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Abstract

In this article, we present a modified version of the Firefly Algorithm implemented in a multi-threaded model
to improve the results obtained by the original algorithm significantly. This multi-threaded algorithm allows
the threads to obtain different results by the independent execution of the heuristic method in each of them,
although for keeping all the threads with significant executions, the algorithm performs some crossover
techniques, explained in detail in this article, for the threads to learn between them while maintaining its
independence. For testing the new algorithm, we use the six benchmark functions used in the literature for
testing the original Firefly Algorithm, and to prove that the improved results are significant, we perform the
Wilcoxon test to the results obtained. The results obtained with this new heuristic proved to be significantly
better while taking advantage of today’s commercial processors.
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1. Introduction
As optimization becomes more complex, the need
for algorithms capable of delivering reliable results
has increased. What makes optimization problems
harder to solve is the number of variables (dimensions)
involved in the formulation of the problem and that the
values for these variables are englobed in a continuous
domain [1].

Traditional methods and algorithms fail when trying
to find the optimal values for specific functions, or have
really long execution times. When optimization is so
complex that the optimal values cannot be computed
by regular algorithms in a considerable amount of time,
heuristics are used for trying to approach the best
solution [2]. Although heuristic methods are able to get
a very reliable approach, they do not get the exact values
of the parameters for getting the optimum. Researchers
have exhaustively developed new heuristic algorithms
that improve the results and execution times.

A widely developed category of heuristic methods is
nature-inspired algorithms [3, 4]. For these algorithms,
researchers try to formulate algorithms that simulate
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natural processes, especially from biology, physics,
and chemistry. The major number of nature-inspired
algorithms are bio-inspired due to the successful
characteristics of these behaviors. Nature-inspired
algorithms are usually classified as Swarm-Intelligent
(SI) based, bio-inspired not SI based, and physics
and chemistry-based [5]. Figure 1 shows examples of
algorithms within these classifications.

Swarm-Intelligent based algorithms are inspired in
the collective behavior of insects and animals that,
despite individually they are not good on finding
objectives, the whole swarm has an organization to
achieve their objective. These algorithms are the most
used because of the ability of agents to learn of their
own experience and between them through iterations.

Bio-inspired algorithms contain SI algorithms as a
subset since not all bio-inspired algorithms use the
swarm collective behavior. These kinds of algorithms
are based on biological individual behaviors like flowers
pollination or genetic processes.

Authors have also inspired from physics or chemistry
laws. As these phenomena also is a product of nature,
they are englobed in the nature-inspired algorithms,
but they are not based on biological processes. Some
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Figure 1. Nature-inspired algorithms classification and examples

sources of inspiration for this category of algorithms are
electromagnetic fields, gravity processes, etc.

2. Firefly Algorithm
2.1. Considerations for the Firefly Algorithm
The Firefly Algorithm, presented by Yang in 2009
[15], is a Swarm-Intelligence based algorithm that
uses the fireflies’ characteristic flashing as inspiration.
This flashing helps the fireflies to find mating
partners (communication) and to attract prey. As
the characteristic of SI algorithms is the cluster’s
communication and interaction, the first purpose of the
flashing is used. In some species, fireflies get attracted
to each other thanks to the flashing patterns of male
fireflies; for other species of fireflies, this is used as a
technique to confuse male fireflies (they believe there is
a potential mate) and eat them. In any of these variants,
the flashing clearly represents a form of organization
between the members of the swarm.

The light intensity from the fireflies’ flashings I is less
visible as the distance r between the observer and the
light source increases, obeying the inverse square law:
I ∝ 1/r2. Additional to this, light from the environment
also decreases the flashing perception.

The distance and the light absorption factors are
considered while implementing the algorithm but also,
for simplifying the description of the algorithm, three
rules are set:

1. Fireflies are unisex, so they can be attracted
between them regardless of their sex.

2. The attractiveness of a firefly is proportional to
their brightness, so between two fireflies, the less

Algorithm 1: Pseudocode of the Firefly Algo-
rithm

Data: N, α, β0, γ , Max_Iterations
Result: Best solution

1 Generate initial population of fireflies
xi(i = 1, 2, ..., N )

2 Evalute the objective function for all N fireflies
by f (xi)

3 Formulate light intensity as I = −f (xi)
4 while t < Max_Iterations do
5 for i = 1 to N do
6 for j = 1 to N do
7 if Ij > Ii then
8 Move firefly i towards firefly j

according to Equation 4
9 end

10 end
11 Evaluate new solutions and update light

intensity
12 end
13 Rank the fireflies and update the best solution

found so far
14 t ← t + 1
15 end
16 Return the best solution

bright will move towards the brighter one. This
also implies that the farther a firefly is from
another, the less attractive it is.

