage for computing relative support
Output: Set of Frequent subgraphs
// n=Total number of graph streams in the entire sequence

// DSMatrix[m][n]= 2D matrix of m rows and n columns

// batchsize = variable number of graphs in a batch

// Let b be the number of batches in the graph

1 totalbatch= n / batchsize
2 k1=1
3 Compute DSMatrix for each batch of graph streams
4 repeat
5 Calculate edge_count for each batch
6 batchpointer=0
7 minsup=drel*(batchsize)e
8 if existsEdge(i) then
9 ec=edge_count[i]+ Edge count of i in the current batch

10 minsup=drel*(k1-batchno[i]+1)*batchsizee
11 if (ec ≥ minsup) then

// Edge i is frequent

12 Update edge count of i to ec in map M

13 if (!existsEdge(i) & edge_count[i] ≥ minsup) then
14 Store < edge i, batchno[i], edge_count[i] > in a map M

15 batchpointer= batchpointer + batchsize
16 k1=k1+1
17 until k1 leq b;
18 Join ‘k’ frequent connected edges with common edge to ‘k+1’ frequent connected edges by

intersecting their bit vectors from DSMatrix, fl for all k≤m.
19 minsup=drel*ne
20 if freq(fl )≥minsup then
21 fl is frequent

22 else
23 fl is infrequent.

In the proposed dynamic sliding window technique
(described in Section 4.2), we observed that with
increase in relative support, we may miss some of the
significant frequent subgraphs. Hence, we modified
the proposed dynamic approach by storing the batch
number in addition to frequency for the edges in a
map. For the first batch, we start with relative support
and find the frequent singleton edges. The relative
support is iteratively increased with next batch if the
edge obtained in the current batch is frequent in the
previous batch. If the edge is not frequent in the pre-
vious batch, but is frequent in the current batch, then
we compare the frequency of the edge in the current
batch with the relative support. For the next batch,
the relative support is iteratively incremented. Thus,
this approach preserves the previous history informa-
tion. In addition, our proposed approach described
in Algorithm 4 considers batches with variable sizes.
After the frequent singleton edges are calculated, the
combination is formed based on the neighbouring infor-
mation. DynamicVarFreqSubgraph algorithm computes
AND operation on the neighbouring frequent singleton
edges and calculates the final row sum. If the final row
sum satisfies the relative frequency threshold, then it
is frequent. Algorithm 4 describes the dynamic sliding
window filtering technique for graph stream data to
compute the frequent subgraphs from the sequence of
graph streams.

Illustration of Dynamic Sliding Window Filtering Technique.
For instance, in the graph streams of Fig. 1, let batch
size=3. Then, batch 1 constitutes graph streams G1, G2
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Table 7. Frequent Edges with count for Batch 1

edge Batch No. count
�(v1, v2) 1 3
�(v1, v4) 1 3
�(v1, v5) 1 2
�(v2, v3) 1 2
�(v2,v5) 1 3
(v3, v4) 1 1

Table 8. Frequent Edges with count for Batch 1 and Batch 2

edge Batch No. count
�(v1, v2) 1 5
�(v1, v4) 1 6
�(v1, v5) 1 4
�(v2, v3) 1 3
�(v2, v5) 1 5
�(v3, v4) 2 2

and G3 of Fig. 1. For batch 1, the frequent singleton
edges along with edge count are stored in map M
for each edge with its relative frequency in the batch
satisfying 40% of batch size. Thus, the initial map M for
Fig. 1 with relative support 2 includes all the edges with
count greater than or equal to 2 denoted by � symbol in
Table 7.

