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Abstract

Rainfall Optimization Algorithm (RFO) is a nature-inspired metaheuristic optimization algorithm. RFO
mimics the movement of water drops generated during rainfall to optimize a function. The paper study
new implementations for RFO to offer more reliable results. Moreover, it studies three restarting techniques
that can be applied to the algorithm with multithreading. The different implementations for the RFO are
benchmarked to test and verify the performance and accuracy of the solutions. The paper presents and
compares the results using several multidimensional testing functions, as well as the visual behavior of the
raindrops inside the benchmark functions. The results confirm that the movement of the artificial drops
corresponds to the natural behavior of raindrops. The results also show the effectiveness of this behavior to
minimize an optimization function and the advantages of parallel computing restarting techniques to improve
the quality of the solutions.
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1. Introduction
The optimal solution for a specific function can be
obtained with different methods. In the last decades,
people started to research new methods to find global
maximums and minimums without using traditional
algorithms. Researchers have found that heuristic-
based algorithms could find the global optimum for
highly complex functions in less time than the tradi-
tional way. And in the real world, the efficiency and
precision of the algorithm are crucial. Moreover, these
algorithms are needed in many different fields, like
physics, engineering, computer science, industrial pro-
cesses, demography, and economics. Some application
models are represented with functions that could take
a lot of time to find their global optimums with the
traditional methods, and that is why researches started
to develop new optimization algorithms.

A vast number of approaches have been suggested.
But not all the algorithms are as precise as they
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are required to be in a real-world problem. Some
algorithms fail to find the optimum solution in
specific functions. To attend those problems, researches
have to design meta-heuristic optimization algorithms.
Meta-heuristic algorithms are problem-independent
algorithms that can be applied to solve an optimization
problem. A well-written meta-heuristic optimization
algorithm will adapt to a given specific problem
without a lot of modifications. [1]. The research
and proposal presented in this paper are based
on a nature-inspired optimization algorithm named
as Rainfall Optimization Algorithm (RFO). Nature-
inspired algorithm terminology is used for all the
algorithms that were inspired on a biological, physical
or chemical process that can be found in nature.
Nature-inspired algorithms used to solve optimization
problems have been very successful in the last decades
[2] and have allowed researchers to have a large number
of sources of inspiration [3].

RFO was written by Kaboli, Sevbaraj and Rahim and
it was inspired by the behavior of raindrops. The
algorithm performs fast in multi-variable functions, but
it sometimes fails to find the global optimum in some
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functions. It might get results that are not as precise
as other optimization algorithms because it can run
out of iterations,or when raindrops start moving in the
wrong direction or get stuck on local optima. The main
goal of this paper is to introduce new implementations
that can help RFO to make it more precise. The
proposed implementations exploits the advantages of
multi-threaded processors found in modern computers.
The RFO of this paper can perform parallel executions
of the algorithm with different restarting techniques:
restart to the best, genetic restart to the best and
simulated annealing. Restart to the best is a method that
can help the quality of a solution of an optimization
problem by getting more precise results with a decent
computation time by the use of parallel threads. The
other techniques are an improvement of the restart
to the best, because they can make RFO more meta-
heuristic based, and as a result, RFO will perform better
in more functions.

If multi-threaded computers are used correctly, they
can offer high computational power which makes them
useful for different science and engineering problems.
The new approach discussed in this paper presents the
advantages of the implementation of parallelization in
RFO. These implementations intend to use the benefits
of parallel computing by running the algorithm in
different parallel processes at the same time with fewer
iterations on the threads. The results obtained by each
thread can be compared to obtain the global optimum
or continue the process with the restarting techniques
previously mentioned to find better quality results.

The rest of the paper is structured as follows.
First, the description and flowchart of the RFO are
presented. In section 3, the parallel implementations
with the proposed restart techniques are described.
Next, the performance of the different implementations
of the algorithm is evaluated by the use of benchmark
functions. Finally, the conclusions are outlined in the
last section.

2. Rain-Fall Optimization Algorithm
The RFO is inspired by the behavior of drops during
a rainfall. In nature, raindrops drip down from a peak
to form streams and rivers that reach the sea or lakes
[1]. This process can be implemented in optimization
algorithms because the behavior of the raindrops is
similar to an exploration process that can be used
to find the minimums of a mathematical function.
Raindrops will keep falling until they reach a place
where they cannot continue to fall. In nature, they
can get stuck before reaching the sea level (the global
minimum), such as ponds or lakes that can be translated
to an optimization problem as local minimums. Also,
RFO simulates the tendency of drops to move towards
the steepest slopes [1].