3. The brightness of a firefly is determined by the
objective function. For minimization problems (as
used in this paper) the brightness or intensity
of the firefly can be represented as I = −f (x), so
that the minimum of the objective function is the
highest intensity.

Considering the above rules, the Firefly Algorithm is
formulated as shown in Algorithm 1.

The input parameters for Algorithm 1 are the N
number of fireflies that will make the swarm, the
randomization parameter α, the attractiveness β0 when
the distance r from the source is 0, the environment
light absorption coefficient γ , and the maximum
number of iterations of the algorithm.

2.2. Mathematical formulation of the Firefly
Algorithm
The attractiveness of a firefly and the light intensity are
two very important factors for the algorithm. As we said
before, to simplify the process the attractiveness of the
firefly is related to its brightness, which is determined
by the fitness value of the firefly’s position.

For simplicity, we determine the brightness (or light
intensity) as I(x) ∝ −f (x), but the attractiveness β is
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more complicated since it is relative to the observant
distance from the firefly (distance rij between fireflies i
and j). As the light intensity I(r) varies according to the
inverse square law we can say that I(r) = Is/r

2, where
Is is the light intensity at the source. But distance is
not the only factor affecting the attractiveness, we said
before that the light is lost in the environment with a
degree of absorption, given by the absorption coefficient
γ . The effect of both factors can be expressed with the
following Gaussian form:

I(r) = I0e
−γr2

(1)

Remembering that the attractiveness β of a firefly is
related to how other fireflies perceive the light intensity,
the attractiveness of a firefly i perceived by a firefly j
can be formulated as follows:

β(r) = β0e
−γr2

ij , (2)

where β0 is the attractiveness of firefly i at r = 0 and
rij is the distance between both fireflies. This distance is
calculated as the Cartesian distance:

rij = ‖xi − xj‖ =

√√√
d∑
k=1

(
xki − x

k
j

)2
, (3)

where xki is the k − th component of i − th firefly’s
position xi .

If a firefly i finds an attractive (more brightening)
firefly j, the movement of firefly i towards firefly j is
defined as follows:

xi = xi + β0e
−γr2

ij
(
xj − xi

)
+ α

(
rand − 1

2

)
, (4)

where the constant β0 is usually set to 1 and the
random factor α ∈ (0, 1).

3. Multi-threaded Firefly Algorithm
Nowadays, parallel architectures are accessible at low
costs and the implementation of parallel processes has
been made easier with today’s tools. This has made
researchers develop multi-threaded algorithms to solve
different problems [24].

The main purpose of the multi-threading implemen-
tations is to improve the execution times by running a
process simultaneously in various processors instead of
using a single one [25].

3.1. Modified Firefly Algorithm
Our work is based on the original Firefly Algorithm
but we made some modifications to improve the
results even if it is not executed in the multi-threaded
implementation. Especially for improving the abilities
of exploration and exploitation of the algorithm.

When we say exploration, we mean that the algorithm
is capable of searching variously, with flexibility and
taking risks through the objective function’s search
space, so that no subspace is unexplored. Exploitation
consists of, once having a potential subspace, refine the
results [26].

To achieve this, we propose a modification of
the equation movement in which the randomization
coefficient is smaller for the first fireflies in the swarm
to give them the possibility to exploit and increases
towards the last ones for them to explore. This is made
because the fireflies are sorted after each iteration, so
the first fireflies are the ones with better results, and
the final ones have the worst results so, with a bigger
randomization coefficient they can keep exploring to
improve their results. With this consideration, our
proposed movement equation is as follows:

xi = xi + β0e
−γr2

ij
(
xj − xi

)
+ αN+1−i

(
rand − 1

2

)
, (5)

where the randomization coefficient for each firefly
is modified according to the number of fireflies in the
swarm (N ) and its position in the ordered cluster (i).

