
Mobility-aware dynamic service placement for edge
computing
Gang Liu, Jiawei Wang, Yumin Tian∗, Zhenhua Yang, Zhenping Wu

School of Computer Science and Technology, Xidian University, 710071 Xi’an, China.

Abstract

Edge computing provides capabilities similar to traditional cloud computing at network edge closer to users.
Offloading applications from the cloud to the edge of the network can effectively diminish the latency of
users waiting for applications to improve their quality of service(QoS). Due to the user mobility, however,
the distance between the user and the edge device is constantly increasing, resulting in a degradation of the
user’s QoS. To satisfy the QoS of mobile users, applications should be dynamically migrated to follow the
user mobility.In this paper, we propose a mobility-aware dynamic service placement policy that reduces the
number of virtual machine migrations and diminishes user-perceived latency simultaneously. The proposed
scheme filters out the invalid migration that the user handoffs to another access point before the migration
is completed. The simulation trials demonstrate that our solution improves the QoS of users and reduces the
number of application migrations.

Received on 30 May 2019; accepted on 01 July 2019; published on 29 July 2019
Keywords: Edge computing, quality of service, dynamic service placement, user mobility
Copyright © 2019 Gang Liu et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.13-7-2018.163922

1. Introduction

With the rapid growth of the number of delay-
sensitive applications in the Internet of Things (IoT),
traditional cloud data centers where IoT applications
are placed cannot meet the delay requirements of these
applications since data need to be transferred over
long-distance from the cloud to the end-users (EU). A
long transmission distance increases the response time
and bandwidth consumption, which leads to increasing
service latency and decreasing application availability.
To solve these issues, some investigators proposed to
add an abstraction stratum, usually referred to as the
fog stratum or the edge stratum, between the cloud
and the EUs or end-devices. This stratum provides
computation, storage, and communication resources to
offload applications from the cloud to the network
edge closer to EUs, which can reduce the latency of
users waiting for services. In this case, the response
time of the application is shortened and the bandwidth
consumption of the long distance is reduced since
the application is fulfilled at network edge closer to

∗Yumin Tian. Email: ymtian@mail.xidian.edu.cn

users, which means that the user’s QoS and application
availability are improved.[1]

While cloud-based service placement schemes are
widely studied, it is not feasible to simply apply
cloud-based placement schemes to edge computing
environments. This is because the goal of service
placement and application environment are different
for the most part. The goal of service placement in cloud
computing can be roughly divided into three categories:
(1) services consolidation,[2] which aims to consolidate
the services to a smaller set of physical servers
to maximize resource utilization; (2) performance
improvement,[3] which tries to place the services to a
set of heterogeneous nodes to take advantage of the
heterogeneities on energy efficiency or cost efficiency;
(3) load balancing,[4] which seeks to place the services
to different nodes according to the working status of the
nodes in terms of workload. However, the main goal
of service placement in edge computing is to improve
the QoS, such as reducing the user-perceived latency.
Furthermore, the service placement in edge computing
requires taking into account the limited resources of the
edge device, which is different from cloud devices with
abundant resource. Therefore, it is very meaningful

1

EAI Endorsed Transactions
on Internet of Things Research Article

EAI Endorsed Transactions on
Internet of Things

04 2019 - 07 2019 | Volume 5 | Issue 19 | e2

http://creativecommons.org/licenses/by/3.0/
mailto:<ymtian@mail.xidian.edu.cn>

to design the optimized service placement scheme for
the special scenario of edge computing. Several studies
cope with service placement and resource optimization
in the scenarios of edge computing.[5–7] These efforts
focus on placing services closer to users under limited
resources of fog devices in order to diminish the user-
perceived latency.

However, the papers above did not address the
problem of migration once users’ location changed. Due
to the user mobility, EUs will cause wireless handover
when they move out of the coverage area of an access
point (AP). The distance between the user and the
edge device on which the application is placed is
constantly increasing, which degrades the user’s QoS.
Service migration caused by the user mobility has been
addressed in some papers. Filiposka et al[8] proposed
a service migration pattern that services should be
migrated among fog nodes to follow the user mobility.
However, it is worth noting that frequent migration may
incur additional migration costs, such as time latency
and energy consumption. Therefore, it is necessary to
reduce the number of migrations as much as possible
while satisfying users’ QoS, such as reducing the user-
perceived latency.

The objective of this paper is to design a dynamic
service placement policy that takes into account the
migration cost of frequent migration and improves QoS
for EUs. Specifically, we first explore how to place
services under the limited resources of fog nodes to
minimize user-perceived latency. Second, we construct
a model of the sojourn time of the EUs at AP and the
use of this model reduces invalid migration so as to
improve the user’s QoS. The work in this paper is based
on previous studies,[8] but please note that we propose
a different virtual machine (VM) migration scheme that
takes into account the cost of migration.