In the first iteration of the algorithm, a population
of raindrops is generated in random positions of the
optimization function, which can be associated with
the geographical terrain. This first process represents
the simulation of the new raindrops produced by
rainfalls. Next, it is necessary to simulate the natural
movement of raindrops. After being generated, the
artificial drops must move to the steepest slope of the
radius that surrounds them. Their next position can
be determined using several methods. For a similar
process in other optimization algorithms, gradient
descent is used. But in RFO, a method called random
search is used. For this method, the algorithm has to
generate neighbor points around every artificial drop.
The area where the neighbor points are generated
can be called the neighborhood of the drop. After
generating the neighbor points of a drop, the algorithm
evaluates them according to the optimization function.
The result of each neighbor point is compared with the
previous position of the drop to decide which point
corresponds to the lowest position of the neighborhood.
For each drop, this process will continue to execute
until the drop reaches the lowest point of the terrain
(the global optimum) or gets stuck in a puddle (local
optima).

2.1. Description of the algorithm
The flowchart in Figure 1 describes the main algorithm
of RFO. It is based on the original algorithm written
by Kaboli, Selvaraj, and Rahim, but with some
improvements. To understand the algorithm, it is
necessary to explain some concepts.

Raindrop: A rainfall generates a population of
artificial drops that contain the following attributes:

• Xk It refers to the position of the raindrop at the
kth dimension of the optimization problem.

• Status: It is a flag that marks the drop as active
or inactive. When the artificial drop is inactive, it
means that the drop is stuck or far from the global
optimum. Hence, the raindrop stops moving.

• Value: It represents the fitness of the solution by
evaluating the position of the drop at iteration i.

• Rank: It is an attribute that determines the
position of the raindrop at the merit-order list at
iteration i, and it is calculated using the following
equation:

D irank =


C1it = f (D it ) − f (D i1)
C1it = f (D i)
Rankit = w1 × order(C1it)+
w2 × order(C2it)

(1)

Where:
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Figure 1. Flowchart of the RFO algorithm.

– C1it is the rate of change of value at iteration
t for raindrop Di with respect to its initial
value.

– C2it is the current value for raindrop Di

– OrderC1it and OrderC1it are sorted in
ascending order.

– w1 and w2 are the weighting coefficients that
have a constant value of 0.5 [1].

– Ranki
t returns the rank for raindrop Di at

iteration t.

• Step size: It is necessary to use random search
to define the next position of the drop. The step
size is the property that defines the area of the
neighborhood in which neighbor points can be
generated. To simulate the descent of a drop
from a peak, the neighborhood size must change
according to the speed of the drop at iteration
i. If the delta between the fitness of the last
iterations is greater, it means that it is moving

to a steeper area. And the speed of the drops is
directly proportional to the slope of the terrain. To
simulate that behavior in the artificial raindrops,
Equation 2 was designed.

D istep =


step0 for i == 0
stepi−1 × (1 + Rs) for Eci−1 == 0
stepi−1
1+Rs

for Eci−1 > 0
(2)

Where:

– step0 is the initial step size given as a
parameter for the solution.

– Rs is a random number between 0 and 1.

– stepi−1 is the step size at the previous
iteration.

– Eci−1 is the explosion counter at the previous
iteration.
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Figure 2. Visual representation of the explosion process.

Neighborhood: As mentioned before, the neighbor-
hood is the space where the neighbor points of the
Nth raindrop can be evaluated. According to Equation
3 [1], the size of the neighborhood is wider when the
drop is moving faster. This allows the drop to do bigger
jumps in the exploration phase and move slower in the
exploitation phase to produce high-quality solutions
[4].

N k
i = Dki + (N k

0 ×D
i
step) (3)

Where:

• N k
0 is the initial neighborhood size of all the drops

at kth dimension according to Equation 4.

• Dki is the position of the artificial raindrop at kth

dimension in the iteration i.

• D istep is the step size at of the drop at the current
iteration.

N k
0 = (|upk | + |lowk |) × 0.02 (4)

Where:

• upk is the upper limit of the search space at kit

dimension.

• lowk is the lower limit of the search space at kit

dimension.

Neighbor points: These new points that spawn in a
random position inside the neighborhood of a drop
represent the possible positions of the drop at iteration
i + 1. Each neighbor point generated at iteration i
must be evaluated to determine the next dominant
position of the drop. The position of the neighbor point
NP ij of raindrop Di is generated using the following
equation[1]:

||(Dki −NP
i
j ).ūk || ≤ ||N k

i .ūk ||
1 ≤ i ≤ m
1 ≤ j ≤ np
1 ≤ k ≤ n

(5)

Explosion process: It is carried out when an artificial
drop does not have a dominant neighbor point. This
situation occurs when the raindrop is stuck in a local
minimum or when an insufficient amount of neighbor
points are generated [1]. The first suggestion to release

a raindrop from this situation is to generate more
neighbor points. But in practice, this technique was
not helping in all situations. To solve that, a new way
to generate the neighbor points can be implemented
during the explosion process. The new method is
inspired by the expansion of a blast, as shown in
Figure 2. To simulate this behavior, Equation 6 can
be used. In consequence, the positions of the neighbor
points generated during the explosion process can be
distributed evenly from the center of the neighborhood
(where the raindrop is stuck) to its edges.