At the beginning of the algorithm, the fireflies have
random positions so there is no guarantee that the first
ones have good results, so we use the original movement
equation (Equation 4) at the first iterations and our
new movement equation (Equation 5) for the last ones.
We use a percentage of iterations (POI) to determine
how many iterations should be executed before we start
using the new movement equation.

In addition to the improvements before, we allow
the fireflies to explore new solutions but we only
accept them if they improve, so that all fireflies have
temporal values (which are the ones changing during
the iteration) and actual values, that are only changed if
the temporal ones got better results.

The pseudocode in Algorithm 2 details this modified
version of the Firefly Algorithm.

3.2. Multi-threaded implementation
The modified version of the Firefly Algorithm (Algo-
rithm 2) is the one to be executed simultaneously by
the threads, but for taking more advantage of this
multi-threaded implementation, we use some crossover
techniques that allow the independent executions of the
algorithm to communicate between them periodically
so that they can learn from each other.

The crossover techniques are executed after a
determined number of iterations (CNI) is reached by
each of the independent executions. All the processes
are paused when they reach the CNI iterations and
their results are compared and modified according
to the selected crossover technique. After completing
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Algorithm 2: Pseudocode of the modified Firefly
Algorithm

Data: N, α, β0, γ , Max_Iterations, POI
Result: Best solution

1 Generate initial population of fireflies
xi(i = 1, 2, ..., N )

2 Evalute the objective function for all N fireflies
by f (xi)

3 Formulate light intensity as Ii = −f (xi)
4 while t < Max_Iterations do
5 Copy the parameters of all fireflies xi to a

temporal swarm temp_xi
6 Copy the intensity of all fireflies Ii to a

temporal array temp_Ii
7 for i = 1 to N do
8 for j = 1 to N do
9 if temp_Ij > yrmp_Ii then

10 if t < POI% of Max_Iterations then
11 Move temporal firefly i towards

temporal firefly j according to
Equation 4

12 end
13 else
14 Move temporal firefly i towards

temporal firefly j according to
Equation 5

15 end
16 end
17 end
18 Evaluate temporal solutions and update

temporal light intensity
19 foreach Firefly i in xi do
20 if temp_xi is better than xi then
21 xi ← temp_xi
22 Ii ← temp_Ii
23 end
24 end
25 end
26 Rank the fireflies and update the best solution

found so far
27 t ← t + 1
28 end
29 Return the best solution

the modifications of the crossover, the independent
executions are restarted for another CNI iterations,
after which the crossover technique is executed again.
This process repeats until de maximum number of
iterations is reached.

We developed two crossover techniques: Crossover
with the K best threads and Crossover with Simulated
Annealing with the K best threads.

• Crossover with the K best threads. This crossover
technique consists of sorting the threads accord-
ing to their best fitness obtained for the objective
function and selecting the k_best number of best
threads. For each of the remaining threads, a ran-
dom k_besti thread is selected to copy its values
for the parameters, so when the thread restarts the
execution of the algorithm it starts with the same
values for the parameters as the k_besti thread
assigned.

• Crossover with Simulated Annealing with the
K best threads. This technique also sorts the
threads and selects the k_best ones but uses the
Simulated Annealing process [22] to determine if
a thread is going to receive the parameters of a
random thread from the k_best ones or not. In
order to determine this, the following expression
is calculated as presented in [27]:

g (t) = e

{
−1

log[Max_Iterations
t ]

}
, (6)

where t is the current iterations and
Max_Iterations is the maximum number of
iterations for the algorithm.

A random number in the interval [0, 1) is
generated for each of the threads out of the set of
k_best threads. The thread is going to receive the
parameters of the assigned k_besti thread only if
g(t) < random [0, 1).

Once explained this, we can present how the
Multi-threaded implementation of a modified Firefly
Algorithm works. The pseudocode in Algorithm 3
describes the process.

Algorithm 3 receives the following parameters:

• NT : the number of threads that will execute the
algorithm simultaneously.

• CNI : the number of iterations that each of
the individual processes will perform before
pausing for the implementation of the crossover
technique.

• k_best: the number of threads that will be selected
to be used to copy their parameters to the other
threads.

• N : the number of fireflies that will make up the
swarm of each individual process.

