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Abstract

INTRODUCTION: Nowadays, many machine learning tasks involve learning from imbalanced datasets,
leading to the miss-classification of the minority class. One of the state-of-the-art approaches to ”solve” this
problem at the data level is Synthetic Minority Over-sampling Technique (SMOTE) which in turn uses K-
Nearest Neighbors (KNN) algorithm to select and generate new instances.

OBJECTIVES: This paper presents SMOTE-Cov, a modified SMOTE that use Covariance Matrix instead of
KNN to balance datasets, with continuous attributes and binary class.

METHODS: We implemented two variants SMOTE-CovI, which generates new values within the interval of
each attribute and SMOTE-CovO, which allows some values to be outside the interval of the attributes.

RESULTS: The results show that our approach has a similar performance as the state- of-the-art approaches.

CONCLUSION: In this paper, a new algorithm is proposed to generate synthetic instances of the minority
class, using the Covariance Matrix.
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1. Introduction
Covariance Matrix could be used in different continu-
ous optimization problems[25], such as energy resource
management problem(ERM)[26]. Moreover, real world
data often presents characteristics that affect classifica-
tion: noise, missing values, inexact or incorrect values,
inadequate data size, poor representation in data sam-
pling, etc. The imbalanced dataset problem represents
a field of interest as it occurs when the number of
instances that represent one class(rare events) [1] is
much larger than the other classes, a common problem
in certain areas such as fraud detection, cancer gene
expressions, natural disasters, software defects, and
risk management[2]. Rare events are difficult to detect
because of their infrequency and casualness; misclas-
sification of rare events could often results in heavy
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costs. For example, for smart computer security threat
detection [3], dangerous connection attempts may only
appear out of hundreds of thousands log records, but
failing to identify a serious vulnerability breach would
cause enormous losses. Moreover other examples are:
the classification of the imbalanced data using radial-
based undersampling [31], the learn of the imbalanced
data improving interpolation-based oversampling[32],
and the analysis of attribute mapping rules for recog-
niting in imbalaced dataset of DNA sequence applying
SVM [34]. Other examples of imbalaced datasets are:

- Consistent performance of its High Voltage
Circuit Breaker (HCVB) is determinate when it needs
maintenance, which is an important problem, since
these components are used over wide periods of
time[27].

- The forecast accuracy of the ramp events tends to be
low is a class imbalance problem, where take on some
data sampling methods to overwhelmed[28].

1

EAI Endorsed Transactions  
on Energy Web Research Article 

EAI Endorsed Transactions on 
Energy Web 

03 2020 - 05 2020 | Volume 7 | Issue 27 | e2

http://creativecommons.org/licenses/by/3.0/
mailto:<julio.madera@reduc.edu.cu>


I. Leguen-deVarona et al.

- The research of detecting anomalies in smart grid is
a current topic and is investigated by many researchers,
taking into account the use recognized methods of
pattern recognition[29].

Some datasets for forecasting of energy is not
balance1, for example: 1) the power electric generation
by electricity market module region and source; 2)
the alternative fueling station locations; and 3) the
electricity consumption from the California Energy
Commission sorted by residential and non-residential
from 2006 to 2009.

Then, in the case of the datasets with binary class,
it can be defined that it is balanced if it has an
approximately equal percentage of examples in the
concepts to be classified, that is, if the distribution
of examples by classes is uniform, otherwise it is
imbalanced. To measure the degree of imbalance of a
problem [4] defined the Imbalanced Ratio (IR) as:

IR =
|C+|
|C−|

≥ 1.5 (1)

where:

C+: Number of instances that belong to the
majority class

C−: Number of instances that belong to the
minority class

Therefore, a dataset is imbalanced when it has a
marked difference (IR ≥ 1.5) between the examples
of the classes. This difference causes low predictive
accuracy for the infrequent class as classifiers try to
reduce the global error without taking into account
the distribution of the data. In imbalanced sets, the
original knowledge is usually labelled as oddities or
noise, focusing exclusively on global measurements
[5]. The problem with the imbalance is not only the
disproportion of representatives but also the high
overlap between the classes. To face this problem
diverse strategies have been developed and can be
divided into four groups: at the data level [6, 7], at the
learning algorithms level [8], cost-sensitive learning [9]
and based on multi-classifiers[10]; being the techniques
at the level of the data the most used, because its use is
independent of the classifier that is selected.