Dki + [(|upk | + |lowk |) × Ebase] (6)

Where Ebase is equal to the next equation:

Ebase =

(0.9)(10−exp+a)(Ecexpbase ) a ≥ 1
(0.9)(10−expbase+1)(Ecexpbase ) a < 1

(7)

Where:

• a: can be defined by Equation 8.

• Ec: is the number of explosion processes that have
been carried out in the current drop.

a = − log10(
|upk + lowk |. 3

200
0.9

) (8)

Merit-order list: It is a list that sorts in ascending order
the raindrops at iteration i according to their rank. The
positional index of a raindrop at the merit-order list
can determine its status. For better performance of the
algorithm, the drop with the worst rank will change its
status to inactive. A raindrop can also become inactive
if the explosion process is carried out and fails to find
a dominant point. And the drops with higher ranks
can iterate more during the explosion processes before
getting inactive.

3. Parallel Implementations for the Rain-Fall
Optimization Algorithm
The paper proposes parallel computing to obtain
better quality and better performance of the algorithm.
Instead of initializing one rainfall, multi-threading
gives the ability to generate multiple rainfalls with an
independent population of raindrops. But the objective
of the parallel implementation is to share information
between threads and use it to enhance the route of the
raindrops towards the global minimum. As a result,
the algorithm needs less amount of iterations to find a
suitable or high-quality optimum value with the same
or lower CPU time.

With parallel implementations, a new iteration
counter called H must be declared. In Figure 3, the
H counter indicates the number of cuts in which the
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Figure 3. The threading process.

algorithm joins all threads to share information about
the artificial drops and their fitness value. At every
cut, new rainfalls can be generated in each thread.
In the first iteration of RFO (H1), all raindrops of all
threads are generated and positioned randomly inside
the search space and according to the original algorithm
described in Figure 1. But if H is greater than 1, the
positions of the drops will be based on the results
that HK−1 threads obtained. Furthermore, the way the
new drops are generated may vary depending on the
restarting technique chosen. The paper suggests three
ways to handle the cuts: restart to the best, genetic
restart to the best and annealing restart to the best.

3.1. Restart to the best
Restart to the best is a technique that is easy to
implement. The algorithm compares among all the best-
positioned drops, according to their fitness, at HK−1
and picks the best drop as the starting position, as
it is shown in Algorithm 1. In other words, after
selecting the best drop, instead of generating new
random positions for the HK iteration, all raindrops of
all threads can take advantage of the results ofHK−1 and
start at the position of the best drop of all threads of the
last H iteration.

In practice, this method can be effective to obtain
more reliable results than the ones from the original
RFO. But restart to the best technique is not the best

Algorithm 1: Pseudocode to obtain the best drop
of H iteration

1 Start;
2 Define icuts (Iterations before thread cut) ;
3 Hi = 1;
4 i = icuts;
5 Run RFO from Figure 1 with local

MaxItera = icuts;
6 while i <= MaxItera do
7 Get the best drops of each thread of Hi and

save them inside savedDrops array;
8 Sort the drops of the savedDrops array in

ascending order according to their fitness ;
9 Dbest = savedDrops[0];

10 Run RFO from Figure 1 with local
MaxItera = icuts but with Dbest position as
starting position;

11 i = Hi × icuts;
12 Hi + +;
13 end
14 Sort the drops of savedDrops in ascending order

according to their fitness;
15 Print the first drop of savedDrops as the

optimum solution ;

approach. If the algorithm follows the metaheuristic
proposal, the algorithm must be adaptive for all
optimization problems. And restart to the best could
behave as a glutton algorithm because it always chooses
the drop that seems to be the best candidate based
on its fitness [5]. But in some circumstances or some
optimization functions, a drop with a worse fitness at
iteration H might also be closer to the global optimum
of the function than the one with the best fitness value.
As a result, the algorithm might do regression in the
process in some H iterations.

3.2. Genetic restart to the best
Another restarting technique that can be implemented
is a genetic restart. The method is a hybridization
of the genetic algorithm (GA) and the restart to the
best technique that was previously mentioned. This
approach was nature inspired by the behavior of two
different genes that form a new and better gene. The
algorithm uses the crossover of two artificial genes
that define the fitness of a raindrop [6, 7]. Before
every restart, Algorithm ?? is performed. It mixes
the positions of some random dimensions of the best
drops of each thread into a new artificial drop with
better genetics (Figure 4). The quality of the gene is
determined by its fitness value inside the optimization
function.