Figure 1 illustrates the scenario proposed in this
paper. When a mobile user requests a service within the
coverage of the APA1 at a certain time, it is obvious that
if we want to minimize the latency perceived by users,
the service should be placed on the edge node connected
by A1. Considering the mobility of the user, the mobile
user needs to pass through the areas covered by the A2
and A3. We assume that the user’s sojourn time in A2 is
less than the application migration time from fog node
connected by A1 to fog node connected byA2. Namely,
the user has moved out of the coverage of A2 before the
migration is completed, so this migration is not helpful
for reducing user-perceived latency and we consider
it as an invalid migration. We can see from Section 3
that the user-perceived latency ultimately depends on
the migration latency of the service in our problem.
The presence of these additional invalid migrations
degrades the user’s QoS. This paper improves the user’s
QoS by predicting the sojourn time of a user on the AP,
reducing the number of invalid migrations.

Figure 1. An example of dynamic service placement.

Dynamic service placement in edge computing has
been addressed in the previous studies.[8, 9] However,
we have considered some issues that were rarely noticed
in previous studies. The main contributions of this
paper are summarized as follows:

• The migration of services requires additional
costs. Frequent service migrations will increase
the user-perceived latency and cause network
congestion. How to reduce the number of
migrations on the premise of satisfying users’ QoS
is studied in this paper.

• A dynamic service placement algorithm based
on the sojourn time in each coverage of AP is
proposed. Inspired by [10] and [11], the user
mobility is built as a model of the sojourn
time of the end-users in each coverage of
APs, following an exponential distribution. The
proposed algorithm reduces the user-perceived
latency by reducing invalid migrations that the
migration time is longer than the user’s sojourn
time.

The rest of this paper is organized as follows. Section
2 reviews related work. System models and problem
formulation are presented in Section 3. The dynamic
service placement algorithm which consists of initial
placement of VM and VM migration algorithm is
described in Section 4. The results from our simulation
are discussed in Section 5. Finally, Section 6 concludes
this paper.

2. Related works

For the special environment of edge computing,
the problem of the optimized service placement
has been studied using different methods.Complex
networks,[6] Greedy algorithm,[7] Integer linear
programming,[12] Matching Game,[13] Mixed Integer

2

Gang Liu et al.

EAI Endorsed Transactions on
Internet of Things

04 2019 - 07 2019 | Volume 5 | Issue 19 | e2

Linear Programming[14] and Genetic algorithm[15]
are the common solutions in this field. For instance,
a service placement policy in Fog computing based
on graph partitions is proposed,[6] aiming to improve
the service availability and QoS. The author builds
the fog stratum as a dendrogram using graph
partition method and places the application as far
as possible to the device community with higher
depth that has enough available resources to meet
the demand of an application and that includes the
gateway where the current user is connected. Placing
applications inside device communities with higher
depth can effectively improve the service availability
even in the event of line failures. The results from
their experimental scenarios show their strategy
significantly shortened the application placement
time and effectively improved the service availability
and QoS. But the author assumes that the users are
unalterably connected to the same gateway or AP. The
mobile users and services migration are ignored. In the
work of Souza et al,[7] the problem of service allocation
is modeled as a multidimensional knapsack problem
in order to diminish the allocation delay. The balance
between adaptive load and energy consumption is
dynamically established by the conditions of the
system. Similarly, the solution did not address the
problem of migration once users’ location changed.

In order to satisfy QoS, services should be migrated
to follow the user mobility. Several studies[9, 16, 17]
migrate applications in advance by predicting the
user mobility to reduce the user-perceived latency. For
instance, in the work of Nademnega et al,[16] the
authors propose a mobility-based service migration
prediction scheme. The aim in the proposed prediction
scheme is to obtain the tradeoff between the overhead
and latency. To achieve this goal, this solution
predicts data transfer throughput, handoff time and
VM migration management in advance. However,
it should be noted that the experimental results
of these schemes are based on the fact that they
accurately predict the user’s future information, which
is generally irregular and unpredictable. As accurately
predicting user mobility is not feasible in practice,
Tao et al[18] researched the mobile edge service
performance optimization problem and considered the
cost of frequent migration. The author uses Lyapunov
optimization to decompose long-term optimization
problems into a series of real-time optimization
problems without requiring some prior knowledge such
as user mobility.

In the work of Filiposka et al,[19] the authors first
introduced the concept of community to optimize
resource management in fog computing and proposed
that VMs be allocated to a set of fog devices using the
community relationship of the devices and migrated
as users move. They improved the previous scheme

in follow-up work.[8] The authors implemented a the
"Follow me" VM migration, but did not take into
account the operational costs of frequent migrations.
This scheme is somewhat similar to the one proposed
in this paper, but we consider the problem of migration
cost and reduce the invalid migration by predicting
user sojourn time. The comparison of the results will
be presented in Section 5.