This map is incrementally maintained as shown in
Table 8 for the next batch, with relative support 3, if
the edge is frequent in the previous batch. If the edge
is not frequent in the previous batch, then the relative
support for such edge is 2. For instance, in table 8, the
edge (v3, v4) is not frequent in batch 1, but is frequent
in the current batch as the relative support for that edge
is set to 2. Thus, the resultant frequent singleton edges
by applying Algorithm 4 with the relative frequency
threshold are {(v1, v2), (v1, v4), (v1, v5), (v2, v5), (v2,
v3), (v3,v4)}. The resultant frequent subgraphs with
relative support 3 are { <(v1, v2), (v1, v4)>, <(v1, v2),
(v1, v5)>, <(v2, v5), (v1, v5)>,<(v2, v3), (v2, v5)>, < (v1,
v2), (v1, v4), (v1, v5) > }.

5.3. Enhancement #3: Finding frequent sub paths
from sequence of paths
For a directed graph, given a sequence of reachable
paths [15], we can extract the frequent sub paths by
using our proposed static and dynamic techniques. For
this application, algorithm 1 and algorithm 2 described
in Section 4.1 and section 4.2 can be modified by
considering each path as a graph stream input and the
resultant output are frequent subpaths. In addition,
while extracting frequent sub paths, we consider the
sequence of neighbouring vertices that form a subpath.

For instance, for the directed graph in Fig 2, let us
assume that the edges (v1, v2) and (v1, v3) are frequent.
Then we cannot join the edges (v1, v2) and (v1, v3)
as they do not form a subpath. Application areas of
frequent sub paths extraction include analysis of traffic
sub-routes based on the routes taken by vehicles (stored
as paths database) to extract congested sections. In IP
routing, we can analyse the routes taken by messages
to extract the hot-spots. For instance, for graph G of
figure 2, Table 2 shows some of the paths extracted
from the graph G. Algorithm 3 and Algorithm 4 can
also be similarly applied to find the frequent subpaths
from sequence of paths for the given directed graph.
The following subsections illustrate the extraction of
frequent sub paths from paths data using the proposed
static and dynamic techniques.

Illustration of static single window technique to find frequent
sub paths. By considering each path as input for static
single window technique, we retrieve the frequent sub
paths for the set of paths. To extract frequent sub paths,
we construct DSMatrix for the unique edges present
in the paths set. Then, we extract frequent singleton
edges from DSMatrix as described in Algorithm 1. From
the frequent edges and neighbouring information, we
extract the frequent sub-paths. For instance, for the
set of paths of Table 2, with minsup=3, the frequent
singleton edges extracted using static single window
technique are {(v1, v2), (v2, v4), (v2, v5), (v3, v5), (v4,
v5), (v5, v6), (v6, v7)} and the resultant frequent sub-
paths are { (v3, v5, v6), (v5, v6, v7)}

Illustration of dynamic sliding window filtering technique to find
frequent sub-paths. By considering each path as input
for dynamic sliding window filtering technique, we
retrieve the frequent sub paths for the set of paths.
Initially, we construct the DSMatrix for the data of
paths for each batch. Then, we extract the frequent
singleton edges by using dynamic variable sliding
window filtering technique described in Algorithm 4.
For instance, let batch size=3 for paths data of Table 2.
By using dynamic sliding window filtering technique,
the resultant frequent singleton edges for the first batch
with relative support=3 for path 1 to path 6 are { (v1,
v2), (v5, v6)}. The resultant frequent singleton edges for
the second batch for the remaining paths include { (v1,
v2), (v5, v6), (v6, v7)}. Finally, the resultant frequent
edges are { (v1, v2), (v5, v6), (v6, v7) } and the resultant
frequent sub paths are { (v5, v6, v7) }.