5
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Algorithm 2: Genetic Algorithm Pseudocode

1 Start;
2 Define icuts (Iterations before thread cut) ;
3 Hi = 1;
4 i = icuts;
5 Run RFO from Figure 1 with local

MaxItera = icuts;
6 while i <= MaxItera do
7 Get the best drops of each thread of Hi and

save them inside savedDrops array;
8 Sort the drops of savedDrops in ascending

order according to their fitness ;
9 Dbest = savedDrops[0];

10 rndit = RANDOM ;
11 for H < rndit do
12 rndk = RANDOM;
13 rndD = RANDOM
14 ;
15 Replace Dbest position at rndk with the

position at the same rndk of the drop
rndD ;

16 Evaluate the Dbest
17 ;
18 if f itness(new Dbest) > f itness(old Dbest)

then
19 Dbest = old Dbest ;
20 end
21 Run the RFO from Algorithm ??, but

setting all drops to start at the best drop’s
positions;

22 end
23 i = Hi × icuts;
24 Hi + +;
25 end
26 Sort the drops of savedDrops in ascending order

according to their fitness;
27 Print the first drop of savedDrops as the

optimum solution ;

A B C D

A'' B'' C'' D''

A' B' C' D'

A B'' C' D

Figure 4. The crossover of different genes.

3.3. Simulated annealing restart to the best
Simulated Annealing algorithm (SA) is a probabilistic
technique inspired by the annealing or cooling process

Algorithm 3: Pseudocode to obtain the best drop
of H iteration

1 Start;
2 Define icuts (Iterations before thread cut) ;
3 Hi = 1;
4 i = icuts;
5 tMAX = MaxItera

icuts
Run RFO from Figure 1 with

local MaxItera = icuts;
6 while i <= MaxItera do
7 Get the best drops of each thread of Hi and

save them inside savedDrops array;
8 Sort the drops of the savedDrops array in

ascending order according to their fitness ;
9 Dbest = savedDrops[0];

10 for j < threadcount do
11 t = Hi ;
12 Get T from Equation 9;
13 Ra = RANDOM;
14 if Ra < T then
15 savedDrops[j] = Dbest ;
16 end
17 end
18 Run RFO from Figure 1 with local

MaxItera = icuts but with savedDrops
positions as starting position;

19 i = Hi × icuts;
20 Hi + +;
21 end
22 Sort the drops of savedDrops in ascending order

according to their fitness;
23 Print the first drop of savedDrops as the

optimum solution ;

of metals [8]. In nature, this process occurs when
the heat source of molten metal is removed from it.
Consequentially, the temperature of the metal starts to
decrease. This process will continue to happen until
the metal has reached the ambient temperature. At this
point, the energy has reached the lowest value and the
state of the metal should be fully solid [9, 10].

T (t) = e

−1

ln
∣∣∣∣ ti
tMAX

∣∣∣∣ (9)

The SA algorithm as a restarting technique uses the
Equation 9 and a random number Ra between 0 and 1.
T represents the temperature of the metal, ti the time
that has elapsed from the beginning of the annealing
process, and tMAX the time that has to pass for the metal
to become completely solid. In RFO, the elapsed time
ti is equal to the HK iteration counter, and tMAX can
be associated with the total number of H iterations that
will be carried out according to the given parameter in
the solution. Finally, if the temperature T is greater than
the random number Ra, the algorithm will perform the
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restart to the best technique. Otherwise, the algorithm
should not do anything in the HK cut. By using the
Equation 9 in SA, the scale of the temperature T must
be between 0 and 1.

The equation was designed to behave similar to
the cooldown temperature of the metal at time t
multiplied by a constant K . This process produces
a large perturbation in the initial stages of the
exploration, ensuring that the positions of the raindrops
are well-tuned at the final stages of the optimization
[11]. This happens because the probability P to fulfill
the condition where Ria < Ti is higher at the first
H iterations when the temperature of the metal
is higher. And the probability P should get lower
as the temperature decreases. SA technique can be
summarized in Algorithm 3.

4. Experiments
This section shows the performance results of the
RFO for continuous optimization problems. The
benchmark functions and configurations that were used
to obtain the presented results are also disclosed. The
experimental results are then analyzed and compared
between the different purposed implementations and
between other optimization problems.

4.1. Experimental Setup
To evaluate the performance and quality of the results
given by the algorithm, it was tested with 5 different
benchmark functions. The testing software was written
with CSharp and Windows Forms. It can run both
single-threaded and multithreaded RFO. The software
has a user interface were the different configurations are
set up.