3. System model

In this paper, we consider the hierarchical infrastruc-
ture of the edge as shown in Figure 1. It usually consists
of three stratums: cloud stratum; fog stratum; EUs stra-
tum. Some models in this paper are based on previous
studies. For example, VM placement constraints and
migration delay model in the work of Lera et al[6] are
used to describe our system.

Let E = (1, 2, ..., E) denote the set of edge devices. An
edge device i ∈ E is defined by the available capacities of
its resources Si , which is a vector that typically contains
physical attributes of a machine, such as the number
of CPU, the size of RAM. Container migration is much
more difficult than VM migration.[20] VM migration is
used in this paper. A VM j is defined as the number
of resources it requires RSj . Similar to the definition of
edge devices, it is usually a vector. Here we take a binary
indicator to denote the service placement variable. Let
aij = 1 if VM j is placed in on the edge device i ∈ E, and
aij = 0 else. Note that the placement of VMs is limited
by the resource capacity of the edge device. Therefore,
the resource required for the assigned VMs should be
less than the maximum resource available of the edge
device.

N∑
j=1

aij × RSj ≤ Ri ∀i ∈ E. (1)

In edge computing, the user-perceived latency is
determined by computing delay and migration delay.
Edge devices are also represented by processing
capacity MIPS, measured by millions of instructions
per second. For the sake of simplicity, we assume that
all edge devices in our scenario are isomorphic. It
is also easy for researchers to deploy heterogeneous
edge devices to our scenario. When an application is
identified, the latency perceived by the user depends
primarily on the migration delay. The migration delay
usually consists of propagation delay and transmission
delay of the network. Thus, the migration delay Di,j
between edge devices i and j can be calculated as
follows:

Di,j = P Ri,j +
size
BWi,j

. (2)

where P Ri,j is the propagation delay, BWi,j represents
the network bandwidth and size is the size of the VM to
be transmitted.

3

Mobility-aware dynamic service placement for edge computing

EAI Endorsed Transactions on
Internet of Things

04 2019 - 07 2019 | Volume 5 | Issue 19 | e2

Although the dynamic placement of applications
can improve the QoS, please note that the migration
of applications will bring additional costs. It is very
meaningful to minimize the number of migrations as
much as possible while ensuring the QoS for users. The
user mobility is modeled as a sojourn time model within
the coverage of an AP, which follows an exponential
distribution.[10, 11] We use tuk to represent the sojourn
time of user u within the coverage of AP k.

f (t) =
1
τuk

e
− t
τuk t ≥ 0. (3)

where τuk indicates the average sojourn time. A small
τuk indicates that users frequently handoff between
APs. Thanks to the rapid development of machine
learning, we can get accurate τuk by collecting some
information of users, which will be part of our future
work. Here we assume that τuk follows the Gaussian
distribution.[11]

We propose our optimization objectives based on the
previous models above. From the analysis above, it can
be seen that the user-perceived latency is determined
by computing delay and migration delay. However,
the computing delay is usually determined by the
physical conditions of the device, such as RAM, MIPS,
so optimizing the computing delay is not within our
consideration. We mainly focused on the optimization
of migration delays. This paper introduces the sojourn
time model of the user at the AP to reduce invalid
migration and thus reduce the user-perceived latency.
Considering that there are M users, the total user-
perceived latency can be expressed as follows:

T =
M∑
m=1

(Tm +
|Ωm |∑
i=1

Dei ,ei+1
). (4)

where Tm is the computing delay of the service
requested by user m, Ωm represents the ordered set of
the edge devices where the VM requested by user m is
placed sequentially before the completion of the user
request service and ei is the edge device in Ωm.

In a word, regarding our dynamic service placement
scheme, the goal is to minimize the latency perceived
by users. In particular, the problem can be described as
follows:

min T .

s.t. (1).
(5)

where our objective function is to minimize the delay
perceived by users. Constraint (1) indicates that the
resource required for the allocated VMs should be
less than the maximum resource available of the edge
device.

4. The mobility-aware dynamic service

placement scheme

The dynamic service placement algorithm in this paper
consists of two phases. First, the smallest community
that has enough available resources to meet the user
request and that connects the current AP in use is
selected to instantiate a VM. Second, we mainly dealt
with the problem of migration of edge resources due to
the user mobility. The first phase of initialization of VM
placement problem has been studied,[8] based on which
we put forward a VM migration scheme.

