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Abstract

This paper presents the overview of the current trends of Big data against the computing scenario from
different aspects. Some of the important aspect includes the Exascale, the computing power and the kind
of applications which offer the Big data. This starts with the current computing hardware constraint against
the need of the rising Big data applications. We highlight the issues and challenges of energy requirement,
software complexity, hardware failure, fault tolerant computing, and communication. As the complexity of
computation is going to rise in the future. The paper also highlights the future direction of Big computing
systems for Bioinformatics, social media, hardware and software requirements, data intensive computation
and then towards GPU era.
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1. Introduction
Big Computing is the future trend in two-fold,
namely, data-intensive computation (Big Data) and
task-intensive computation. Big Data deals with data-
intensive computation while High Performance Com-
puting (HPC) deals with task-intensive computation.
If the scientific world is unable to produce a Exascale
supercomputer (HPC) in the next few years, then the
avalanche of data produced at an Exascale speed cannot
be processed. Currently, the world is producing data of
nearly 2.5 Exabytes per day as reported by the IBM [1].
Hence, the size of Big Data in the near future is going
to reach Exascale. The current Big data technologies are
unable to handle such Exascale data. If the world is not
prepared for the future, then it will lead to shutting
of data processing and loss of information. Storage of
data is not the aim of the technology, but to process the
stored data and utilize the mined knowledge. Hence,
the Exascale Big data require a Big computing system
capable of processing Exabyte sized data.

The future is about Exascale which is depicted
in Figure 1. Hence, no super power country wants
to be left behind in the race of producing Exascale
computational system. Europe has launched EuroHPC
initiative to develop a supercomputer based on
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European technology by 2023 and to become an
independent superpower in the race of Exascale. It
has provided a funding of 1 billion euro till 2020
[2]. Similarly, the United States is investing $1.8
billion USD for development of three Exascale Big
computing systems till 2021-2022 [3]. In TOP500,
United states Summit [4] supercomputer achieved the
first position on June 2018. Summit has 9216 CPU
(Central processing unit) chips and tightly connected
27648 GPUs (Graphics processing Unit). TOP500 [5]
is an event on advanced digital technology that ranks
top 500 powerful computers. For ranking the computer
systems, LINPACK Benchmark [6] is followed which
measure the ability to solve dense linear equations
problem set using floating point arithmetic. For every
country having its own supercomputer is not just
a competition, but answers to many unsolved and
complex problems. Summit is used to study about
human diseases, fusion energy, advanced materials and
many more areas [7].

The article is organized as follows- Section 2 briefs
on Big Data systems. Section 3 explores on High
Performance Computer. Section 4 presents rich insight
on issues and challenges to be faced by Big computing
system in future. Section 5 exposes future possibilities
of ZettaFLOPS systems. Section 6 elaborates future
aspects of Big computing systems. Finally, the article
draws a suitable conclusion in Section 7.
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Figure 1. Big Computing and its enabling technologies

2. Big Data

The current trend of computing scenario has introduced
data explosion in different facets of life. Thus, Big Data
is one of the most popular game changer paradigm. It
has no untouched area, particularly, government sector,
public sector, and private sector [8]. More specifically,
Big Data is applied in business, economy, healthcare,
medicine, bioinformatics, earthquake, weather, stock
market, and many emerging areas. The growing
revenue is amazing in Big Data technology. Therefore,
billion dollars are invested in Big Data technology.
Moreover, the data are to grow at an exponential
pace. In 2009, the Big Data started to grow at an
exponential pace till 2019. However, the data growth
rate will not be exponential after 2020. The data growth
rate will face declination from 2025 to 2030. The
data growth rate will be at a linear pace rather than
exponential pace. However, the growth rate of data is

expected to grow constantly at a linear pace in future.
There is a requirement for Big computing system to
compute massive scale dataset. Big Computing should
redefine Big Data such that every company can be
able to compute their Exabytes of dataset at their own
farmhouse in the near future. Almost, all IT industry
has to face Exabytes of data after 2025. Hence, Big
Data 2.0 will be face off in Big Computation. Big Data
2.0 is yet be conceived. Thus, Industry will completely
transform from Big Data to Big Data 2.0 completely
after 2025. The Big Data 2.0 has to deal with massive
amount which includes exabytes and beyond. Current
state-of-the-art unable to deal with massive amount of
data which scale exabytes or beyond. It is expected
that Big Data 2.0 will be evolved in 2025. As data
are growing at an exponential pace, the Internet of
Everything (IoE) will generate enormous amount of
data as shown in Figure 1. From 2020 to 2025, Beyong
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5G (B5G) will evolve and hence, the Big Data 2.0 is
required to for processing massive amount of data.