Table 1 shows the benchmark functions that were
used to test RFO with different configurations. The
Rosenbrock function [12], the Ackley function [13],
the Sphere function [14], the Griewank function
[15] and the Kowalik function [16]. The first four

Table 1. Benchmark functions

Function Name Range Dim fmin

F1 Ackley [-30, 30] 30 0

F2 Griewank [-600, 600] 30 0

F3 Kowalik [-4, 4] 4 3.075E-04

F4 Rosenbrock [-30, 30] 30 0

F5 Sphere [-100, 100] 30 0

Table 2. Experimental configuration parameters

Parameters:
Neighbor Points 300
Max. Iterations: 3000
Initial Step Size: 0.23
Explosion Base: 3
Iterations before cut: 100

benchmark functions are multidimensional, and the
Kowalik function has four dimensions. The 3D
shapes of the testing functions can be visualized in
Table 5. All four multidimensional functions were
optimized with up to 30 dimensions. The only
restriction that determined the search space was the
suggested range of the benchmark function. All the
dimensions had the same range according to the table.
The mathematical representations of the benchmark
functions are expressed in Table 3. [17].

The suggested parameters were determined after
doing some trials in all functions, The configuration for
RFO shown in Table 2 should work with any function.

4.2. Experimental results
The search history diagrams that have been drowned in
Table 5 were obtained after recording the positions of
the artificial raindrops at the first 100 iterations on the
2D version of the benchmark functions. These visual
results show that the random distribution that set the
initial positions of the drops, and how they move inside
the search space towards the coordinates of the global
minimum. As expected, the drawings shows how almost
all raindrops cluster around the global minimum.

Table 5 also shows the convergence curves for
each benchmark function. The x axis represents the
iterations and the y axis shows the fitness value. The
fitness history of the drop that had the best fitness value
of all threads at the end of the algorithm is saved. And
the recorded fitness values were plotted with MATLAB
after each iteration inside the convergence graphs. The
convergence curves of all the testing functions were
plotted using the original RFO (single-threaded) and
the new algorithm with all the purposed restarting
techniques. The complete graphics can help to visually
compare the behavior of the different variations of the
algorithm. But the main fact that can be analyzed is
the speed of the algorithm. The convergence curves
showed that RFO is a fast algorithm because it does
not need a lot of iterations to optimize near the global
optimum value. Because of that, it can be inferred that
the parallelization only affects the standard deviation
and the quality of the optimization results using
the configuration that was used for the experimental
analysis of this paper. Having more rainfalls decreases
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Table 3. Equations for the benchmark functions

Function

F1 F1(x) = −20exp(−0.2
√

1
n
∑n
i=1 x

2
i ) − exp( 1

n
∑n
i=1 cos2πxi ) + 20 + e

F2 F2(x) = 1
4000

∑n
i=1 x

2
i −

∑n
i=1 cos(

xi√
i
) + 1

F3∗ F3(x) =
∑n
i=1

[
ai −

x1(b2
i +bix2)

b2
i +bix3+x4

]2

F4 F4(x) =
∑n−1
i=1

[
100

(
xi+1 − x2

i

)
+ (xi − 1)2

]
F5 F5(x) =

∑n
i=1 x

2
i

* Note: the Kowalik function depends on ai and bi arrays as follows [18]:

a = [ 0, 0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246 ]

b = [ 0, 4, 2, 1, 0.5, 0.25, 0.167, 0.125, 0.1, 0.0833, 0.0714, 0.0625 ]

Table 4. Different Optimization Algorithms performance comparison

Function GA[19] PSO[19] GSO[20] RFO
Sphere 3.1711 3.6927e-37 1.9481e-8 1.4607e-6

Rosenbrock 338.56 37.3582 49.8359 32.4053
Ackley 0.8678 1.3404e-3 2.6548e-5 1.724e-4

Griewank 1.0038 0.2323 3.0792e-2 9.86e-2
Kowalik 7.0878e-3 3.8074e-4 3.7713e-4 3.1553e-4

the possibility of failing to optimize the function
and the restarting techniques became relevant in the
exploitation processes.

The convergence curves of the figures of Table 5 also
confirm that the behavior of the artificial raindrops
moving towards the steepest slope is fulfilled. The
curves clearly show descending behavior in all five
benchmark functions.

The trajectory of the best raindrop in the first
dimension was also drawn in Table 5. This diagram
records the position of the best drop of all threads of
the first variable after every iteration. As expected, the
raindrops move uniformly and without abrupt changes
towards the optimum value of the variable.

Table 4 shows the performance between RFO
and other metaheuristic optimization algorithms. The
results of the RFO shown on the table represent the
average global minimum obtained after running the
algorithm more than 1000 times for the multidimen-
sional functions and 50 times for the Kowalik function.
Almost all the individual results of RFO were better
than the ones from the other algorithms, but the average
penalized the global results when the drops of a rainfall
got stuck in local minimums. This behavior only occurs
with functions that have many local minimums, like

the Ackley function, but can be solved with the paral-
lel implementations as they generate more raindrops,
decreasing the probability of getting all drops stuck.