• α, β0, γ : the randomization factor, the attractive-
ness at the source, and the light absorption coef-
ficient used for the Firefly Algorithm (Algorithm
2).
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Algorithm 3: Pseudocode of the Multi-threaded
implementation of a modified Firefly Algorithm

Data: NT, CNI, k_best, N, α, β0, γ ,
Max_Iterations, POI

Result: Sbest

1 Initialize the Υ set with NT threads
2 Initialize Sbest

3 foreach τ in Υ do
4 Initialize Sbestτ
5 end
6 t ← 0
7 while t < Max_Iterations do
8 foreach τ in Υ do
9 Execute the modified Firefly Algorithm as

shown in Algorithm 2 until CNI
iterations are reached

10 Sbestτ ← the best solution obtained so far
by τ

11 if Sbesttau is better than Sbest then
12 Sbest ← Sbesttau
13 end
14 end
15 Sort the threads in Υ according to Sbestτ
16 Select the k_best threads in Υ

17 foreach τ in Υ and τ < k_best do
18 Perform the selected crossover technique
19 end
20 t ← t + CNI
21 end
22 Return Sbest

• Max_Iterations: the maximum number of itera-
tions that all the processes will perform.

• POI : the percentage of iterations that will be
executed before the new movement equation
(Equation 5) is used as shown in Algorithm 2.

4. Experiments
For testing our algorithm we based on the results
published by Hashmi et al. in [28].

4.1. Benchmark functions
We used the six benchmark functions shown in Table 1
for testing our algorithm since are the ones used in [28]
so that we can compare the results obtained. Table 1 has
all de details about the functions (number of function,
name, dimensions, and the mathematical equation).

4.2. Experimental setup
We evaluated the six benchmark functions with
different combinations of the number of threads NT

Table 1. Benchmark functions

f 1 Sphere
D=10 Range=[−100, 100] f (x)min = 0

f (x) =
d∑
i=1

x2
i

f 2 Sum Square
D=10 Range=[−10, 10] f (x)min = 0

f (x) =
d∑
i=1

ix2
i

f 3 Step 2
D=10 Range=[−100, 100] f (x)min = 0

f (x) =
d∑
i=1
|xi + 0.5|2

f 4 Trid 10
D=10 Range=[−10, 10] f (x)min = −210∗

f (x) =
d∑
i=1

(xi − 1)2 −
d∑
i=2

xixi−1

f 5 Zakharov
D=10 Range=[−0.5, 10] f (x)min = 0

f (x) =
d∑
i=1

x2
i +

(
d∑
i=1

0.5ixi

)2

+
(
d∑
i=1

0.5ixi

)4

f 6 Rosenbrock
D=10 Range=[−30, 30] f (x)min = 0

f (x) =
d∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
*The minimum of the Trid 10 function is obtained by:

f (x)min = (−d(d + 4)(d − 1))/6

and the k_best parameters, and varying the number of
firefliesN as in [28]. The remaining parameters were set
as:

• CNI = 2000

• α = 0.2

• β = 1.0

• γ = 0.2

• Max_Iterations = 10000

• POI = 50%

We executed the algorithm 20 times for being able to
obtain an average result, this average result is compared
with the best values obtained by [28]. Hashmi et al.
vary the number of fireflies for their experiment so
we did the same, but we also vary the NT and k_best
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Table 2. Results: 10 fireflies and Crossover with the K best
threads

f FFA 7T-2K 8T-2K 10T-2K 7T-3K 8T-3K 10T-3K 7T-4K 8T-4K 10T-4K

1 1.23E-06 1.43E-15 1.56E-15 1.41E-15 1.52E-15 1.55E-15 1.26E-15 1.52E-15 1.42E-15 1.31E-15
2 3.74E-06 1.17E-14 1.13E-14 9.19E-15 1.34E-14 1.16E-14 1.10E-14 1.07E-14 1.16E-14 1.04E-14
3 4.56E-07 1.62E-15 1.50E-15 1.38E-15 1.59E-15 1.57E-15 1.49E-15 1.36E-15 1.24E-15 1.43E-15
4 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02
5 -9.00E-02 4.19E-15 4.13E-15 3.33E-15 4.57E-15 3.29E-15 3.90E-15 4.04E-15 4.00E-15 3.93E-15
6 -9.94E+03 5.35E-01 5.48E-01 1.94E-01 1.54E+01 1.73E-01 2.59E-01 6.32E-01 1.34E+01 1.75E-01