3. High Performance Computing
Essentially, the knowledge or information extraction
from the Big data lies in the way how the high
performance computation is carried out. ZettaFLOPS
is the next era for HPC which can perform 1021

floating point operations per second (FLOPS). Current
race is with ExaFLOPS in HPC which can perform
1018 FLOPS. Many countries are participating to get a
position in TOP500. ZettaFLOPS is yet to be achieved.
It is expected to achieve by around 2025. Hence, the
scientific and research world is focusing on creating
a supercomputer/High-Performance Computing (HPC)
which can perform beyond ExaFLOPS. However, there
are many issues that need to be dealt before creating a
ZettaFLOPS system.

4. Issues and challenges
4.1. Energy requirement
A Big computing system approximately requires
processing capability of 50 GigaFLOPS/Watt of power.
Currently, we are unable to produce energy efficient
computation. Energy is consumed by processors,
cooling fans, main board, network infrastructure and
many other components. Moreover, the voltage supply
is reduced to leverage the energy consumption, but
it results in data corruption [9]. Power consumed by
datacenter, and storage infrastructure also add to the
total power consumption. Farmhouse bears more cost
for energy compared to establishing entire farmhouse.
In other scenario, Data are oil of the modern epoch.
Therefore, data are being amalgamated which forms
a data silo. This data silo requires huge processing
power to mine meaningful insight. Data is growing
and therefore, hardware is augmented to the datacenter
to increase scalability. Thus, datacenter requires more
power supplies. Therefore, energy-aware computation
is the next emerging area.

4.2. Hardware failure
Many node failure occurs due to hardware failure.
Currently, suppose a single processor of a system
takes 25 years for mean time to failure. Then, in a
Big computing system with hundred thousands of the
processor has a mean time to failure of 2 hours [10].
The throughput of each component is increased by
using transistor scaling process. Transistor scaling is
embedding more transistors in each computing device.
But decreasing feature size leads to reduction in critical
charge. Critical charge is used to change the logic of
a circuit. So, the change results in data corruption.

It is called soft errors in Big computing systems.
In addition, DRAM (dynamic RAM) errors lead to
undetected errors. Those errors results in incorrect
answer calculation.

4.3. Fault tolerance
Big computing systems have millions of components
with frequent failures. In such cases, the network
should provide efficient fault-tolerant mechanisms.
In software layer, the upper level layer should
provide fault-tolerance mechanisms to make robust
software infrastructure. To devise such mechanism,
deep learning and streaming will play a big role.

4.4. Communication
Communication among the component requires energy.
Hence, reduction in the number of communication
reduces power consumption. But, in the case of Big
computing system, the communication is between
hundreds thousands of components. Hence, reducing
the number of communication is not an easy task.
Currently, zero-round trip time (0-RTT) is emerging
[11]. However, in case of occurrence of failure, it
affects the communication among the components.
So fault-tolerant techniques among the components
are the necessity. From another viewpoint, network
communication among millions of nodes in an
Exascale distributed system need to be efficient
and fault-tolerant. Moreover, reduction of latency is
also dependant of efficient network communication.
Besides, 5G is emerging. 5G will be able to provide 20
GBPS downlink peak data rate, and 10 GBPS uplink
peak data rate. Furthermore, 5G will revolutionize
almost all major industries. Thus, Big Computing
will become a more prominent player in modern IT
industries.

4.5. Software Complexity
In Big computing system, the complexity of system
and application software increases to many folds [12].
First, increasing computational efficiency. New complex
software is required to include finer temporal and
spatial scales. This needs heavy data assimilation
and very complex physics. Second, adding algorithmic
resilience. It eliminates undetected errors. Third,
energy-awareness. It is the most important necessity
because very high energy consumption is making the
existence of the Big computing system impossible.
Fourth, distributed system. Storing Exascale data is not
possible by using a single datacenter. Therefore, the
programming model is required to re-engineered for
the multicore CPU (e.g. data parallel MPI (Massage
Passing Interface) [13]) and another for the accelerator
(e.g. OpenCL [14]). Fifth, memory levels. The hierarchy
of memories increases the software complexity.
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5. ZettaFLOPS
Achieving Exascale, Big computing system requires
efficient hardware to handle millions of computing
per second. Performance of a Big computing system is
evaluated by the number of floating point operations
per second (FLOPS). In this section, some new
approaches are discussed from the hardware aspect.