Tables 7, 8, and 9 represent the average results
obtained after running the algorithm several times
using the parallel implementations: restart to the best,
genetic restart to the best and annealing restart to the
best respectively. The parameters used for these tests
are defined in Table 2, and the max value of H was 30
in all runs. All four multidimensional functions were
minimized with 10 and 30 dimensions. The population
and number of threads were different in some runs to
determine the population and the number of threads
that can help the quality of the result without hurting
the performance. For each configuration, the algorithm
was tested 50 times.

After comparing the quality and iterations between
the 10-dimensional functions and the 30-dimensional
functions in Table 6, it can be said that the more
variables the function has, the harder it will be for
the algorithm to get near to the global minimum. On
average, it was found that the algorithm needs twice the
amount of iterations to find the global minimum with
the benchmark functions set to 30 dimensions. Also,
the more population of raindrops the rainfall has, the
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Table 5. Behavior of raindrops inside the benchmark functions

Function 3D Plot Search history Convergence Trayectory

F1 0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25 Original algorithm

Restart to the best

Genetic restart to the best

Annealing restart to the best

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20
Ackley

F2

Original algorithm

Restart to the best

Genetic restart to the best

Annealing restart to the best

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35 40 45 50
-50

0

50

100

150

200

250

300

350
Griewank

F3

0

4

100

200

3

300

42

400

3
1

500

2

Kowalik

600

0
1

700

-1 0

800

-1-2

-2
-3

-3

-4 -4

Original algorithm

Restart to the best

Genetic restart to the best

Annealing restart to the best

0 5 10 15 20 25 30
0

0. 2

0. 4

0. 6

0. 8

1

1. 2

1. 4

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Kowalik

F4 0 5 10 15 20 25 30 35 40 45 50
0

0. 5

1

1. 5

2

2. 5

3

3. 5

4

4. 5

5
10 8

Original algorithm

Restart to the best

Genetic restart to the best

Annealing restart to the best

0 5 10 15 20 25 30 35 40 45 50
-25

-20

-15

-10

-5

0

5
Rosenbrock

F5

Original algorithm

Restart to the best

Genetic restart to the best

Annealing restart to the best

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9
10 4

0 5 10 15 20 25 30 35 40 45 50
-100

-80

-60

-40

-20

0

20
Sphere

closer it gets to the global minimum of the function. But
having more raindrops can impact on the CPU time.

5. Conclusions
In this work, new implementations for the Rainfall
Optimization Algorithm (RFO) are presented. Also,
the RFO used for this paper has some improvements
from the original algorithm by mimicking other natural
behaviors such as the flow speed of descending
raindrop and the distribution of the particles during
a blast. These modifications allow a dynamic search

radius during the random search process. In addition
to that, the algorithm can run multiple rainfalls
in different threads at the same time during the
optimization process. Moreover, all the rainfalls during
the execution of the algorithm work as a team by
sharing information between all the threads. The paper
proposed three restarting techniques to share the
positions and the fitness values of all raindrops of all
threads. As shown in Table 5, RFO is a fast algorithm
and the parallel implementations seek to improve the
quality of the results without hurting the performance.
Running the algorithm with multiple threads and using
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Table 6. Comparison of the benchmark results obtained by RFO between the different approaches

Function Dimensions

Method

Single Threaded Restart to the best Genetic restart to the best Annealing restart to the best

Global minimum Iterations Global minimum Iterations Global minimum Iterations Global minimum Iterations