Table 3. Results: 10 fireflies and Crossover with Simulated
Annealing with the K best threads

f FFA 7T-2K 8T-2K 10T-2K 7T-3K 8T-3K 10T-3K 7T-4K 8T-4K 10T-4K

1 1.23E-06 1.45E-15 1.32E-15 1.34E-15 1.47E-15 1.41E-15 1.50E-15 1.49E-15 1.58E-15 1.58E-15
2 3.74E-06 1.07E-14 1.04E-14 8.97E-15 1.08E-14 9.64E-15 9.61E-15 1.06E-14 1.12E-14 9.38E-15
3 4.56E-07 1.67E-15 1.53E-15 1.51E-15 1.57E-15 1.43E-15 1.47E-15 1.61E-15 1.55E-15 1.53E-15
4 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02
5 -9.00E-02 4.14E-15 3.77E-15 3.20E-15 4.09E-15 3.42E-15 3.73E-15 4.07E-15 4.46E-15 3.78E-15
6 -9.94E+03 2.13E+01 1.69E+01 4.13E-01 1.33E+01 1.92E-01 2.04E-01 1.09E+01 5.56E-01 1.73E-01

parameters. We finished with six different experiments
to test the objective functions:

1. 10 fireflies using the crossover with the K best
technique (Table 2)

2. 10 fireflies using the crossover with Simulated
Annealing with the K best technique (Table 3)

3. 20 fireflies using the crossover with the K best
technique (Table 4)

4. 20 fireflies using the crossover with Simulated
Annealing with the K best technique (Table 5)

5. 40 fireflies using the crossover with the K best
technique (Table 6)

6. 40 fireflies using the crossover with Simulated
Annealing with the K best technique (Table 7)

Each of these experiments varies the number of
threads NT in 7, 8, and 10; and the k_best value in 3
and 4.

The execution of the experiments was made in a Dell
Precision M6800 Laptop with Intel Core i7-4900MQ
(Quad Core 2.80GHz, 3.8GHz Turbo, 8MB) with 32 GB
in RAM.

4.3. Results of the experiments
In this subsection, we show the results obtained for the
different experiments (Tables 2, 3, 4, 5, 6, and 7). The
tables headings indicate the amount of threads used
and the value for the k_best parameter, for example,
the heading 8T-3K indicates that de number of threads
NT = 8 and the value of K threads k_best = 3.

The best results obtained for each function are
marked in bold. We applied the Wilcoxon test [29] to
validate that our results were significantly better than
the ones obtained by the original algorithm.

Table 4. Results: 20 fireflies and Crossover with the K best
threads

f FFA 7T-2K 8T-2K 10T-2K 7T-3K 8T-3K 10T-3K 7T-4K 8T-4K 10T-4K

1 6.14E-07 1.69E-29 2.08E-29 1.83E-29 2.04E-29 1.46E-29 1.73E-29 1.69E-29 1.72E-29 1.68E-29
2 5.51E-06 5.98E-27 1.74E-27 3.55E-27 7.07E-27 6.86E-27 3.21E-27 7.26E-27 4.31E-27 2.97E-27
3 4.67E-07 1.84E-29 1.81E-29 1.65E-29 1.85E-29 1.78E-29 1.77E-29 1.80E-29 1.71E-29 1.65E-29
4 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02
5 -9.00E-02 1.38E-26 4.16E-27 5.52E-27 9.72E-27 1.28E-26 4.70E-27 7.72E-27 7.26E-27 3.19E-27
6 -9.96E+03 6.13E+00 1.12E+01 3.88E+01 2.76E+01 1.62E+01 2.19E+01 6.11E-01 2.70E+00 9.58E-01

Table 5. Results: 20 fireflies and Crossover with Simulated
Annealing with the K best threads

f FFA 7T-2K 8T-2K 10T-2K 7T-3K 8T-3K 10T-3K 7T-4K 8T-4K 10T-4K

1 6.14E-07 1.89E-29 1.79E-29 1.64E-29 1.92E-29 1.90E-29 1.83E-29 2.11E-29 1.52E-29 1.62E-29
2 5.51E-06 1.16E-26 3.11E-27 2.99E-27 5.67E-27 2.07E-27 4.53E-27 1.20E-26 1.88E-27 6.95E-27
3 4.67E-07 1.72E-29 1.77E-29 1.51E-29 1.78E-29 1.45E-29 1.54E-29 1.71E-29 1.73E-29 1.44E-29
4 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02
5 -9.00E-02 3.97E-27 5.43E-27 6.37E-27 6.21E-27 5.58E-27 8.16E-27 2.75E-27 6.24E-27 5.18E-27
6 -9.96E+03 2.29E+01 1.35E+01 2.02E+01 3.99E+01 2.36E+01 2.55E+01 1.66E+01 2.19E+01 6.70E-01