5.1. Processor
The processing unit is the main heart of the Big comput-
ing system. To design a Big computing system, a high-
performing processor with efficient architectural design
is essential. Currently, high-performing processor are
implementing multicore and SIMD (single instruction
multiple data) techniques to reach the performance
target. Heterogeneous design is also considered. It
combines a general-purpose multicore processor and a
many-core coprocessor. Multicore processor performs
irregular computation and many-core coprocessor per-
forms high throughput computation. Till date, the
Exascale performing processor is not achieved, but
stitching the new processor technology [15] will make
it possible to achieve the Exascale standards. However,
many issues and challenges has to be resolved to achieve
a Big Computing processor. Some issues are (a) Exascale
level performance, (b) power efficient, (c) satisfying the
need of new applications such as deep learning and Big
data analytics. Hence, it is important to realize that a
processor has to balance performance and energy for
Big computing system.

ARM [16] processors are currently gaining popularity
because power consumption is one of the main issues in
designing the Big computing systems. Advanced RISC
Machines (ARM) are embedded in many smart phones
and tablets. ARM [16] uses Restricted Instruction
Set Computer (RISC) instructions. RISC instruction
sizes are fixed, has simple instruction fetch, and
simultaneous access to the opcode and operand. This
makes the control unit design simple and consumes
less power. Moreover, RISC instructions execute in one
clock cycle, which reduces the interrupt latency. Cost
of server-oriented ARM SoC (single on-chip) is less
compared to Intel x86 CPUs. In addition, ARM is easy
to debug. However, ARM has some issues [17] such as
efficiency of ARM reduces in case of strong scalable
vector usage, and the architectural design is complex.
On the other hand, it is estimated that ARM is capable
of replacing x86 and POWER-based servers with some
optimization in Big computing systems and hyperscale
data centers [18].

ExaNest [19] is a computing architecture designed
for Exascale-class systems. It is built upon 64 bit
ARM processors. ARM processors [16] utilize 2-3
times less electricity and performs more computation.
ExaNest reduces power consumption by decreasing:-

data transfer distance, footprint area and cost of
installation, and the number of devices required to
reach performance ambition. The storage devices are
kept close to compute nodes and connected using
fast custom-made interconnects. A single and unified
interconnect is implemented to manage storage and
application traffic. A daughter board contains the
basic compute unit to enhance the performance of
computation. It has 4 Xilinx Ultrascale+ FPGAs, 16
cores (each Xilinx Ultrascale+ FPGA with quad ARM
Cortex-A53 64-bit), every FPGA is attached to 16
gigabytes of DDR4 memory, and an NVM in-node SSD
for storage.

5.2. Storage memory
Many new memory technologies are proposed to
replace DRAM. These technologies should be able to
solve many problems such as less power consumption,
achieving higher parallelism, run-time error handling
and many more. In addition, Big computing system
will have a heterogeneous memory and storage model.
For example, along with DRAM non-volatile memory
(NVM) can be used to increase the efficiency of
I/O operations [20]. Similarly, Phase change memory
(PCM) [21] uses phase-change material to store data.
The phase-change material is either amorphous or
crystalline. It provides superior density compared to
DRAM. Moreover, the PCM can have different degree of
crystallization in different cells. This enables each cell
to store more than one bit [22]. PCM also scale better
compared to DRAM [23]. But it has some demerits such
as it is slower compared to DRAM, has more memory
latency, and performs less write operations to reduce
latency. Another technology is STT-MRAM (Spin-
Transfer Torque Magnetic Random Access Memory)
array [24] based on Magnetic Tunneling Junction (MTJ).
An MTJ is a thin tunneling having a dielectric in
between two ferro-magnetic layers. STT-MRAM are
compatible with the conventional DRAM chips and
can be used to construct byte-addressable memory
devices. It is capable of replacing DRAM. However,
STT-MRAM require quick reads which causes problems
due to small sense margins. During manufacturing,
thermal fluctuations causes high write errors. In Big
computing system, efficiency in the main memory
is mainly required. Hence, an upgraded and highly
efficient main memory will be able to handle and
manage millions of operations per seconds.

