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Abstract 

In modern days, cyber networks need continuous monitoring to keep the network secure and available to legitimate users. 
Cyber attackers use reconnaissance mission to collect critical network information and using that information, they make an 
advanced level cyber-attack plan. To thwart the reconnaissance mission and counterattack plan, the cyber defender needs to 
come up with a state-of-the-art cyber defense strategy. In this paper, we model a dynamic deception system (DDS) which 
will not only thwart reconnaissance mission but also steer the attacker towards fake network to achieve a fake goal state. In 
our model, we also capture the attacker’s capability using a belief matrix which is a joint probability distribution over the 
security states and attacker types. Experiments conducted on the prototype implementation of our DDS confirm that the 
defender can make the decision whether to spend more resources or save resources based on attacker types and thwart 
reconnaissance mission. 
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1. Introduction

The increasing rate of cyber networks and network devices 
has brought attention to make more resilient in terms of the 
security of the devices as well as cyber networks. The static 
nature of these cyber networks let the attacker perform 
reconnaissance activity and identify potential 
vulnerabilities. Using the reconnaissance mission, the 
attacker collects critical network information such as 
network topology, open ports, and services running on 
those ports, and unpatched vulnerabilities. Having that 
critical information increases the probability to penetrate 
the network and gaining access to critical infrastructure. As 
reported by the Department of Homeland Security’s 
Industrial Control Systems Cyber Emergency Response 
Team (ICS-CERT), attacks on critical infrastructure 
sectors (such as manufacturing, energy, communication, 
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water, and transportation systems) have remained 
persistent over the past few years, with 245 in 2014, 295 in 
2015, 290 in 2016 and 310 in 2017 [43]. Methods and 
techniques have developed to detect and mitigate those 
attacks. Among those approaches, one technique is to patch 
the vulnerability upon availability of patching. It is 
typically time consuming and costly for a vendor to 
discover and develop the patch. This significant delay puts 
the cyber networks being operational without patching the 
vulnerability, which is very risky. To address this issue, 
one need to develop an active form of cyber defense system 
which not only secure the cyber networks but also maintain 
the system availability to the trusted users.  

To develop such a system is difficult in presence of 
active attackers in operational system because it can inject 
series of exploits simultaneously. To model these 
complexities, researchers have proposed graph-based tool 
such as attack tree/graph. Unfortunately, the attack graphs 
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can be enormously large for a medium-size cyber network 
thus makes difficult to apply in an enterprise network. To 
get rid of this issue, authors in [5] made an assumption on 
the attacker’s behavior, named monotonicity, which states 
that the success of the previous exploit will not interfere 
with the success of future exploit. With the help of this 
assumption, the significant amount of information from the 
attack graph can be reduced and make a useful attack 
graph. 

It is always beneficial for a defender if it has prior 
information on how an attacker can infiltrate the cyber 
network. This knowledge will help the defender to take 
appropriate actions to thwart any cyber-attack. One of the 
difficulties with this approach is how to quantify the 
attacker’s progression at any given time. The attacker’s 
status is constantly changing based on the defender’s 
action. Also, the defender has less information about the 
attacker’s actual strategy and actions. The defender has 
only access to a stream of noisy security alerts from 
intrusion detection system (IDS), and the security alerts 
suffer from a high rate of false alarm. The defender’s action 
affects the system availability while maintaining the 
security of the network. So, the defender needs to make a 
trade-off between the availability cost and security cost.   

In this paper, we aim to deceive the attacker with a fake 
network while maintaining the trade-off between 
availability and network resiliency. To do so, we use an 
exploit dependency graph to capture the attacker’s 
progression throughout the network. We represent the 
exploit dependency graph as a hypergraph where nodes 
represent security conditions and directed hyperedges 
represent exploits. Each security conditions can be either 
true or false. When the condition is true that means the 
attacker possesses a certain capability. At any given time 
and certain security states, attacker uses certain capabilities 
to exploit the vulnerability. We incorporate these attacker 
capabilities in our model to capture different kinds of 
attacker behavior. Capturing attacker capabilities can help 
the defender to save or enforce more resources to prevent 
the attacker from reaching the goal. A TCP reset can block 
an attacker from further penetrating if the attacker is a 
novice attacker, but the action will not work for a more 
knowledgeable attacker. This is why it is very critical for a 
defender to learn the attacker's capability while the 
defender is making a counterattack plan. To do so, the 
defender maintains a belief matrix which is the joint 
probability distribution over attacker type and actions. In 
this paper, we defined attacker types based on the different 
level of attacker knowledge, aggression, and stealthiness. 
The belief matrix is constructed in such a way that it is 
consistent with all available defender’s information such as 
security alerts, previously deployed action. Defender 
summarizes all this information make an optimal action 
which all balance the trade-off between security and 
availability. Taking optimal action casting as a partially 
observable Markov decision process (POMDP). 