5.4. Analysis of Proposed Static and Dynamic
Approaches

The proposed static single window approach can be
used for small datasets as this approach efficiently
stores all the frequent subgraphs. Thus, the useful
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Table 9. Characteristics of Proposed Static and Dynamic Approaches compared to Conventional Approach

Proposed approaches
Characteristic Static Dynamic Conventional

Size
Entire graph
stream data

incremental data
sliding window

size

Minimum
Support

user given
minimum support

and actual
minimum support
[17] can be used

relative support
[19]

user given
minimum support

Applicability for existing data
present stream of

data
present stream of

data

Streams of data single window
incremental in

batches
sliding window

Loss of
historical data

No loss of frequent
subgraphs

No loss of
significant
frequent

subgraphs

Loss of some
significant
frequent

subgraphs

Time

faster technique in
distributed and

parallel
environments

moderate
technique without
loss of significant

information

faster technique
with loss of
information

Parallelism

can be applied by
dividing the data
and minsup into
equal partitions

cannot be applied cannot be applied

Distributed
can be applied by
using MapReduce

technique
cannot be applied

may not be
applicable

history information is retained. In addition, our pro-
posed static approach with actual minimum support
can retrieve the required number of frequent sub-
graphs/subpaths based on user minimum support.
However, for large streams of graph data, we can use
the partition based static approach by running each
partition of data in parallel to find frequent singleton
edges. For large streams of data with variable batch size,
the proposed dynamic sliding window approach effi-
ciently finds the frequent subgraphs as relative support
computation involves the number of graph streams.
With the increase in the number of graph streams, the
relative support is also proportionately increased thus
storing the significant frequent subgraphs as well as
minimizing the duplicate calculations. In addition, to
extract frequent sub paths from large sequence of paths,
our proposed dynamic sliding window filtering tech-
nique can be applied for large directed graphs. Table
9 shows different characteristics of proposed static
and dynamic techniques compared to the conventional
approach [10].

6. Experimental Evaluation

The direct 1-step algorithm (Conventional approach)
of Alfredo Cuzzocrea et al. [10] and its modified
versions, the proposed static single window approach
, proposed static approach with actual minimum
support using linear strategy and cubic strategy,
proposed partition based static approach in sequential
and parallel environments, dynamic sliding window
technique (DynFixed) and dynamic variable sliding
window filtering techniques (DynVar) are implemented
in C++. The specifications of the system, in which
these algorithms are implemented, is Linux Ubuntu
Desktop with 8GB RAM and Core i5 Intel Xeon 2.8 Ghz
processor.

The minsup is varied from 10% to 80% of number
of graph streams/paths. For conventional approach, we
set window size=5 and batch size=100. In dynamic
approach and its variations, the batchsize is 100 for
fixed batches and for variable batches, the batch size
is randomly varied such that total number of batches
are set to 10. In the experiments, the actual minimum
support is computed based on the user given minimum
support using equation 1 with i=1 for linear strategy
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and i=3 for cubic strategy. The relative support for
batches are varied from 10% to 80% for the proposed
dynamic sliding window filtering technique.

6.1. Experiment #1: Finding frequent subgraphs from
graph stream data with minimum support and actual
minimum support
To extract frequent subgraphs from graph stream data,
the proposed algorithms are experimented on real
dataset, Connect-4 [13]. We have considered each record
of Connect-4 dataset as graph stream and constructed
1000 graph instances. The Connect-4 dataset can be
used to find the most frequent moves chosen by the
winner of the game. In each record, there are 1s, -1s and
0s for each position of 6*7 matrix of Connect4 dataset.
During pre-processing of the dataset, each grid position
is rendered as vertex. Thus, there are 42 vertices. The
adjacent 1s and -1s in those grids are taken as edges.
The two adjacent 1s or -1s represent an edge denoted
using their respective grid positions.

Table 10 shows the number of frequent singleton
edges with varying minsup for proposed static approach
and conventional approach. From table 10, we observe
that with increase in minsup, the number of frequent
singleton edges for conventional approach reduced to
zero from 50% minsup, whereas our proposed static
approaches retained frequent subgraphs. From table
10 and table 11 , we also observe that the actual
minimum support computed using linear strategy
(Actualminsupl) is closer to the user given minimum
support than that of cubic strategy (Actualminsupc)
for graph stream data. Fig. 3 shows the number of
frequent singleton edges extracted using our proposed
approaches, i.e. static approach (Static), static approach
with actual minimum support computed using linear
strategy (StaticLinear) and cubic strategy (StaticCubic)
and conventional approach. We observe that more
number of frequent singleton edges are retained using
our proposed static approach with linear strategy than
the conventional approach with increase in minimum
support.