SAGE (percipient StorAGe for Exascale data centric
computing) [25] is an Exascale capable hardware. It
has a multi-tiered I/O hierarchy with an intelligent
management software. SAGE has a software stack
based on Unified Object-Based Storage Infrastructure.
The software stack consists of mainly three layers,
namely, Mero, Clovis and third layer consist of tools
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and HPC APIs. Mero is the lowest layer in the
software stack. It provides a platform for distributed
object storage. Mero comprise of a core that supports
basic object storage features. It also does resource
management (locks, caches, extents, etc.). In addition,
Mero provides hardware reliability, for example, RAID
enabled through Server Network Striping. Clovis is
the second layer which is a transactional storage API.
User applications directly use this layer. In the third
layer, SAGE uses some tools for I/O profiling and
optimizing data movement. Apache Flink tools enable
data analytic jobs. SAGE takes the support of POSIX
compliant storage access. SAGE uses HSM to control
data movement in the SAGE hierarchies using the data
usage information. Moreover, SAGE has developed a
new tool called RTHMS [26]. RTHMS analyses parallel
applications to recommend about data placement of
memory objects in the heterogeneous memory systems.
It is designed to handle Exascale operations, however,
many new features can be added to increase the
efficiency.

6. Future direction
The Big computing systems cannot reach its expected
performance level by using the existing methods and
techniques. Making the Big computing system a reality,
new or hybrid approaches are required. In this section,
new approaches that are proposed for Exascale system
is discussed.

6.1. Communications
As depicted in Figure 1, the enabler of Big Computing
is Internet of Everything (IoE). The IoE is backed
by mobile communication. Currently, 5G mobile
communication is being deployed in many countries,
and also, Beyond 5G (B5G) is being developed.
Moreover, it is expected that 6G mobile communication
will be deployed from 2030 and onward. The 6G will
revolutionize modern lifestyle, society, business and
industry, and thus, we will evidence the transition from
Internet of Things (IoT) to IoE [27]. Moreover, there
will be many transitions, for instance, smart devices
to intelligent devices. Also, 6G will be able to deliver
many new technologies, for instance, holographic
communication, five sense communication, intelligent
vehicles, etc., to provide rich Quality of Experiences
(QoE) [27]. Due to 6G technology, IoE will create a
massive small-sized data. These massive small-sized
data will pose a challenge to Big Computing in storing,
processing and managing. Therefore, Big Computing is
to be redefined for massive scale small-sized data.

6.2. Bioinfromatics
With the advancement of DNA sequence extraction
technology (next-generation sequencing) and Big Data

[28] resulted in decreasing the cost of whole genome
sequencing to a reasonable price [29]. However, the
data obtained are unordered small fragments of the
sequence numbered to billions. These data scale to
terabytes. However, with the help of next-generation
sequencing, genomes of all non-human organism will
be obtained in the future and the memory requirement
is in Exascale or beyond. The DNA collecting repository
currently has a size of petabyte [28] such as The Cancer
Genome Atlas (TCGA) and Human Microbiome Project.
The size will increase and reach Exascale in near future.

6.3. Social Media
Today, social media is another area that uses Big Data
technology for storage, processing and analyzing data.
The user stores their messages, photos, music, video,
etc. in the storage provided by the social media service
provider. These data are mostly public so it opened
the door for the businesses to analyze these data and
understand their customers. These data provide the
demography, cultural preferences, likes, dislikes, etc.
These data are analyzed to obtain the type of product
the user prefers. Then, the businesses do advertisement
showcasing the preferred product to the specific user.
Moreover, it allows businesses to make decisions.
Using this information, sentiment of the user are
understood to make it favorable to their product selling.
Social media has also become a common platform to
advertise not only products, but also talent, movies,
music, messages. New movie reviews and comments
of the users can be analyzed to know the reaction of
people and the level of excitement which may lead
to flop or hit of a movie. Similarly, social media is
used to showcase their talent such as dance, singing,
mimicry etc. performed by common people. Along with
data the user using social media is also increasing
with a very high speed. In the near future the data
produced by the social media are also going to reach
Exascale. The business analytic has to be prepared
for the Exascale Big data processing. It should be
intelligent enough to differentiate between the useful
and not useful data. Another important point is in
Exascale era the social media service provider has to
protect their users from cyber bullies, cyber crime, etc.
Protecting clients from damaging, unethical and illegal
data (messages, music, videos etc.). Analyzing and
finding such harmful content along with maintaining
the privacy and integrity of the user is going to be a
difficult task for the social media service provider.