One of the best-known algorithms within data-level
techniques is the Synthetic Minority Oversampling
Technique (SMOTE) [7, 11] for the generation of
synthetic instances. One of SMOTE’s shortcomings is
that it generalizes the minority area without regard
to the majority class leading to a problem commonly
know as overgeneralization; this has been solved with
the use of cleaning methods such as SMOTE – Tomek

1https://openei.org/datasets/

links (TL) [6, 11], SMOTE - ENN [6, 11], Borderline
- SMOTE1 [11, 12], SPIDER [13], SMOTE-RSB* [33],
ADASYN [6] among others. These algorithms have been
designed to operate with values of both discrete and
continuous features for problems with imbalances in
their two classes; most of them use the KNN to obtain
the synthetic instances, and although this is a method
that offers good results, it does not take into account
the dependency relationships between attributes, which
can influence on the correct classification of the
examples of the minority class.

A way to obtain the dependency relation of the
attributes is Probabilistic Graphical Models (PGM)[14]
which represent joint probability distributions where
nodes are random variables and arcs conditional depen-
dence relationships. Generally, the PGM has four fun-
damental components: semantics, structure, implemen-
tation, and parameters. As part of the PGM there are
Gaussian Networks that are graphic interaction models
for the multivariate normal distribution [15] and some
use the Covariance Matrix (CM) to analyze relation-
ships between variables.

This paper is an extension of the proceeding
Conference’s article[30], where an algorithm based
on SMOTE and the Covariance Matrix estimation to
balance datasets with continuous attributes and binary
class, exploding the dependency relationships between
attributes and obtaining AUC [16] values similar to the
algorithms of the state-of-the-art.

An experimental study was performed ranking two
SMOTE-Cov variants, SMOTE-CovI (which generates
new values within the interval of each attribute) and
SMOTE-CovO (which allows some values to be outside
the interval of the attributes), against SMOTE, SMOTE-
ENN, SMOTE-Tomek Links, Borderline-SMOTE,
ADASYN, SMOTE-RSB* and SPIDER; using 7 data-sets
from the UCI repository [17] with different imbalance
ratios and using C4.5 as classifier. The performance of
the classifier was evaluated using AUC and hypothesis-
testing techniques as proposed by [18, 19] for statistical
analysis of the results.

2. Over-sampling based on the Covariance Matrix
This section introduce over-sampling based on the
Covariance Matrix. First, we describe the Covariance
Matrix which allow to compute variable dependency.
Then, we give an overview of our proposed algorithm.
Finally, we describe our experimental setup in four
steps: tool, dataset selection, evaluation methodology
and classifier used.

2.1. Covariance Matrix
The covariance matrix contains the covariance between
the elements of a vector, where it measures the
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linear relationship between two variables. If the vector-
column entries:

X =


X1
...
Xn

 (2)

then the covariance matrix
∑
ij is the matrix whose (i, j)

entry is the covariance∑
ij

= E
[
(Xi − µi)(Xj − µj )

]
(3)

where the operator E denotes the expected value
(mean) of its argument

µi = E(Xi) (4)

The Covariance Matrix allows determining if there is a
dependency relationship between the variables and it
is also the data necessary to estimate other parameters.
In addition, it is the natural generalization to higher
dimensions of the concept of the variance of a scalar
random variable[19].

2.2. SMOTE-Cov
The Algorithm 1 show the steps of SMOTE-Cov to
balance datasets [30]. During the loading of the dataset
in the first step, the algorithm expects continuous-
valued attributes and a binary class. Then, it uses the
formula 1 to verify whether the dataset is balanced
or not. If it is imbalanced, the algorithm computes
the Covariance Matrix. The Covariance Matrix allows
detect the dependency relationship between attributes.
Then, from the estimated covariance matrix, new
synthetic instances are generated to balance the
minority class. This process stops when an equilibrium
between the two classes is reached. The algorithm
checks that all the new values generated from the
covariance are obligatorily within the interval of each
attribute, in the case that some are outside the interval
what is done is to take it to the minimum or maximum,
making a kind of REPAIR of the value.

The computational complexity of the SMOTE-Cov in
the worst case is O(n2), which is similar to some state-
of-the-art approaches, such as, SMOTE−ENN, SMOTE-
RSB and ADASYN.

3. Tools and experimental setup
The algorithm was developed using the R language
because it is designed for statistical processing and has
the cov() function for calculating covariance. In order
to evaluate the behavior of the proposed algorithm it
was compared against the state-of-the-art algorithms of
oversampling data balancing; two variants are taken
into account: when the attributes inside or outside of
the dependence range. Seven datasets from the UCI

Algorithm 1: SMOTE-Cov steps

Input: Dataset X,inRange[Boolean]
Output: Balanced dataset X
Data: Dataset X
Step 1: Load dataset X;
Step 2: Compute X IR using equation 1 ;
if IR ≥ 1.5 then