F1 30 1.72E-04 369 4.86E-01 331 1.93E-01 343 3.92E-01 314

F2 30 9.86E-02 376 7.59E-03 274 2.61E-03 265 7.02E-15 371

F3 4 3.16E-04 3457 3.08E-04 239 3.08E-04 249 3.08E-04 480

F4 30 32.41 429 23.727 265 23.151 258 18.157 534

F5 30 1.46E-06 1020 1.09E-11 269 4.78E-13 256 1.01E-16 361

Table 7. RFO performance results in parallel with restart to the best method

Function Threads

Global Minimum 10D* Global minimum 30D*

Population
Iterations

Population
Iterations

5 10 15 20 20 25 30 35 40

F1

5 7.02E-04 1.91E-04 1.14E-09 6.55E-09 284 1.06E+00 3.32E-08 9.50E-01 8.89E-01 1.76E-08 339

10 1.15E-06 1.61E-10 1.25E-10 1.83E-11 181 1.94E-09 1.09E-08 9.50E-01 7.51E-01 3.48E-09 328

15 5.38E-09 1.89E-09 8.06E-11 1.98E-10 173 1.32E+00 1.30E-08 3.35E-01 6.70E-01 3.75E-01 326

F2

5 8.36E-02 4.31E-02 6.64E-02 6.64E-02 164 6.16E-03 2.34E-02 9.84E-03 5.04E-02 3.12E-11 273

10 5.53E-02 6.41E-02 4.93E-02 4.07E-02 154 1.09E-04 9.12E-05 4.98E-03 3.74E-03 2.89E-05 275

15 7.62E-02 5.29E-02 3.14E-02 4.43E-02 154 3.83E-03 6.81E-05 4.98E-03 4.51E-05 6.19E-03 274

F3∗

5 3.08E-04 3.08E-04 3.08E-04 3.08E-04 248 3.08E-04 3.08E-04 3.08E-04 3.08E-04 3.08E-04 248

10 3.08E-04 3.08E-04 3.08E-04 3.08E-04 246 3.08E-04 3.08E-04 3.08E-04 3.08E-04 3.08E-04 246

15 3.08E-04 3.08E-04 3.08E-04 3.08E-04 225 3.08E-04 3.08E-04 3.08E-04 3.08E-04 3.08E-04 225

F4

5 0.554 1.435 2.245 0.365 205 26.129 23.110 25.636 23.648 23.511 262

10 0.706 0.381 0.523 0.144 191 23.146 23.272 22.666 22.643 23.716 267

15 0.330 0.244 0.271 0.611 195 20.049 23.971 24.807 23.695 25.910 266

F5

5 2.76E-11 3.79E-15 1.46E-16 9.72E-20 163 4.23E-11 7.69E-11 7.74E-14 2.74E-13 2.96E-12 271

10 2.12E-14 3.50E-14 1.94E-13 8.66E-17 166 6.26E-14 1.64E-14 9.30E-15 1.84E-14 2.11E-16 273

15 1.88E-14 5.03E-12 6.26E-18 9.16E-15 162 3.79E-16 6.35E-15 1.31E-16 1.35E-16 9.22E-15 264

*F3 is always a four-dimensional function.

a restarting technique should also reduce the time of
execution if the maximum number of physical threads
is not exceeded.

To ensure that all the different implementations
of the algorithm perform at least as good as the
original RFO, the testing results are also presented.
All the different variations of the algorithm with
different configurations of the number of threads,
dimensions, and populations were carried out with

different benchmark functions. The chosen functions
vary in shape and behavior to ensure that the algorithm
is capable to optimize any continuous optimization
problem. The results that were shown can validate all
the presented variations of the RFO as metaheuristic
algorithms.

After analyzing the results of the benchmarking
experiments given by the different implementations of
the algorithm, it can be concluded that parallelization
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Table 8. RFO performance results in parallel with genetic restart to the best method

Function Threads

Global Minimum 10D* Global minimum 30D*

Population
Iterations

Population
Iterations

5 10 15 20 20 25 30 35 40

F1

5 3.89E-04 1.18E-08 8.42E-10 1.40E-09 203 7.50E-01 4.80E-09 2.69E-08 2.93E-04 1.93E-08 392

10 1.02E-06 3.98E-10 1.12E-10 1.80E-08 165 4.68E-01 5.91E-09 1.82E-04 1.65E-09 2.19E-10 325

15 3.54E-08 5.10E-09 1.06E-10 4.48E-08 165 4.66E-01 2.27E-09 4.66E-01 2.92E-10 7.51E-01 311

F2

5 1.13E-01 6.03E-02 7.02E-02 5.05E-02 156 1.65E-04 8.51E-05 5.62E-05 3.75E-03 3.36E-05 273

10 5.54E-02 5.90E-02 9.23E-02 3.69E-02 152 1.46E-04 7.96E-05 6.22E-05 1.45E-14 2.09E-02 265

15 5.78E-02 6.27E-02 5.66E-02 5.17E-02 152 1.20E-04 3.78E-03 5.45E-05 3.99E-05 9.89E-03 258

F3∗

5 3.08E-04 3.08E-04 3.08E-04 3.08E-04 270 3.08E-04 3.08E-04 3.08E-04 3.08E-04 3.08E-04 270

10 3.08E-04 3.08E-04 3.08E-04 3.08E-04 227 3.08E-04 3.08E-04 3.08E-04 3.08E-04 3.08E-04 227

15 3.08E-04 3.08E-04 3.08E-04 3.08E-04 249 3.08E-04 3.08E-04 3.08E-04 3.08E-04 3.08E-04 249

F4

5 0.339 0.366 0.280 0.086 199 25.775 24.788 25.018 19.129 23.515 260

10 0.494 0.850 0.176 0.176 200 23.978 24.294 21.289 21.435 23.324 257

15 1.411 0.162 0.221 0.129 190 23.815 21.884 24.608 21.618 22.793 257

F5

5 3.08E-12 1.10E-13 3.80E-16 9.18E-17 158 1.66E-12 8.06E-14 5.13E-12 9.15E-14 5.91E-14 261

10 7.24E-15 7.38E-12 3.87E-17 9.19E-15 155 4.69E-14 3.84E-14 6.97E-16 5.14E-16 7.24E-16 253

15 2.98E-14 1.99E-14 4.63E-16 1.86E-13 156 5.88E-14 3.10E-17 7.06E-17 2.84E-16 4.22E-17 252

*F3 is always a four-dimensional function.