The history is going to repeat itself. When the Big
data era came the traditional methods are unable
to process the Big data. Again, when the Exascale
era will come the Big Data technologies will be
unable to process the data. In such situation, only
storing data will be meaningless. Many business fields
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are gaining profits by using the knowledge obtained
after processing of data. They will suffer huge losses.
As explained earlier controlling the data will also
be difficult. In social media, when the Big data
technologies will not work, then their users data will
be left vulnerable. Hence, Exascale Big Data requires a
Big computing system before the onset of the Exascale
era.

6.4. Future Application
Big computing helps in solving many complex
problems and simulations. Some fields that have
future applications of Big computing have advanced
material science, new energy solution, urban planning,
cosmology, astrophysics and many more [30]. Discovery
of new material with required characteristics in the
field of advanced material science needs solution to
many complex calculations. Known compounds are
combined to obtain the desired properties. These
calculations help in simulating the behavior of the
obtained material in the nature. Currently, classical
simulation and deep learning are used for the research.
And, with Big Computing more complex design
and calculation can be performed. The challenge of
finding an alternative energy sources can also be
solved using Big computing. For example, suppose
in a wind farm the speed of wind is very less.
Then, for continuous production of electricity quickly
the fossil fuel generator is started. Predicting such
events manually is impossible. Such actions need
heavy and Big computation. Big Computing helps
in understanding the chemical composition of the
fossil fuel. This helps in optimizing the energy
production and reducing pollution. Big Computing
also will play an important role in increasing the
quality of life. Big computing processes Exascale data
to optimize infrastructure access and usage choices.
Data is collected from several sources such as sensors,
databases, survey done by government. These data
scale to Exabytes. Big computing analyze and simulate
thousands of scenarios. It obtains new planned city
or restructuring existing large cities. Another field of
science that desperately need Big computing system is
cosmology [31] and astrophysics. This field of science
is interested in the evolution of the universe and
creation, and destruction of stars. Research in such
field heavily depends on complex calculations and
simulations. Hence, requires the help of Big Computing
to unfold the hidden mysteries of the universe.

Initially the focus of the scientist was to obtain
the whole genome to visualize the genome structure.
Recently scientist has realized that apart from storage
there is a requirement for processing of such Exascale
data. After a genome is assembled, computation is per-
formed to analyze the correlation of mutation with the

disease or search for the history of evolution of organ-
isms. But such computation requires pairwise compar-
ison between genomes. This leads to computation to
a quadratic scale. Hence, with moving of Exascale Big
Data the science world move towards Big Computing
capable of Exascale computing. The DNA with its com-
plex network of chemical composition is an example
of Big Graph. Such Big Graph with higher dimension
requires Big Computing to estimate the parameter and
optimize the metabolic model. This metabolic model
helps with discovering important genes that encode
proteins. It is useful in bio-manufacturing and other
industries. Big Computing will also show the path to
personalized medicine. The effect of an administered
drug will be studied using Big Computing. Big Comput-
ing will help with couple drug-induced perturbations
of channel behavior and cellular action potential model.
Moreover, in case of a drug behaviour in patient’s heart.
The MRI images are used to obtain a 3D image of
the heart. But such analysis needs the support of Big
Computing.