To resolve the scalability issue due to the high 
dimensionality of the defense problem, we use an online 
algorithm based on the partially observable Monte-Carlo 

planning [17], which simulates future possible state 
trajectories from the current belief to evaluate the 
effectiveness of various defender actions.  

We use Software Defined Networking (SDN) to deceive 
the attacker with a mix of true and false information in the 
reconnaissance phase. These crafted information helps to 
change the network view perception from attackers’ point 
of view. Defender can analyze malicious traffic and 
differentiate the traffic from trusted user to malicious user 
using SDN. In this way, a trusted user can take seamless 
services while the defender is brawling with the attacker.  

As our main contribution in this paper, we develop a 
dynamic deception system (DDS) to deceive the attacker 
with the fake network while capturing attacker capabilities 
and maintaining the trade-off between availability cost and 
security cost. The key contributions of this paper are 
summarized below, 

(i) To evaluate our deception goal with the fake network,
we design and implement our DDS based on SDN.
With the combined functionality of our deception
server, online deception algorithm, and SDN
controller, we achieve the cyber network deception
while maintaining the network availability to the
trusted users.

(ii) By incorporating attacker capabilities in our model,
we show that the defender can decide when to spend
resources or save resources. By simulating our model,
it is evident that if the attacker’s knowledge level is
high where aggression and stealthiness level is
moderate, the defender should spend more resources
than the opposite one.

(iii) Using SDN and fake network, we show that using our
approach there is less infected real network hosts than
without our approach. This is because, the defender
successfully steers the attacker towards the fake
network by blocking vulnerabilities.

2. Related Work

Researchers have proposed cyber deception approaches 
that introduce fake networks by varying system 
characteristics [38], manipulating attacker's probes [36, 37] 
and introducing virtual network interface controllers and 
route mutation [39]. These approaches are focused on 
introducing fake nodes from an attacker's point of view and 
assume a static environment and attacker and defender 
strategies.  

In [38], authors introduce systems that change the view 
of a cyber network by obscuring some system 
characteristics where [36] alters the system view by 
manipulating attackers’ probe. Trassare et al. [37] use 
traceroute function to deceive the network reconnaissance 
attack. In Dunlop et al. [42], authors propose a mechanism 
where they hide IPv6 packets to achieve anonymity. They 
added a virtual network interface controller and shared a 
secret with all hosts. To defend against eavesdropping and 
DoS attack Duan et al. [39] presents a Random Route 
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Mutation Technique to change the networks data flow. 
Reconnaissance tools such as Nmap or Xprobe2 collects 
critical network information like host OS or service by 
analyzing the packet received after probe. 

In recent publications [29], [30], and [31] authors 
present a system that performs dynamic address space 
randomization based on Software Defined Networking 
(SDN). These approaches turn out an effective one, but 
they suffer from high network overheads and also cannot 
detect the malicious scanning source where we achieve 
using our dynamic deception system.  

The authors in [40], propose a defense system based on 
IP address randomization and placement of network 
decoys. In their system, they only consider the scanners 
from the Internet but in our system, we consider insider 
scanners as well as the malicious scanner from the internet. 

 All these approaches in cyber deception area tend to 
change the network view from an attacker’s point of view. 
However, they all failed to answer the question of what if 
the attacker enters the network where unpatched 
vulnerabilities are present, and patches are not released yet. 
A network administrator cannot just let the attacker 
compromised the system. As we mentioned earlier, the 
attacker always has time-advantage over unpatched 
vulnerability where vulnerability exposure window is high. 
A defender has to take defensive action while making a 
tradeoff between availability and security. Our approach 
not only changes the network view but also influence the 
attacker to take the path toward fake networks while 
keeping availability and security at a satisfactory level. 