improves the solutions given by RFO. With multi-
threading, more raindrops can be generated and sat-
isfy the CPU time of the Equation 10. Having more
artificial drops decreases the proportion of stuck drops
and increases the probability of having drops explor-
ing towards the global minimum. And the restarting
techniques allowed raindrops that were heading in
the wrong direction to restart to a position closer to
the global minimum. As a result, all raindrops were
exploring near the global minimum at the end of the
execution.

if (Nthreads <= CPUthreads); then:
t = K ·Ndrops ·Nthreads = K ·Ndrops

(10)

In general terms, simulated annealing restart to the
best was the restarting technique that returned the best
quality solutions. But the behavior of raindrops in some
functions can be benefited by the use of the other
restarting techniques, especially the genetic restart to
the best. In terms of that, possible further investigations
about the hybridization between the different restarting
techniques presented in the paper are worth to be
done. Studying the hybrid restarting techniques as new

approaches for RFO can improve even more the solution
accuracy.

In conclusion, if the purposed parallel approaches
are to be considered as new implementations for RFO,
this nature-inspired algorithm can satisfy the needs
to solve real-world optimization problems. And the
paper demonstrated the benefits of parallelization and
restarting techniques to offer reliable solutions for
metaheuristic optimization algorithms.
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Table 9. RFO performance results in parallel with simulated annealing restart to the best method

Function Threads

Global Minimum 10D* Global minimum 30D*

Population
Iterations

Population
Iterations

5 10 15 20 20 25 30 35 40

F1

5 1.00E+01 6.15E-07 5.34E-09 2.05E-09 331 6.80E-01 3.92E-01 9.41E-01 6.10E-01 5.70E-01 333

10 7.11E+00 5.94E-09 2.30E-09 9.34E-10 303 9.54E-01 6.30E-08 2.09E-01 2.55E-08 1.16E-01 305

15 1.85E+00 2.38E-09 1.62E-09 1.21E-09 299 6.08E-01 2.70E-08 3.15E-01 1.03E-08 8.18E-09 303

F2

5 1.23E-01 7.75E-02 7.88E-02 6.91E-02 200 4.24E-14 3.35E-14 4.84E-15 2.16E-15 1.33E-16 377

10 8.81E-02 6.69E-02 6.35E-02 5.17E-02 193 1.59E-14 2.55E-15 9.33E-16 4.00E-16 0.00E+00 372

15 8.02E-02 6.60E-02 5.61E-02 6.25E-02 194 1.51E-15 7.77E-16 6.66E-17 1.55E-16 0.00E+00 363

F3∗

5 3.08E-04 3.08E-04 3.08E-04 3.08E-04 583 3.08E-04 3.08E-04 3.08E-04 3.08E-04 3.08E-04 583

10 3.08E-04 3.08E-04 3.08E-04 3.08E-04 416 3.08E-04 3.08E-04 3.08E-04 3.08E-04 3.08E-04 416

15 3.08E-04 3.08E-04 3.08E-04 3.08E-04 410 3.08E-04 3.08E-04 3.08E-04 3.08E-04 3.08E-04 410

F4

5 0.489285 0.281047 0.189625 0.184099 324 21.7435131 19.9252982 17.6710526 16.7337463 14.041721 608

10 0.325604 0.782692 0.436424 0.273304 307 21.4397651 19.2571002 17.2151353 18.9404568 16.4706906 495

15 0.282014 0.339173 0.453077 0.113242 312 17.7622947 18.5656311 18.5975076 16.6545613 17.343305 500

F5

5 1.39E-15 7.10E-19 1.89E-18 7.96E-23 206 3.89E-16 8.53E-16 1.36E-16 2.77E-17 2.93E-20 369

10 9.59E-19 1.57E-20 7.54E-23 1.50E-22 207 1.67E-17 2.30E-17 4.23E-17 5.26E-19 5.01E-19 360

15 2.02E-18 2.83E-21 5.91E-22 2.50E-23 205 2.22E-17 7.13E-19 4.63E-18 6.70E-19 2.75E-19 353

*F3 is always a four-dimensional function.
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