Step 3: Estimate covariance matrix using
equation 3, this will provide us with a
probabilistic distribution of the dataset;
Step 4: For each attribute, a range is
determined by it min-max value;
while X is not in equilibrium do

Step 5: Generate new instance y according
to the covariance matrix;
if range , true then

add y to X;
else

for i ← 0 to Yi do
if Yi < minYi then

Yi = minYi ;
else if Yi > maxYi then

Yi = maxYi ;
else

continue;
end

end
end

end
else

return X;
end

repository were chosen with IR ≥ 1.5, see Table 1, with
continuous attributes and binary class. This experiment
uses 5-fold cross-validation and the data is split into
two subsets: training/calibration set (80%) and test set
(20%). The final result is the mean of the 5 result
sets. The partitions were made using KEEL in such a
way that the number of instances per class remained
uniform. The partitioned datasets are available on the
KEEL website [21].

Table 1. Description of the datasets used in the experiments

Dataset Instances Attributes IR
ecoli2 336 7 5.4

glass-0-1-2-3_vs_4-5-6 274 9 3.20
glass1 214 9 1.81

Iris 150 4 2
newthyroid2 215 5 5.14

Pima 768 8 1.86
vehicle3 846 18 2.99
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The training datasets are balanced, generating new
synthetic instances from the minority class to complete
the quantities of the majority class and using a
sample of control test, which continues imbalanced
and without any modification. The new datasets are
generated from the obtained instances, using the
SMOTE-Cov algorithm and a classifier is used as a mean
to measure the performance using other techniques.

The classifier used for the experimental study is C4.5
(implemented in the Weka package as J48) [22], which
has been referred to as a statistical classifier and one
of the top 10 algorithms in Data Mining that is widely
used in imbalanced problems [4].

The Area Under Curve (AUC) (5) is used to
measure the performance of classifiers over imbalanced
datasets using the graph of the Receiver Operating
Characteristic (ROC) [16]. In these graphics, the trade
off between the benefits (TPrate) and cost(FPrate) can
be visualized, and represent the fact that the capacity
of any classifier cannot increase the number of true
positives without also increasing the false positives.
AUC summarizes the performance of the learning
algorithm in a number.

AUC =
1 + T P rate − FP rate

2
(5)

where:

T P rate: Correctly classified positive cases that
belong to the positive class

FP rate: Negative cases that were misclassified as
positive examples

3.1. Experimental study
The AUC result values is studied with this already
balanced dataset. Table 2 shows that the AUC results of
the data-balancing algorithm applying the Covariance
Matrix with its CovI and CovO variants are similar
or comparable with respect to the state-of-the-art
oversampling algorithms, using as C4 .5 classifier.

Table 2. AUC of the data balancing algorithms with generation
of oversampling classes of the state-of-the-art, CovI and CovO

Algorithms Iris glass1 Pima vehicle3 glass- ecoli2 new
0-1-2-3_ thyroid2

vs
_4-5-6

ADASYN 1 0.74 0.73 0.74 0.88 0.91 0.98
Borderline−SMOTE 0.99 0.77 0.70 0.65 0.82 0.89 0.95

SMOTE−ENN 0.99 0.74 0.74 0.71 0.93 0.89 0.92
SMOTE−RSB 0.97 0.72 0.75 0.73 0.90 0.89 0.96
SMOTE−TL 0.99 0.74 0.72 0.79 0.90 0.89 0.93
SMOTE 1 0.77 0.74 0.72 0.84 0.92 0.92
SPIDER 0.99 0.74 0.72 0.71 0.92 0.89 0.95
Original 1 0.72 0.75 0.72 0.90 0.85 0.96

SMOTE−CovO 1 0.71 0.72 0.71 0.92 0.86 0.95
SMOTE−CovI 0.95 0.72 0.70 0.72 0.86 0.86 0.96

For the statistical analysis of the results, hypothesis-
testing techniques were used [18, 19]. In both
experiments, the Friedman and Iman-Davenport tests
were used [23], in order to detect statistically significant
differences between groups of results. The Holms
test was also carried out [24], with the aim of
finding significantly higher algorithms. These tests
are suggested in the studies presented in [18, 19,
23], where it is stated that the use of these tests
is highly recommended for the validation of results
in the field of automated learning. Table 3 shows
the ranking obtained by the Friedman test for the
experiment. Although the algorithm with the best
ranking was ADASYN, Holm’s test performed below
will demonstrate to what extent this algorithm can
be significantly superior to the one proposed in the
research.