In [10], the authors use the dependency graph to provide 
solutions for the cyber defense system. The issue with that 
approach is network availability to the trusted user because 
attacker always starts with the same static network and 
defender have to take actions (system modification induces 
blocked vulnerabilities) which will have a more significant 
impact on availability. We solve this issue by introducing 
fake networks along with real networks. Our approach will 
help defender maintaining the network service availability 
and collect critical intelligence information about the 
attacker. 

3. Overview

3.1 Background 

Exploit Dependency Graph 
The concept of attack trees and graphs were developed with 
a goal in mind that one can study all possible sequences of 
exploits that an intruder can take to infiltrate a network and 
reach its goal(s) state. Attack graph consists of vertices 
(system states) and edges (transition relations) where each 
vertex connect each other via exploits. To generate an 
attack graph, one has to enumerate all system states. In this 
process, the attack graph quickly grows exponentially. 
There are several attack graph applications in network 
security such as vulnerability analysis, intrusion alert 

correlation, and attack response system. Attack graph can 
be applied in both penetration testing and network 
hardening.   

Significant progress has been made in generating attack 
graph automatically [1], [2], [3]. Along with the network 
size, attack graphs grow exponentially which makes the 
visualization nearly impossible for a human to understand 
what’s going on. To deal with this complexity, [4] 
proposed a system where one can reduce the attack graph 
information without loss of any generality and create a 
graph which grows quadratically. Authors in [5] made an 
assumption regarding the attacker’s behavior which allows 
to simplify the attack graph and also reduce the attack 
information. The assumption named as monotonicity [5], 
states that the success of one exploit does not interfere with 
the attacker’s future ability to exploit. With the help of this 
assumption, one does not need to enumerate all security 
states, rather can create exploit dependency graph 
describing how security conditions relate to exploit. The 
advantage of exploit dependency graph is that it can be 
easily generated for a large network where the 
corresponding attack graphs would be obstinately very 
large to generate. In [5], the authors construct a graph 
where nodes represent security condition, and edges 
represent exploit, which termed as exploit dependency 
graph. Security conditions are the atomic fact that they can 
be either true or false and exploits relate to security 
conditions via preconditions and postconditions. The 
approach taken by Ammann et al. in [5] is similar we adopt 
in this paper to do the modelling of attack pathways using 
exploit dependency graph. The edges in exploit 
dependency graph relates security conditions in such a way 
where a single exploit might have multiple preconditions 
and multiple postconditions. Such edges which are 
connects two sets of nodes rather than a pair of nodes we 
called it hyperedges. The security conditions present in [5] 
are a mix of different attributes which is true under normal 
network configurations termed as initial conditions. During 
an attack, attributes can be made true which is attack 
conditions. With this issue, the initial conditions are set to 
be always true whether a network is subject to be an attack 
or not. For this reason, we take a slightly modified 
definition from [6] where it does not include conditions 
representing the normal network configuration explicitly 
rather assume that the set of conditions solely consists of 
attack conditions. This modification allows setting the 
conditions of a network false which has not been subject to 
an attack.   

POMDP Approach 
A partially observable Markov decision process (POMDP) 
is a process which connects unobservant system states to 
observations. POMDP is a combination of a Markov 
decision process (MDP) to model system dynamics with a 
hidden Markov model. The reward from the POMDP 
approach depends on an agent’s action and sequence of 
system state where the agent cannot see the system state 
directly rather, the agent makes an observation. Based on 
the observation agent construct a belief state which is a 
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probability distribution over system states. Based on the 
belief matrix agent call the optimal action for each belief 
state. The advantage of POMDP is that its general enough 
to model different kinds of real-world problem such as 
robot navigation problem, cybersecurity, machine 
maintenance, and planning issue with uncertainty. 