4.1. Initial placement of edge resources

Considering the limited computation, storage, and
communication resources of the edge device, the
available resources provided by a single edge device
cannot meet the resources required to instantiate a
VM. The introduction of the concept of community
can solve the problem of limited resources of a single
edge computing device. By using community detection
algorithms,[21] the edge infrastructure is divided into
a series of overlapping community structures that are
usually composed of more closely connected sets of
edge devices. These device communities provide an
abundant pool of virtual resources compared to a single
edge device. The problem of resource placement in
edge environments is a NP-hard problem that involves
selecting the optimal network entity to deploy user
applications.[22] In our problem, the optimal device
community is chosen to deploy the VM requested by
the user.

Algorithm 1 Algorithm 1 Community-based VM
Placement
Initialization: Input network infrastructure topology.

Calculate device communities C using community
detection algorithms.

End initialization.
1: currentAP ← obtain the AP the user is currently

using.
2: VM ← obtain the VM that needed to be placed.
3: Comms← find the device community that connects

the currentAP from C and sort them from bottom
to top.

4: for comm in Comms do
5: if hasEnoughResources(VM,comm) then
6: placeVMInDevice(VM, comm)
7: updateResource(VM, comm)
8: Break ;
9: if allocationFailInEdge(VM) then

10: placeVMInCloud(VM)

The VM initialization placement algorithm[8] is
used in the first phase of our algorithm. According

4

Gang Liu et al.

EAI Endorsed Transactions on
Internet of Things

04 2019 - 07 2019 | Volume 5 | Issue 19 | e2

to the results of the community detection algorithm,
such as a hierarchical dendrogram, assigning VMs
to edge devices with sufficient resources to deploy
and execute a VM instance can be performed in the
following two steps: 1) Search for the lowest-level
community that connects the AP that the user is
currently using and that has sufficient resources to
deploy the VM requested by the user;2) Assign VMs
to edge devices of the chosen community using some
traditional placement algorithm. Algorithm 1 shows the
pseudocode of the initial placement of edge resources.
More implementation details of the algorithm can refer
to the work of Filiposka et al.[8]

4.2. Migration of edge resources

Due to the user mobility, the user may move out of
the service coverage of the original AP and handoff
to a new AP that is served by a different set of edge
devices. In order to ensure that the user’s QoS is not
degraded, the migration process should be triggered
when the user handoffs to a new AP attached to a
different device community. Considering the existence
of invalid migration, that is, the time that the user stays
at the new AP is less than the migration delay of the VM,
then this migration is not beneficial to improve user’s
QoS. Because before the migration is completed, the
users are likely to leave the coverage of the new AP and
handoff to a different AP. As mentioned earlier, such
an invalid migration increases the migration delay and
degrades the QoS, such as the user-perceived latency.

The pseudocode of the VM migration scheme
proposed in this paper is presented in Algorithm 2.
It is worth noting that even if all the destination
communities connected to the newAP do not have
enough resources, we will not place the VM in the
cloud compared to the initial placement scheme but
forward the request to the origin community where the
original VM was placed. This is because the cost of data
transmission in the fog stratum is much less than the
cost of communication between the fog stratum and the
cloud.[23]

In Algorithm 2, we first determine whether the AP
that the user is using and the AP that the user last
connected is connected to the same edge gateway. If
they are connected to the same edge gateway, the
VM will not be migrated because even if the user
handoffs APs, these APs are served by the same set
of edge devices. The line 10 of the code predicts
how long users will stay in the new AP, following an
exponential distribution as mentioned in Equation (3).
The relationship between migration delay and sojourn
time is considered in line 11. When the user’s sojourn
time is less than the transmission delay, the user may
leave the coverage of the new AP and handoff to a
different AP before the migration is completed. Such

migration increases the delay of transmission, so that
the migration delay increases and degrades the user’s
QoS. In the scheme proposed in this paper, the VM
migration program is triggered only if the sojourn time
of a mobile user is more than the migration delay of VM.

Algorithm 2 Algorithm 2 Virtual machine migration
scheme

1: oldAP ← obtain the AP the user is currently using.
2: newAP ← obtain the AP the user is currently using.
3: Comms← find the device community that connects

the currentAP from C and sort them from bottom to
top

4: if getEdgeGateway(newAP) ==
getEdgeGateway(oldAP) then

5: Return ;
6: for comm in Comms do
7: if hasEnoughResources(VM,comm) then
8: Di,j ← Calculate the transmission delay of

the VM.
9: tuk ← Predict the sojourn time of user u in
newAP k.