6.5. Hardware and Software Requirements

Big computing system at Exascale level requires
both upgraded hardware and software [32]. First
such systems have to solve many issues such as
synchronization, load balancing, failure handling,
and distributed memory management. One main
requisite of Big computing systems is an efficient
design for expressing task dependencies and inter-
task parallelism. The system also requires concurrent
communication among a very large set of tasks.
Moreover, heterogeneous computation components (eg.
CPU and GPU both integrated in a single chip) are also
proposed. However, a heterogeneous target computing
infrastructures arises more issues. Big computing
system have to partition the Exascale data to small
dataset and perform parallel operations numbered to
thousands or millions. Exascale data processing also
requires a new set of languages that are capable of
extensive parallelism. Many languages are developed
based on data-centric methods. Some examples are
X10 [33], UPC [34], and Legion [35]. Correspondingly,
Big computing requires large memory, hardware
supporting large distributed system. MPI is capable to
handle one million cores. This makes MPI eligible to
be included in Big computing systems. Most important
issue the Big computing systems will face is handling
failure. In future the number of compute nodes is going
to increase. And, failure of these nodes will be very
common and within a very small duration, mean time
to failure of 2 hours [10]. To maintain reliability in Big
computing systems, multiple software and hardware
techniques need to be deployed to predict crashes
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and tries to maintain the stability of the system. P2P-
MapReduce [36] is an adaptive MapReduce framework.
It manages Namenode failures, Datanode churn and
does decentralized job recovery. It helps to provide a
reliable MapReduce middleware in a dynamic large-
scale distributed system.

6.6. Data-intensive computation
Big computing systems will be more data intensive
rather than compute-intensive. Hence, more support
is required from the storage systems [37]. The storage
system has to support intensive metadata operations.
Optimized file writing is required. Fault tolerance
should also be handled by some new techniques of
checkpointing. The storage system has to flush the
memory for external storage. And, rolling back of
memory for checkpoint on occasion of failure should
be rare [38]. Because, it will lead to increment in I/O
cost. Jin et al. [39] proposed a multi-tiered dynamic data
staging that integrates both DRAM and SSD. Solid state
disk (SSD) is a non-volatile memory device which is
becoming popular. It is deployed as storage buffers to
cache temporally the checkpoint data [40] or caching
data before writing to disks [41]. The hybrid data
staging is able to store large data volume, which exceeds
the capacity of currently used DRAM. It has other
merits such as it supports code coupling, data sharing
and management, and has adopted an application-
aware data placement mechanism.

It is estimated that the file based data exchange
method will become infeasible to implement in the
Big computing system [42]. The cost of I/O will not
permit to achieve the performance target required by
the Big computing system. Hence, the hardware has
to be efficient to provide a solution to this issue.
Another constraint is data locality. The main reasons
are high latency and insufficient bandwidth. One
possible solution is in-situ data analysis [43]. It means
moving the computation where the data resides. Two
ways are possible to implement in-situ data analysis.
First, unified execution by integration of the data
processing and data production. The data analysis
component access the produced data by making
function calls to their shared memory address space.
It is becoming popular because it helps to decrease
the I/O operation time in data-intensive systems. In
addition, overly decreases the end-to-end workflow
runtime. Second, implementing data staging. In data
staging the workflow coupling is done by converting
some compute nodes into dedicated I/O nodes. Some
applications can use the memory of these nodes for
storage and exchanging intermediate workflow data.
In some framework this mechanism is implemented
such as DataStager [44] and PreDatA [45]. However,
it has many issues. API integrated data staging does

recompiling after the application compilation. Data
staging need extra compute resources.

6.7. GPU era
Compared to CPU, GPU provides more peak perfor-
mance and bandwidth using less power. A Big comput-
ing system with GPU will be smaller compared to non-
GPU system. Therefore, GPU will be the building block
of the Big computing system [46]. A GPU based Big
computing system will require less compute resources
to meet the performance target. Moreover, in case of
more I/O bound operation the GPU will also provide
efficient memory bandwidth. However, in Big comput-
ing system the overall consumption of power has to be
constraint. Hence, more power efficient GPU accelera-
tors are essential. In GPU based Big computing system,
data communication between the host and the GPU is
only through GPU memory. In case of parallel appli-
cation, GPU requires more data access [47]. It results
in less performance and more power consumption. The
power consumption by the GPU is based on many
factors. Moreover, designing energy efficient schedul-
ing for the GPU is difficult. Because the scheduler is
embedded in the device firmware [48]. Separate study
is required to make the GPU more efficient because
knowledge used to study CPU cannot be used on GPU
due to differences in the architecture and organization
[49].