6.2. Experiment #2: Finding frequent sub graphs
through sequential and parallel approaches
Table 12 shows the execution time of our proposed par-
tition based static approach (with no. of partitions=4)
with actual minimum support computed using linear
strategy in sequential and parallel environment. Table
13 shows the execution time of our proposed parti-
tion based static approach in sequential and parallel
environment using cubic strategy, with the proposed
partition based static approach in parallel environment

Table 10. Number of frequent singleton edges (|FSE|) for graph
stream data with varying minsup for proposed static approach
compared to Conventional Approach

minsup |FSE| for Proposed
Static approach

|FSE| for
Conventional

Approach
0.1 121 104
0.2 101 72
0.3 87 47
0.4 71 23
0.5 59 0
0.6 45 0
0.7 34 0
0.8 23 0

Figure 3. Number of frequent singleton edges (|FSE|) for
proposed approaches with actual support using linear strategy
and cubic strategy compared to conventional approach for graph
stream data

executing faster. We implemented the parallel environ-
ment based on multi-threading, with each thread exe-
cuting each partition while using the computed actual
minimum support for every partition.

6.3. Experiment #3: Finding frequent subgraphs
through dynamic sliding window filtering approach
Table 14 shows the number of frequent singleton
edges extracted with relative support varying from
10% to 80% of batch size using our proposed dynamic
sliding window technique (DynFixed) and dynamic
variable sliding window filtering technique (DynVar).
We observe that with increase in relative support,
the number of frequent singleton edges extracted
decreased. We also observe that we can consider
the relative support from 20% upto 60% to retrieve
significant number of frequent singleton edges and thus
the frequent subgraphs.
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Table 11. Number of frequent singleton edges (|FSE|) for graph stream data with varying minsup for proposed static approach with
actual minimum support using linear strategy with and cubic strategy

minsup Actualminsupl |FSE| for linear strategy Actualminsupc |FSE| for cubic strategy
0.1 0.099 121 0.450 64
0.2 0.198 101 0.576 49
0.3 0.296 87 0.661 40
0.4 0.390 73 0.726 30
0.5 0.490 61 0.783 25
0.6 0.590 46 0.832 20
0.7 0.690 37 0.875 12
0.8 0.789 24 0.915 10

Table 12. Execution time (in milliseconds) to find frequent
singleton edges for graph stream data using proposed static
approach with actual minimum support through linear strategy
in sequential and parallel environment

minsup Actualminsupl

Execution
time in

sequential
envt.

Execution
time in
parallel

envt.
0.1 0.102 0.417 0.262
0.2 0.199 0.454 0.260
0.3 0.296 0.388 0.245
0.4 0.394 0.414 0.271
0.5 0.49 0.430 0.270
0.6 0.59 0.381 0.215
0.7 0.687 0.355 0.209
0.8 0.785 0.394 0.203

Table 13. Execution time (in milliseconds) to find frequent
singleton edges for graph stream data using proposed static
approach with actual minimum support through cubic strategy
in sequential and parallel environment

minsup Actualminsupc

Execution
time in

sequential
envt.