Table 3. Friedman’s Test

Algorithms Ranking
ADASYN 3.4286

Borderline−SMOTE 6.9286
SMOTE−ENN 5.4286
SMOTE−RSB 4.9286
SMOTE−TL 5.2857

SMOTE 4.5714
SPIDER 5.6429
Original 5

SMOTE−CovO 6.3571
SMOTE−CovI 7.4286

Table 4. Holms test with α = 0.05, taking ADASYN as a control
method

i Algorithms Z = (Ro−Ri )
SE p–value Holm Hypothesis

9 SMOTE−CovI 2.47 0.01 0.005 Reject
8 Borderline−SMOTE 2.16 0.03 0.006 Reject
7 SMOTE−CovO 1.80 0.07 0.007 Accept
6 SPIDER 1.36 0.17 0.008 Accept
5 SMOTE−ENN 1.23 0.21 0.01 Accept
4 SMOTE−TL 1.14 0.25 0.012 Accept
3 Original 0.97 0.33 0.01 Accept
2 SMOTE−RSB 0.92 0.35 0.02 Accept
1 SMOTE 0.70 0.48 0.05 Accept

Table 4 summarizes the results of Holms test taking
ADASYN as a control method, all hypotheses with
p–value ≤ 0.05 are rejected; showing that ADASYN
is significantly superior to the SMOTE-CovI and
Borderline-SMOTE algorithms. In the case of SMOTE-
CovO, SPIDER, SMOTE_ENN, SMOTE_TL, Original,
SMOTE-RSB and SMOTE, the null hypothesis is
accepted, this mean that there are not significant
differences between ADASYN and them, so it can be
concluded that they are as effective.
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On the other hands, the results achieved on
Nemenyi’s post hoc comparisons for α = 0.05 and
adjusted p-values are shown in:

Table 5. Nemenyi’s test with P-values α = 0.05

i Algorithms Z =
(Ro−Ri )
SE p–value Hypothesis

45 ADASYN vs. SMOTE−CovI 2.471658 0.013449 Reject
43 ADASYN vs. SMOTE−CovO 1.809606 0.070357 Accept
42 SMOTE vs. SMOTE−CovI 1.76547 0.077485 Accept
41 SMOTE-RSB vs. SMOTE−CovI 1.544786 0.122398 Accept
40 Original vs.SMOTE−CovI 1.500649 0.133446 Accept
37 SMOTE-TL vs. SMOTE−CovI 1.324102 0.185469 Accept
34 SMOTE-ENN vs. SMOTE−CovI 1.235829 0.216522 Accept
31 SMOTE vs. SMOTE−CovO 1.103419 0.269845 Accept
30 SPIDER vs. SMOTE−CovI 1.103419 0.269845 Accept
25 SMOTE-RSB-Is0 vs. SMOTE−CovO 0.882735 0.37738 Accept
24 Original vs. SMOTE−CovO 0.838598 0.401695 Accept
20 SMOTE−CovO vs. SMOTE− CovI 0.662051 0.507938 Accept
19 SMOTE-TL vs. SMOTE−CovO 0.662051 0.507938 Accept
18 SMOTE-ENN vs. SMOTE−CovO 0.573778 0.566118 Accept
15 SPIDER vs. SMOTE−CovO 0.441367 0.658947 Accept
12 Borderline-SMOTE vs. SMOTE−CovO 0.353094 0.724018 Accept
10 Borderline-SMOTE vs. SMOTE−CovI 0.308957 0.757354 Accept

Nemenyi’s procedure rejects those hypotheses that
have an adjusted p-value ≤ 0.001111.

Nemenyi test is a test that intended to find difference
on the groups of data after a statistical test of multiple
comparisons. If it has rejected the null hypothesis that
the performance of the comparisons on the groups
of data then is similar. The test does pair-wise tests
of performance. As can be observed, ADASYN and
SMOTE-CovI has a similar performance, while the rest
of pair-wise has a different performance.

4. Conclusions and future work

In this paper, a new algorithm is proposed to generate
synthetic instances of the minority class, using the
Covariance Matrix. The experimental study carried
shows the effectiveness of the proposed algorithm
compared to eight recognized algorithms of the state-
of-the-art. SMOTE-Cov showed similar or comparable
results, taking into account the results of the AUC curve
of the C4.5 classifier and using non-parametric tests
to demonstrate that there are no significant differences
between them, with the exception of the ADASYN
versus the SMOTE-CovI variant. This can be influenced
because the attributes present in the studied datasets
come from other intervals and not from the actual
attribute within the dataset.

Having results comparable to those of the state-of-
the-art, for these datasets, allows in the future to extend
the experimentation to datasets with tens, hundreds or
thousands of attributes and with strong dependency
relationships. It is also intended to use covariance
regularization (Shrinkage) to balance data, where the
number of positive instances is less than the number
of attributes. The last recommendation is study the
extension of the proposed algorithm to multi-class
classification problems.
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