10: if Di,j ≤ tuk then
11: placeVMInDevice(VM, comm)
12: updateResource(VM, comm)
13: Break ;

5. Performance evaluation

5.1. Simulation setup

To validate and evaluate the mobility-aware
dynamic service placement proposed in this paper,
MyiFogSim[24] which is an extension of iFogSim[25]
is used to conduct system simulation. MyiFogSim
complements the shortcomings of iFogSim in
supporting the user mobility. Some necessary functions
have been added to simulate mobile user VM migration,
such as AP, the VM migration technology, the migration
strategy and so on.

To perform our simulation, a map with the total
coverage area size of 1200 × 1200m is used. APs with
a coverage range of 100m are evenly distributed on
this map, resulting in a total of 144 APs. These APs
are connected to the edge gateway closest to them.
The results from our simulation scenarios show that
the number of APs connected to each edge gateway
is between 2 and 9. The upload delay between the
AP and the edge gateway is set to 4ms. A total of
25 edge gateways evenly distributed in the map are
generated and each edge gateway is connected to 10
physical hosts. To simplify the problem, we use a scalar
to represent the resources owned by the host such as the
size of the RAM. The RAM size of each physical host is

5

Mobility-aware dynamic service placement for edge computing

EAI Endorsed Transactions on
Internet of Things

04 2019 - 07 2019 | Volume 5 | Issue 19 | e2

set to 250MB. The bandwidth of the network link is set
between 125MB and 250MB and the propagation delay
of all network links is set to 0.5ms.

The virtual machine migration technology used in
the migration process is based on on-live provided
by MyiFogSim. The VM is firstly suspended for non-
live migration.[26] Secondly, the running status will
be wrapped and transmitted to the target site. All
network connections are closed during the migration
and are re-established after the VM is restored. The
virtual machine has a processing capacity of 2000 MIPS.
For the sake of simplicity, we denote the amount of
resources required by the virtual machine as a scalar
such as RAM. Of course, it is also very easy to extend
it into a vector in our problem. We assume that the
amount of RAM required by a virtual machine is 64.
The size of the virtual machine is randomly selected
between 800MB and 1600MB.

We use network usage and application performance
in terms of latency as the criteria for evaluating
schemes. By analyzing the source code of the Myi-
FogSim simulator and combining with the previous
work[27], the calculations of the two criteria are
expressed as follows:

Network usage =

∑
Req

(
T latReq × SizeReq

)
Tsim

. (6)

where T latReq is the network delay between the original
device of request and the target device of the request,
SizeReqis the size of the request being sent and Tsim is
the simulation time. In a word, the network usage is the
sum of the network usages generated by each request
Req within the simulation time Tsim.

In MyiFogSim, each application is modeled as a
processing loop between its modules and the results can
be obtained only if all services are completed. Service
latency is measured as the average time to execute a set
of interdependent services. So the latency is expressed
as the time difference between the point in time when
the first service of the application is started tstart and the
point in time when the last service of the application is
executed tend .

Latency =

∑
Req

(tend − tstart)

|Req|
. (7)

5.2. The impact of sojourn time on proposed

scheme

In the scheme proposed in this paper, the sojourn
time of the user is an important parameter that affects
the experimental results. We explored the effects of
different user’s sojourn time on experimental results.
As mentioned above, it is assumed that the average

sojourn time of users follows a Gaussian distribution
N (µt , σ

2
t).We explored the impact of user sojourn

time on the proposed solution with σt = 1s and µt =
5s, 6s, 7s, 8s, respectively. In the experiment, in order to
simulate the sojourn time of the user at different APs,
the user’s speed is dynamically changed at different
APs. Once the user handoffs to a different AP, the
sojourn time of the user at that AP will be predicted.
According to the predicted time, a mobile user speed
is dynamically calculated. Here it should be noted that
although the speed of a user changes dynamically, the
user’s direction of movement remains the same.

Due to the user mobility, the distance between the
user and the edge device on which the application is
placed is constantly increasing, which increases latency
in data propagation so that the user’s QoS is degraded.
In order to satisfy the user’s quality of service, VMs
should be migrated to follow the user mobility. If the
sojourn time of the user in an AP is not considered,
the user may move out of the coverage area of that
AP before the migration is completed. These invalid
migrations increase the user-perceived latency.

Figure 2(a) shows that when the average sojourn time
of the user is 7s, the total latency perceived by the
user is the smallest. On the contrary, the total latency
perceived by all users is maximized when the average
sojourn time of users is 8s. This means that the user
obtains the best quality of service when the average
sojourn time is equal to 7s. When the average user
residence time is greater than (or less than) 7s, the
number of migrated VMs is greater than (or less than)
the number of VMs migrated with an average migration
time of 7s. Too many VM migrations that include many
invalid migrations increase the VM migration delay and
the users’ QoS are degraded. The number of migrated
VMs is too small to allow the VMs to follow the user
mobility so that the latency perceived by the user also
increases.