A discrete POMDP can be formally described as a 7-
tuple ( 𝑆, 𝐴, 𝑇, 𝑅, Ω, 𝑂, 𝛾 ), where 

• 𝑆 = {𝑠,, 𝑠-, … , 𝑠/} is a set of states,
• 𝐴 = {𝑎,, 𝑎-, … , 𝑎/} is set of actions,
• 𝑇	is a set of conditional transition probabilities
𝑇(𝑠4	|	𝑠, 𝑎) for the state transition 𝑠 → 𝑠4,

• 𝑅: 𝑆 × 𝐴 → ℝ is the reward function,
• Ω = {𝑜,, 𝑜-, … , 𝑜<} is a set of observations,
• O is a set of conditional observation probabilities
𝑂(𝑜|𝑠4, 𝑎), and

• 𝛾 ∈ [0,1] is the discount factor.

At each time step, the system is in some state 𝑠 ∈ 𝑆 and 
for the action 𝑎 ∈ 𝐴 taken by the agent the system state 
transitioned from state 𝑠 to 𝑠4 ∈ 𝑆 with probability 
𝑇(𝑠4	|	𝑠, 𝑎). While transitioning state, at the same time 
agent receive an observation 𝑜 ∈ Ω with an observation 
probability 𝑂(𝑜|𝑠4, 𝑎). At last, the agent receives the 
reward 𝑅(𝑠, 𝑎). The ultimate goal is to choose an action in 
each belief state which will maximize the expected future 
discounted reward, 

𝐸 DE𝛾F𝑅(𝑠F, 𝑎F)
G

FHI

J. 

POMCP Framework 
In large and fully observable domains, Monte-Carlo Tree 
Search (MCTS) has tremendous performance in online 
planning [6]. MCTS is a new approach to do online 
planning. It overcomes the curse of dimensionality by 
taking only sample states instead of taking the whole 
possible system states. MCTS requires a black box to 
simulate where the problems are too complicated or too 
large to represent the probability distribution. It has another 
advantage in terms of prior domain knowledge. In 
estimation the potential, MCTS uses the random simulation 
for long-term reward where it plans over the long horizon 
and often effective in estimation the potential where any 
prior domain knowledge or heuristics search is not present 
[7].   

The authors in [6] extended MCTS to partially 
observable environments (POMDPs). Other planning 
algorithms, i.e., value iteration [8] suffers from two 
important issues referred to as scaling and history. For 
example, for n-states value iteration algorithm creates n-
dimensional belief state, and it must evaluate all history 
which is exponential in the horizon.  

The search algorithm in [6] constructs a search tree of 
histories which is online-based. The value of history is 
estimated by the node of the search tree using Monte-Carlo 

simulation. The start space in each simulation is sampled 
from the current belief state, and transition and 
observations are sampled from the black-box simulator. 
The authors in [6] showed that for correct belief state the 
planning algorithm converges to the optimal policy for any 
finite horizon POMDP. Monte-Carlo simulation also can 
be used in updating the agent belief state [6]. The important 
feature of Partially Observable Monte-Carlo Planning 
(POMCP) algorithm is that it uses the same set of Monte-
Carlo simulation for both trees search and belief state.   

3.2 Threat Model and Assumptions 

The model is based on a single attacker who is trying to 
penetrate the network where we are going to capture the 
attacker’s capability. Without considering the attacker’s 
capability, a security model is a waste of resource or lack 
of resource. Based on the attacker’s capability, the 
defender is going to block vulnerabilities to thwart the 
attacker and drive the attacker towards the fake network. 
The defender is able to be blocking exploits by doing 
system modification. Those system modifications have an 
effect on normal system operation. This is why the 
defender needs to estimate the true attacker’s capability. 
For a novice attacker, might be it is sufficient to apply some 
countermeasure rather than blocking a vulnerability. In our 
previous paper [9], we assumed attacker capabilities; 
however, in this paper, we incorporated attacker 
capabilities to do the dynamic security model which is 
presented in Fig. 1.   