Currently, the idea of combining both the CPU
and GPU is proposed. The best features of both are
combined to further increase the overall performance.
This is termed as heterogeneous Computing (HC).
CPUs are efficient in latency-critical applications and
GPUs are efficient in throughput-critical applications.
The aim of the HC unit will be load balancing
between CPU and GPU to keep both in idle state for
very less duration. It is planned to embedded both
in the same chip. Many similar processors already
exist, such as gem5-gpu [50] and Ivy Bridge [51].
However, integrating both also have some issues such
as [52]: (a) HC can have either discrete or fused
architecture, (b) power consumption (c) data transfer
and memory bandwidth overhead (d) pipelining data
transfer between CPU and GPU (e) efficient algorithm
to include high levels of parallelism (f) partition of
workload to keep both for very less duration in idle
state. The HC is also going to get affected by the issues
they individually pose. In addition, the optimization
techniques implemented on CPU and GPU individually
will not be applicable to HC.

In Big computing system, GPU is going to play
a big role to meet the performance peak. Similarly,
the advancement made in making the CPU efficient
can be utilized to increase the performance. Both
GPU-CPU integration also provides another way in
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achieving an efficient Big computing system. However,
above discussed issues need to be solved before
there are fully implemented. Finally, they have to be
very optimal in power consumption because overall
power consumption has to be less to achieve the Big
Computing reality.

6.8. Energy-aware computation
Power consumption is the most important issue the
Big computing system has to solve. Because the
amount of power the Big computing system consume
is threatening its feasibility [53]. The world is facing
power shortage issue, hence, providing megawatts of
energy to a Big computing system is very impractical.
For example, when fully utilized China’s Tianhe-2
uses 17 MegaWatt. Currently, it is estimated that
a Big computing system on an average requires 20
megawatts of energy. A Big computing system has many
power consumption sources. Some examples are (a)
cooling of the heat produced by the Big computing
system. Its contribution is very high. (b) data storage
systems (c) networking (d) data warehouse having the
Big computing system. They are also restricted to
some specific location due to security and historical
reason. Achieving lower power consumption need
optimization of every components of the Big computing
system. Using power efficient computing components
(eg. ARM). Data transfer also requires power. So,
increasing the locality of data and reducing compute
components to reduce the traffic can be considered.
Reducing the speed automatically when less data need
to be transferred. Variable data transfer speed should
be adopted to reduce energy wherever possible. In
different software components (application, scheduler,
and runtime) energy-conserving mechanisms should be
adopted [20].

ECOSCALE [54] is a novel energy efficient het-
erogeneous hierarchical architecture. It has a hybrid
architecture having many-core+OpenCL programming
environment and a runtime component. It partition
the physical system into many compute nodes. These
compute nodes are interconnected in a tree-like fash-
ion. ECOSCALE defines a contiguous global address
space where nodes are hierarchically interconnected by
an MPI protocol. The compute nodes further reduces
power consumption and provides resilience by imple-
menting a dual stage Memory Management Unit. This
unit maps the reconfigurable accelerators to virtual
address space.

Another power consuming factor is the cooling of
the heat produced by the system. In Big computing
system using traditional methods (Air conditioner) is
not sufficient. Hence, new approaches are proposed
to cool the Big computing system. Liquid cooling
is another solution which provides higher cooling

compared to traditional methods. Some examples
are spray cooling [55], microchannel [56] and jet
impingement [57]. Currently, a hybrid approach is
also proposed which combines cooling liquid and
traditional method. Galileo [58] is a cooling approach
which combines traditional method and rack-level
RDHXs. Rack-level RDHX is mounting liquid-to-air
rear door heat exchangers (RDHX) at rack level. Chen
et al. [59] proposed a novel system that does efficient
cooling by reusing waste heat. The system combines a
plug-type spray cooling system and absorption chiller.

7. Conclusion
The world with a very high speed is moving towards
the Exascale era. The near future of Exascale is a
horrible future, which is capable of impeding the world
with its avalanche of data. And, currently the world
is nowhere near to handle such an era. The first step
in Exascale is producing a Big computing machine.
Before achieving the first step many preparations are
required. Just to reach the first step of supercomputer
many issues and challenges need to be overcome. Some
issues and challenges are energy requirement, hardware
failure, fault tolerance, communication and software
complexity. In this paper, we have presented Big
Computing which is two-fold, namely, data-intensive
and task-intensive computation. Therefore, Exascale
data and task computing will pose many research
challenges and issues which are already discussed in
this paper. Energy-aware computing is next big things
to do for research. Also, 5G will revolutionize entire
industry towards Big Computing. Big Data 2.0 is yet
to conceptualize for very large scale data. Similarly,
ExaFLOP need to be evolved to reach ZettaFLOP. Thus,
we expect Big Computing will be the next big thing.
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