Execution
time in
parallel

envt.
0.1 0.455 0.391 0.187
0.2 0.573 0.369 0.167
0.3 0.656 0.391 0.253
0.4 0.722 0.377 0.218
0.5 0.078 0.360 0.198
0.6 0.827 0.334 0.177
0.7 0.870 0.363 0.187
0.8 0.909 0.34 0.148

6.4. Experiment #4: Finding frequent sub paths and
their analysis with varying parameters
For reachability path queries with constraints, the
result of the query is sequence of paths. This database

Table 14. Number of frequent singleton edges for graph stream
data with varying % of relative support(relsup) for proposed
dynamic approach with fixed batch size (DynFixed ) and variable
batch size (DynVar )

relsup |FSE| for DynFixed |FSE| for DynVar
0.1 127 124
0.2 108 108
0.3 90 89
0.4 76 75
0.5 64 64
0.6 51 49
0.7 39 39
0.8 25 25

constitutes the reachable paths for reachability queries
with constraints. These paths are stored in log file.
We generate synthetic graph, i.e., ER-graph [18] with
n=1000 and m=2000 edges. Next, we generate 800
reachability queries and retrieve 1000 possible paths
satisfying the given constraints based on constrained
BFS technique. We used the same query generation
process for constraint reachable paths addressed in [15].
Each path is considered as graph instance. We apply
the conventional approach and the proposed static and
dynamic techniques to find the frequent sub paths.

Table 15 shows the number of frequent singleton
edges extracted from the sequence of paths using our
proposed static approaches compared to conventional
approach. We observe that as the paths dataset is sparse,
the number of frequent singleton edges extracted for
conventional approach is very less and is zero from 20%
of minimum support. Our proposed static approach
has zero frequent singleton edges with the user given
minimum support from 30%. From Table 16 and Table
15, we observe that the proposed static approach
with actual minimum support using linear strategy
and cubic strategy retained the significant frequent
singleton edges than the conventional approach and
proposed static approach with minimum support. Fig.
4 shows that number of frequent singleton edges are
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Table 15. Number of frequent singleton edges (|FSE|) for paths
data for proposed static approach compared to Conventional
approach

minsup

|FSE| for
proposed

Static
Approach

|FSE| for
Conven-

tional
Approach

0.1 31 7
0.2 4 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 0

Figure 4. Number of frequent singleton edges (|FSE|) for
proposed approaches with actual support using linear strategy
and cubic strategy compared to conventional approach for
sequence of paths

retained more using our proposed static approach using
linear strategy with increase in minimum support for
the generated paths data.

Table 17 and Table 18 shows the number of frequent
singleton edges and frequent subpaths respectively that
are extracted using our proposed dynamic approach
with fixed batch size and variable batch size. Since
the paths data is sparse, we observe that the relative
support of 0.5% upto 1% retrieves significant number
of frequent subpaths.

From the experiments and results, we observe that
our proposed static approach with linear strategy
extracted significant number of frequent singleton
edges than that of cubic strategy. From these observa-
tions, we can conclude that our proposed techniques
can efficiently extract frequent sub paths from sequence
of paths.

7. Conclusion and Future Scope
To discover the collections of frequent edges, we
proposed two approaches the static single window
approach and dynamic approach of sliding window.
The proposed static approach finds frequent subgraphs
by considering the entire graph streams as a single
window and applying the given minimum support
for them. In addition, we adopt polynomial strategy
to compute the actual minimum support from the
user given minimum support and apply it to our
proposed static approach that retained more number
of frequent subgraphs. We also propose partition
based static approach with actual minimum support
that can be executed in parallel environment. In the
dynamic approach, for each batch with variable size,
we incrementally compute relative support and extract
frequent edges. Finally, we join the frequent edges
that share the common edge to extract the frequent
subgraphs above the relative support computed for the
entire graph stream data.

In addition, we also solve the problem of finding
frequent subpaths from the sequence of paths by using
our proposed techniques.From experiments, we observe
that our proposed static approach with linear strategy
retrieved significant number of frequent subpaths.

We can further extend this research by applying
distributed techniques to partition the large dataset and
then apply the proposed approaches to each partition
and then group the resultant frequent subgraphs of
each partition to get the final frequent subgraphs.
We can also extend by extracting frequent subgraphs
from graph streams arriving from different sources. We
observe from the experiments that we can compute the
actual minimum support for the relative support of our
proposed dynamic sliding window filtering technique
which is part of our future work. In addition, we
can further extend by computing the actual minimum
support to extract the frequent sub patterns based on
the user minimum support using fuzzy membership
based approach [17].