Figure 1. Dynamic security model 

There are two main primary objectives of our dynamic 
security model i.e., 1) quantify the security state and, 2) 
taking the optimum deception action based on the attacker 
capabilities. To quantify the security, we define the 
security state as a current level of attacker progression. To 
capture the attacker progression, we use an exploit 
dependency graph [10] which is a directed acyclic 
hypergraph, H = (N, E) consists of nodes and hyperedges. 
Nodes represent a set of security conditions 𝑁 =
{𝑐,, 𝑐-, … , 𝑐/} and hyperedges represent a set of exploits 
where 𝐸 = {𝑒,, 𝑒-, … , 𝑒/}. The security conditions in the 
graph can be either true or false. When the security 
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condition is in true state it means attacker has a particular 
set of capabilities whereas false value represent attacker 
does not possess any condition from hypergraph H. For an 
example, if the attacker possesses a condition that could be 
led to a conclusion that an attacker may build the trust 
relationship between two hosts or the attacker reached the 
goal state. To specify the goal state, we define a parameter 
to represent the goal node 𝑁<

O ⊆ 𝑁,𝑁Q
O ⊆ 𝑁 where 𝑁<

O and 
𝑁Q
O are real and fake network goal node, respectively. This 

is the node defender wants to protect from an attacker. 
Defender’s main objective is to protect the 𝑁<

O and drive 
the attacker towards 𝑁Q

O. 
Each exploit from hyperedges has two conditions, 

termed as 𝑁RS(𝑝𝑟𝑒) and 𝑁RV(𝑝𝑜𝑠𝑡). We assume based on 
[10] that, to attempt an exploit 𝑒R an attacker needs to set
true all of the preconditions of that exploit termed as 𝑗 ∈
𝑁RS. There are some exploits without having any
preconditions, 𝑁RS = ∅, termed as initial exploits and
denoted by 𝐸I. To attempt initial exploits attacker does not
need any prior capabilities (maliciously enabled). When an
attempt to an exploit is successful, all of its postconditions
become enabled and let the attacker penetrate more into the
network.

Figure 2. A sample Exploit Dependency graph with a 
real network (left) and a fake network (right). The above 

dependency graph for real & fake network H = (N,E) 
consists of 𝑛[\ = 10 security conditions, 𝑛]\ = 11 

exploits (in the form of hyperedges), 𝑛[^ = 13 security 
conditions and 𝑛]^ = 11 exploits respectively. Triple-

encircled nodes are representing as goal conditions 𝑁<
O =

{𝑐,I}	𝑎𝑛𝑑	𝑁Q
O = {𝑐,-, 𝑐,a}. 

In Fig. 2, we present an exploit dependency graph which is 
created using Topological Vulnerability Analysis (TVA) 
[11] tool to explain the model and the results. Whenever a
condition is enabled, it means an attacker is having a
particular set of capability where the current security state,
𝑠F, describes the set of capabilities of the attacker. A
security state, 𝑠 ⊆ 𝑁, is called a feasible security state if for
every condition 𝑐b ∈ 𝑆 there exists at least one exploit 𝑒R =

(𝑁RS, 𝑁RV) ∈ 𝐸 such that 𝑐b ∈ 𝑁RV𝑎𝑛𝑑	𝑁RS, 𝑁RV ⊆ 𝑠 [10] and 
set 𝑆 = {𝑠,, … , 𝑠/} represents the state space for this model. 
In this model, we assume defender will act first and taking 
actions which eventually interfere with the attacker’s 
progression and reduce the attack surface. The security 
state evolves probabilistically as a function of defender’s 
and attacker’s action [10]. We also assume that the 
defender has the capability to take action in effect of 
blocking vulnerabilities. This action includes changing 
network configuration or shut down a port or any active 
services. But in reality, the defender is not able to block any 
individual vulnerability as per authors in [10], rather 
defender’s action induces a set of blocked vulnerabilities. 
On the other hand, sometimes defender’s action is not able 
to block any vulnerability. To capture this behavior, we 
assume that the defender has some certain set of actions. 
The action which will block the vulnerability and influence 
an attacker to choose a different network path. So, we 
assume that the defender can change the network 
configuration on the fly based on the attacker’s action to 
prevent vertical movement. The space of defender’s 
available action set is represented by 𝑈 = {𝑢I, 𝑢,, … , 𝑢/}. 
Here, 𝑢I represents defender’s null action which 
eventually means the defender will not block any exploit. 
The remaining actions from the set of 𝑈, signifies the 
network changes which will induce a set of blocked 
exploits. Each action associated with the set of blocked 
exploits influences the attacker to seek the available paths. 
Defender’s action will have an impact on the availability of 
the system to trusted users. So, it is a goal to a defender to 
make the trade-off between network availability and 
network security. To capture this behavior, we assign a cost 
to each of the defender’s action set. Based on the cost, the 
defender is able to choose an action which will limit the 
progression of the attacker throughout the network and 
minimizing the negative impact on the system availability. 