In Figure 2(b), the network usage increases with the
increase of the average sojourn time of users when
the number of users is the same. The longer the user
stays, the more VMs are being migrated, resulting in
a continuous increase in network usage. In particular,
considering the extreme case where all the sojourn
times are greater than the maximum transmission
delay of the VM, the proposed scheme at this time
is equivalent to the "Follow me" migration scheme.
When the sojourn time of the user is small enough, for
example, all sojourn times are less than the minimum
transmission delay of the VM, all virtual machines
will not be migrated because the sojourn time of the
user is too small. The solution proposed in this case is
equivalent to the "No Migration" scheme.

6

Gang Liu et al.

EAI Endorsed Transactions on
Internet of Things

04 2019 - 07 2019 | Volume 5 | Issue 19 | e2

3 6 9 12 15 18 21
Number of Mobile Users

50

100

150

200

250

300

350

400

To
ta
l L
at
en

cy
(m

s)

5s
6s
7s
8s

(a)

3 6 9 12 15 18 21
Number of Mobile Users

0

200

400

600

800

1000

Ne
tw

or
k

us
ag

e

5s
6s
7s
8s

(b)

Figure 2. The impact of UEs' average sojourn time
with di�erent number of users.(a) Total service latency
perceived by users. (b) Network usage.

5.3. The comparison of di�erent service

placement schemes

In order to verify the performance of the proposed
scheme, some existing schemes are implemented in
the same simulation scenario. We considered two
representative scenarios for service placement. The first
scenario is where the VM always keeps the initial
assignment position unchanged no matter where the
user moves. The second scenario is that as long as
the user handoff to a different AP that is served by a
different set of edge devices, the service VM is always
migrated to execute on service at the place closest to
the user.[8] In the following, we will use "No migration"
for the first scenario and "Follow me" for the second
scenario.

A comparison of the total latency perceived by users
for different numbers of users is given in Figure 3(a).
Without migration, the latency perceived by users is

3 6 9 12 15 18 21
Number of Mobile Users

100

200

300

400

500

To
ta
l L
at
en
cy
(m

s)

Proposed scheme
Follow me
No migration

(a)

3 6 9 12 15 18 21
Number of Mobile Users

16

18

20

22

24

26

28

30

Av
er
ag
e
La
te
nc
y(
m
s)

Proposed scheme
Follow me
No migration

(b)

3 6 9 12 15 18 21
Number of Mobile Users

0

200

400

600

800

1000

1200

1400

1600

Ne
tw

or
k

us
ag

e

Proposed scheme
Follow me
No migration

(c)

Figure 3. Comparison of three di�erent service place-
ment policies with di�erent number of users. The average
user's sojourn time is 7s. (a) Total service latency
perceived by users. (b)Average service latency perceived
by users. (c) Network usage.

the greatest. The "Follow me" and the scheme proposed

7

Mobility-aware dynamic service placement for edge computing

EAI Endorsed Transactions on
Internet of Things

04 2019 - 07 2019 | Volume 5 | Issue 19 | e2

in this paper effectively diminish the user-perceived
latency by migrating the service VM to the place closest
to the user. Although the "Follow me" scheme migrates
the VM to the edge device closest to the user to execute
the request compared to the "No migration" scheme,
there is still room for improvement. There may be
some migrations in the "Follow me" scenario where
the user handoff to another AP before the migration is
completed. Such invalid migrations are not beneficial
for improving the QoS. The proposed scheme makes
these invalid migrations no longer migrate as the users
move. Experimental results show that the proposed
scheme minimizes the latency perceived by users.
Figure 3(b) shows the average latency for different
schemes. From the figure we can see that the average
latency of the three different schemes are distributed
around 24ms, 21ms and 20ms. The proposed scheme
reduces the average latency of each application by 4ms
compared with the "No migration" scheme; Compared
with the "Follow me" scheme, the proposed scheme
reduces the average latency by 1ms by reducing invalid
migration. The proposed scheme reduces the number of
VM migrations and diminishes the latency perceived by
users simultaneously.

Figure 3(c) shows a comparison of the network usage
of the three different schemes. The results show that the
network usage of the "No migration" scheme is always
far more than the other two service placement schemes.
On the one hand, this is because network usage depends
on network latency between edge devices according to
Equation (6). On the other hand, the service VM always
keeps the initial assignment position unchanged. Due
to the user mobility, users will be farther and farther
from the edge devices where the VM is initially placed.
Long-distance data transmission increases the network
load and the network usage. The migration of virtual
machines follows the mobility of users. Although it
will increase network usage of the transfer VM, the
added overhead of virtual machine transmission is less
than the overhead of long-distance data transmission
according to the experimental results. The proposed
scheme reduces the invalid migration, but it can be
seen from Figure 3(c) that compared with the "Follow
me" scheme, the network usage proposed by this paper
has increased slightly. Please note, however, that the
main goal of the proposed scheme is to reduce the
latency perceived by users. Therefore, it is acceptable
to sacrifice some network usage in our problem.