Table 6. Results: 40 fireflies and Crossover with the K best
threads

f FFA 7T-2K 8T-2K 10T-2K 7T-3K 8T-3K 10T-3K 7T-4K 8T-4K 10T-4K

1 5.46E-07 7.84E-57 6.61E-57 1.15E-56 1.23E-56 8.86E-57 6.52E-57 8.89E-57 6.86E-57 6.46E-57
2 3.83E-06 7.06E-34 4.70E-34 4.63E-35 9.93E-33 7.76E-35 8.47E-36 5.50E-36 2.04E-35 2.94E-35
3 4.22E-07 9.86E-33 6.16E-33 2.47E-33 7.40E-33 1.02E-32 8.63E-33 8.63E-33 9.86E-33 7.40E-33
4 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02
5 -9.00E-02 1.03E-35 1.49E-34 4.33E-36 4.21E-35 4.59E-35 5.88E-35 8.69E-35 1.21E-34 8.77E-35
6 -9.99E+03 4.60E+01 6.60E+01 5.41E+01 7.99E+01 7.43E+01 5.02E+01 3.66E+00 8.84E+01 4.10E+01

Table 7. Results: 40 fireflies and Crossover with Simulated
Annealing with the K best threads

f FFA 7T-2K 8T-2K 10T-2K 7T-3K 8T-3K 10T-3K 7T-4K 8T-4K 10T-4K

1 5.46E-07 8.23E-57 6.75E-57 6.95E-57 9.26E-57 8.01E-57 7.06E-57 6.36E-57 7.66E-57 8.24E-57
2 3.83E-06 6.46E-34 8.14E-34 9.60E-34 1.75E-34 4.88E-35 4.40E-35 6.92E-35 4.91E-36 2.20E-35
3 4.22E-07 7.40E-33 9.86E-33 7.40E-33 1.60E-32 1.05E-32 8.63E-33 7.40E-33 1.11E-32 3.70E-33
4 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02 -2.10E+02
5 -9.00E-02 2.14E-35 5.05E-35 8.50E-36 5.85E-35 9.32E-35 2.37E-35 8.44E-35 2.79E-35 2.17E-35
6 -9.99E+03 5.37E+01 6.13E+01 6.49E+01 8.48E+01 1.89E+01 5.29E+01 6.51E+01 3.36E+01 1.26E+01

4.4. Results analysis

To show the behavior of our algorithm we prepared
Figure 2 which shows the convergence curve of the
algorithm using 10 fireflies, 10 threads and the k_best
parameter set as 2. The vertical axis shows the fitness
of the objective function while the horizontal axis
represents the iterations (from 1 to 10000).

The algorithm converges fastly to small values, this
is why in further works we will propose modifications
to start exploiting the search space when the algorithm
converges, although this can be managed with the
POI parameter. Tests varying this parameter are also
contemplated for further work.

We also made some trajectory curves of the firefly that
obtained the best result in 500 iterations with a CNI of
100 and the remaining parameters stayed the same. The
red dot shows the last value obtained (the best value).

Table 3 shows the trajectory of the best firefly with the
crossover to the best K technique while Table 4 uses the
crossover with annealing with the best K technique. In
these graphs, we are able to see sudden changes in the
position that are consequences of the crossover between
the threads.
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(a) f 1 (b) f 2

(c) f 3 (d) f 4

(e) f 5 (f ) f 6

Figure 2. Convergence curves of the benchmark functions

4.5. Conclusions
Our algorithm obtained very significantly better
results than the original implementation of the Firefly
Algorithm. The tables with the results show that for
every function, no matter the crossover technique nor
the NT or k_best parameters, our algorithm obtained
the best results.

(a) f 1 (b) f 2

(c) f 3 (d) f 4

(e) f 5 (f ) f 6

Figure 3. Trajectory of the best firefly with crossover with the
best K

As we mentioned in the analysis section, the
algorithm seems to converge fast to optimal values, so
we seek to perform tests varying the POI parameter to
start exploiting the search space in a better moment.
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