References
[1] Andrew Mcgregor. (2014) Graph Stream Algorithms: a

Survey (SIGMOD).
[2] Aggarwal, Charu C. and Li, Yao and Yu, Philip S. and

Jin, Ruoming (2010) On Dense Pattern Mining in Graph
Streams Proceedings of the VLDB Endowment, 3(1-2),
pp.975-984.

[3] Huang Z, Peng P. (2019) Dynamic Graph Stream
Algorithms in O(n) Space Algorithmica. 2019 May
15;81(5):1965-87.

[4] Guha, Sumanta (2014) Finding Frequent Subpaths in a
Graph, International Journal of Data Mining & Knowledge
Management Process, Vol.4, No.5, pp. 35-46.

[5] Schwartz, S. and Balestrieri, L. and Borndörfer, R.

(2017) On Finding Subpaths With High Demand, In

11 EAI Endorsed Transactions on 
Scalable Information Systems 

05 2020 - 10 2020 | Volume 7 | Issue 27 | e11



Bhargavi B. and K. Swarupa Rani

Table 16. Number of frequent singleton edges (|FSE|) for paths data using proposed static approach with actual minimum support
using linear strategy and cubic strategy

minsup Actualminsupl |FSE| for linear strategy Actualminsupc |FSE| for cubic strategy
0.1 0.024 178 0.105 24
0.2 0.047 105 0.133 14
0.3 0.068 61 0.152 12
0.4 0.091 38 0.167 7
0.5 0.114 21 0.180 7
0.6 0.137 14 0.191 5
0.7 0.159 9 0.202 4
0.8 0.182 7 0.21 4

Table 17. Number of frequent singleton edges (|FSE|) for paths
data with varying relative support(relsup) for proposed dynamic
approach with fixed batch size (DynFixed ) and variable batch size
(DynVar )

relsup |FSE| for DynFixed |FSE| for DynVar
0.005 599 529
0.01 488 414
0.02 329 267
0.03 240 210
0.04 193 167
0.05 159 139
0.06 133 119
0.07 108 100
0.08 98 84
0.09 88 75
0.1 73 100
0.2 14 12
0.3 4 2

Table 18. Number of frequent subpaths (|FSP|) for paths data
with varying relative support (relsup) for proposed dynamic
approach with fixed batch size (DynFixed ) and variable batch
size (DynVar )

relsup |FSP| for DynFixed |FSP| for DynVar
0.005 75 75
0.01 35 35
0.02 9 9
0.03 9 7
0.04 5 5
0.05 3 3
0.06 2 2

Operations Research Proceedings, pp. 355-360, Springer,
Cham.

[6] Bifet, A. and Holmes, G. and Pfahringer, B. and
Gavaldà, R. (2017) Mining frequent closed graphs on
evolving data streams. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 591-599.

[7] Vitter and Jeffrey Scott (1998) External Memory
Algorithms European Symposium on Algorithms pp. 1-25,
Springer, Berlin, Heidelberg.

[8] Tang, N. and Chen, Q. and Mitra, P. (2016) Graph
Stream Summarization: From Big Bang to Big Crunch.
In Proceedings of the International Conference on
Management of Data pp. 1481-1496.

[9] Leung, C.K.S. and Peng, P. (2016) Parallel Social Network
Mining for Interesting ‘following’ Patterns Concurrency and
computation: practice and experience, 28(15), pp.3994-
4012.

[10] Cuzzocrea, A. and Han, Z. and Jiang, F. and Leung,

C.K. and Zhang, H. (2015) Edge-based Mining of Frequent
Subgraphs from Graph Streams Proceedia Computer
Science, 60, pp.573-582.

[11] Bok, K. and and Choi, D. and Yoo, J. (2018)
Detecting Incremental Frequent Subgraph Patterns in IoT
Environments Sensors, 18(11), p.4020.