We further analyze the number of VM migrations and
the number of user handoffs at different APs for the
three different schemes. We define the migration ratio.
The migration ratio is defined as the number of VM
migrations divided by the number of user handoffs in

a simulation experiment.

Migration ratio =
the number of VM migrations

the number of user handof f s
.

(8)
In Figure 4, the migration ratios for the three

different scenarios are presented. In the strategy of "No
migration", the VM migration ratio is 0. This is because
the VM always keeps the initial assignment position
unchanged. In the Follow me policy, the VM migrates
as the user moves. The migration ratio at this time
should ideally be 1 but the experimental results show
that the migration ratio is distributed around 0.2. This
is because the lowest-level device community connects
multiple different APs. When the mobile user handoff
these APs connected to the same edge gateway, the
VM migration process will not be triggered. With the
increasing number of users, the migration rate of the
"Follow me" scheme will converge at around 0.2 and
the proposed scheme will converge at 0.15. We have
verified the performance of the proposed scheme with
a small number of mobile users, but we can foresee that
our scheme is still efficient even with a large number of
users.

3 6 9 12 15 18 21
Number of Mobile Users

0.0

0.2

0.4

0.6

0.8

1.0

M
ig

ra
tio

n
ra

tio

Proposed scheme
Follow me
No migration

Figure 4. Comparison of the migration ratio with
di�erent number of users. The average user's sojourn
time is 7s.

6. Conclusions

In this paper, we study the placement and migration
of VM in edge computing environments under the
constraints of limited edge device resources. We also
research the operational cost of frequent migrations.
Based on this, a mobility-aware dynamic service
migration policy is designed to improve users’ QoS and
reduce the number of VM migrations simultaneously.
Considering the migration delay of the VM and the
sojourn time of the user within the coverage of an
AP, the proposed scheme reduces the perceived service

8

Gang Liu et al.

EAI Endorsed Transactions on
Internet of Things

04 2019 - 07 2019 | Volume 5 | Issue 19 | e2

latency of users by filtering out invalid migrations.
Simulation results show that the dynamic service
placement algorithm proposed in this paper effectively
improves the user’s QoS compared with other schemes.
However, the proposed scheme only considers the
placement and migration of a VM and supposes that
τuk follows the Gaussian distribution, which makes it
unsuitable to be widely used in practice. More precisely,
the fact is that the service in the scenario is often
composed of multiple VMs and the sojourn time of the
user is very complicated. Therefore, in our future work,
the placement and migration of complex applications
with multiple VMs will be studied. Moreover, to better
apply the proposed scheme to practice, we will study
how to obtain more reliable and accurate user sojourn
time with the help of machine learning.

Acknowledgement

This work was partly supported by the Shaanxi Key
R&D Program (Grant No. 2019ZDLGY13-01) and the
Science and Technology Projects of Xi’an, China (Grant
number: 201809170CX11JC12).

References

[1] Zhang J, Wang X, Huang H, and Chen S. Clustering
based virtual machines placement in distributed cloud
computing. Future Generation Computer Systems 2017; 66:
1–10.

[2] Jiang JW, Lan T, Ha S, Chen M, and Chiang M. Joint VM
placement and routing for data center traffic engineering.
In: IEEE. ; 2012: 2876–2880.

[3] Xu F, Liu F, Jin H, and Vasilakos AV. Managing
performance overhead of virtual machines in cloud
computing: A survey, state of the art, and future
directions. Proceedings of the IEEE 2013; 102(1): 11–31.

[4] Bharathi PD, Prakash P, and Kiran MVK. Energy efficient
strategy for task allocation and VM placement in cloud
environment. In: IEEE. ; 2017: 1–6.

[5] Jia M, Cao J, and Liang W. Optimal cloudlet placement
and user to cloudlet allocation in wireless metropolitan
area networks. IEEE Transactions on Cloud Computing
2015; 5(4): 725–737.

[6] Lera I, Guerrero C, and Juiz C. Availability-aware service
placement policy in fog computing based on graph
partitions. IEEE Internet of Things Journal 2018; 6(2):
3641–3651.

[7] Souza VB, Masip-Bruin X, Marin-Tordera E, Ramírez W,
and Sanchez S. Towards distributed service allocation in
fog-to-cloud (F2C) scenarios. In: IEEE. ; 2016: 1–6.

[8] Filiposka S, Mishev A, and Gilly K. Mobile-aware dynamic
resource management for edge computing. Transactions
on Emerging Telecommunications Technologies 2019; 30(6):
e3626.

[9] Yang L, Cao J, Liang G, and Han X. Cost aware service
placement and load dispatching in mobile cloud systems.
IEEE Transactions on Computers 2015; 65(5): 1440–1452.

[10] Wang D, Liu Z, Wang X, and Lan Y. Mobility-Aware Task
Offloading and Migration Schemes in Fog Computing
Networks. IEEE Access 2019; 7: 43356–43368.

[11] Liu X, Zhang J, Zhang X, and Wang W. Mobility-aware
coded probabilistic caching scheme for MEC-enabled
small cell networks. IEEE Access 2017; 5: 17824–17833.

[12] Naas MI, Parvedy PR, Boukhobza J, and Lemarchand
L. iFogStor: An IoT Data Placement Strategy for Fog
Infrastructure. In IEEE ICFEC. ; 2017.

[13] Gu Y, Saad W, Bennis M, Debbah M, and Han
Z. Matching theory for future wireless networks:
fundamentals and applications. IEEE Communications
Magazine; 53(5): 52-59.

[14] Ascigil O, Phan TK, Tasiopoulos AG, Sourlas V, Psaras
I, and Pavlou G. On Uncoordinated Service Placement in
Edge-Clouds. In IEEE CloudCom 2017: 41-48.

[15] Wen Z, Yang R, Garraghan P, Lin T, Xu J, and Rovatsos
M. Fog Orchestration for Internet of Things Services. IEEE
Internet Computing 2017; 21(2): 16-24.

[16] Nadembega A, Hafid AS, and Brisebois R. Mobility
prediction model-based service migration procedure for
follow me cloud to support QoS and QoE. In: IEEE. ; 2016:
1–6.

[17] Aissioui A, Ksentini A, Gueroui AM, and Taleb T. On
enabling 5G automotive systems using follow me edge-
cloud concept. IEEE Transactions on Vehicular Technology
2018; 67(6): 5302–5316.

[18] Ouyang T, Zhou Z, and Chen X. Follow me at the
edge: Mobility-aware dynamic service placement for
mobile edge computing. IEEE Journal on Selected Areas in
Communications 2018; 36(10): 2333–2345.

[19] Filiposka S, Mishev A, and Gilly K. Community-based
allocation and migration strategies for fog computing. In:
IEEE. ; 2018: 1–6.

[20] Pahl C, and Lee B. Containers and clusters for edge cloud
architectures–a technology review. In: IEEE. ; 2015: 379–
386.

[21] Rosvall M, Axelsson D, and Bergstrom CT. The map
equation. The European Physical Journal Special Topics
2009; 178(1): 13–23.

[22] Lera I, Guerrero C, and Juiz C. YAFS: A simulator
for IoT scenarios in fog computing. arXiv preprint
arXiv:1902.01091 2019.

[23] Mouradian C, Naboulsi D, Yangui S, Glitho RH, Morrow
MJ, and Polakos PA. A comprehensive survey on fog
computing: State-of-the-art and research challenges. IEEE
Communications Surveys & Tutorials 2017; 20(1): 416–464.

[24] Lopes MM, Higashino WA, Capretz MA, and Bittencourt
LF. Myifogsim: A simulator for virtual machine migration
in fog computing. In: ACM.; 2017: 47–52.

[25] Gupta H, Vahid Dastjerdi A, Ghosh SK, and Buyya
R. iFogSim: A toolkit for modeling and simulation
of resource management techniques in the Internet of
Things, Edge and Fog computing environments. Software:
Practice and Experience 2017; 47(9): 1275–1296.

[26] Zhang F, Liu G, Fu X, and Yahyapour R. A survey on
virtual machine migration: Challenges, techniques, and
open issues. IEEE Communications Surveys & Tutorials
2018; 20(2): 1206–1243.

[27] Guerrero C, Lera I, and Juiz C. A lightweight
decentralized service placement policy for performance

9

Mobility-aware dynamic service placement for edge computing

EAI Endorsed Transactions on
Internet of Things

04 2019 - 07 2019 | Volume 5 | Issue 19 | e2

optimization in fog computing. Journal of Ambient
Intelligence and Humanized Computing 2019; 10(6): 2435–
2452.

10

Gang Liu et al.

EAI Endorsed Transactions on
Internet of Things

04 2019 - 07 2019 | Volume 5 | Issue 19 | e2

	1 Introduction
	2 Related works
	3 System model
	4 The mobility-aware dynamic service placement scheme
	4.1 Initial placement of edge resources
	4.2 Migration of edge resources

	5 Performance evaluation
	5.1 Simulation setup
	5.2 The impact of sojourn time on proposed scheme
	5.3 The comparison of different service placement schemes

	6 Conclusions