[12] Guha and Sudipto and Yoo, J. (2018) Vertex and
Hyperedge Connectivity in Dynamic Graph Streams In
Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems pp. 241-
247.

[13] Thomas Brewer (2019) Connect4, viewed 22 June 2019,
<https://www.kaggle.com/tbrewer/connect-4/>.

[14] Craig Smith, (2020), DMR Publisher, 400
Interesting Twitter Statistics and Facts By
the Numbers, viewed 24 February 2020,
<https://expandedramblings.com/index.php/twitter-
stats-facts/>.

[15] Bhargavi B. and Swarupa Rani K. (2019) Implicit Land-
mark Path Indexing for Bounded Label Constrained Reach-
able Paths, International Journal of Recent Technology and
Engineering (IJRTE), 8(4):p.10.

[16] Bhargavi, B. and Swarupa Rani, K. and Rohit Kumar

and Sanmeet Kaur (2019) Static and Dynamic Techniques
to Extract Frequent Subgraphs from Graph Stream Data,
paper presented to International Conference on Big
Data, Machine learning and Applications (BigDML
2019), NIT Silchar, Assam, India, 16-19 December,
<http://bigdml.nits.ac.in/index.html#about/>.

[17] Zhang, S., Wu, X., Zhang, C. et al. (2008) Computing the
Minimum-Support for Mining Frequent Patterns Knowl. Inf
Syst 15, pp. 233–257.

12 EAI Endorsed Transactions on 
Scalable Information Systems 

05 2020 - 10 2020 | Volume 7 | Issue 27 | e11



Finding Frequent Subgraphs and Subpaths through Static and Dynamic Window Filtering Techniques

[18] Jure Lescovec (2016) SNAP: A general purpose network
analysis and graph mining library in C++, viewed June
2018, <http://snap.stanford.edu/snap>.

[19] Lee, Chang-Hung and Lin, Cheng-Ru and Chen, Ming-

Syan (2005) Sliding Window Filtering: An Efficient Method

for Incremental Mining on a Time-Variant Database., Inf.
Syst, Elsevier Science Ltd., Volume 30, number 3, pp.
227–244.

13 EAI Endorsed Transactions on 
Scalable Information Systems 

05 2020 - 10 2020 | Volume 7 | Issue 27 | e11


	1 Introduction
	2 Preliminaries
	2.1 Problem Definitions
	Finding frequent subgraphs from graph stream data
	Finding frequent sub-paths from paths data


	3 Literature Survey
	4 Static and Dynamic Techniques for Finding frequent Subgraphs
	4.1 DSMatrix
	4.2 Static Single Window Technique
	4.3 Dynamic Approach of Sliding Window Technique
	Illustration for Dynamic Sliding Window Technique


	5 Enhancements to the Proposed Static and Dynamic Sliding Window Filtering Technique and Finding Frequent Subpaths
	5.1 Enhancement #1: Computing Actual Minimum Support for Proposed Static Approach
	Proposed Partition based Static Approach
	Illustration of Proposed Partition based Static Approach

	5.2 Enhancement #2: Dynamic Sliding Window Filtering Technique
	Illustration of Dynamic Sliding Window Filtering Technique

	5.3 Enhancement #3: Finding frequent sub paths from sequence of paths
	Illustration of static single window technique to find frequent sub paths
	Illustration of dynamic sliding window filtering technique to find frequent sub-paths

	5.4 Analysis of Proposed Static and Dynamic Approaches

	6 Experimental Evaluation
	6.1 Experiment #1: Finding frequent subgraphs from graph stream data with minimum support and actual minimum support
	6.2 Experiment #2: Finding frequent sub graphs through sequential and parallel approaches
	6.3 Experiment #3: Finding frequent subgraphs through dynamic sliding window filtering approach
	6.4 Experiment #4: Finding frequent sub paths and their analysis with varying parameters

	7 Conclusion and Future Scope