Based on the single attacker who is trying to infiltrate 
the system can only increase its capability by exploiting 
more vulnerabilities. On the other hand, it also increases 
the chance of being detected. Defender’s goal is to prevent 
the exploitation of a vulnerability on the real network and 
to allow the exploitation on the fake network. From the 
monotonicity assumption, we know that once an attacker 
enables a condition, it remains enabled all the time. For a 
given security state, 𝑠F, the attacker will have some set of 
available exploits described by 𝐸(𝑠F). From the available 
set of exploits, attacker will attempt exploits based on his 
capabilities. Available set of exploits is defined by Eq. (1) 
which is given below for real and fake network, 

𝐸(𝑠F = 𝑠) = {𝑒𝑟R = (𝑁RS, 𝑁RV) ∈ |𝑁RS ⊂ 𝑠,𝑁RV ⊈ 𝑠} (1) 
𝐸(𝑠F = 𝑠) = {𝑒𝑓R = (𝑁RS, 𝑁RV) ∈ |𝑁RS ⊂ 𝑠,𝑁RV ⊈ 𝑠} (2) 

Two essential requirements must be satisfied for an exploit 
𝑒R = (𝑁RS, 𝑁RV) to be available: (1) 𝑁RS ⊂ 𝑠, i.e., all of the 
exploit’s preconditions must be satisfied :(2) 𝑁RV ⊈ 𝑠, i.e., 
the exploit’s postconditions must not all be satisfied [10]. 
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Figure 3. Sample evolution (real network) of the security 
state for a given state-action-type (𝑠F, 𝑢F, 𝜑F): (a) Consider 

the security state 𝑠F = {𝑐,𝑐-𝑐a𝑐i𝑐j} (green circle) and 
defense action 𝑢F = 𝑢 where 𝐵(𝑢) = {𝑒j, 𝑒l} (here 

blocked exploits are shown with red shaped hyperedge). 
So, the available set of exploits using Eq. (1) is 𝐸(𝑠F) =
{𝑒j𝑒l𝑒m𝑒n} and (b) attacker attempt each exploit, which 

does not 
lie within a set of blocked exploits, with a probability of 
attack and succeed which is defined by Eq. (3,5). In this 

example, only exploits 𝑒m, 𝑒n are succeeded and 
the updated security state is 𝑠F = {𝑐m, 𝑐n} (green circle). In 

the above figure, doubled circle shaded 
shape represents the security state. 

Fig 3. describes the set of available exploits for the security 
state 𝑠F. Fig. 3 is produced from the exploit dependency 
graph presented in Fig. 2. 

The strategy attacker will take solely depends on 
attacker capability. To model attacker types we assume an 
attacker will be one of 𝑛 types which are represented by the 
set Φ = {𝜑,, 𝜑-, … , 𝜑/}. Each type of attacker 𝜑R ∈ Φ will 
have the conditional attack probabilities (CAP) over the 
exploits. CAP depends on the parameters such as 
defender’s action 𝑑p, the available set of exploits 𝑎], and 
attacker capabilities 𝑎]. For a given security state 𝑠F and 
under a defense action 𝑢F the CAP over the real network 
exploit 𝑒𝑟q ∈ 𝐸 is given by, 

𝑃]<s(𝑠F, 𝑢F, 𝜑F)

=

⎩
⎪
⎨

⎪
⎧E𝑃(𝑑p, 𝑎]|𝑎[) = 𝑃x]<s(𝜑R), 𝑤ℎ𝑒𝑛	𝑒𝑟q ∈ 𝐸(𝑠F)	\	𝐵(𝑢F)

E𝑃(𝑑p, 𝑎]|𝑎[) = 𝑃]<s(𝜑R), 𝑤ℎ𝑒𝑛	𝑒𝑟q ∈ 𝐸(𝑠F) ∩ 𝐵(𝑢F)

0																													𝑤ℎ𝑒𝑛	𝑒𝑟q ∉ 𝐸(𝑠F) ⎭
⎪
⎬

⎪
⎫

	(3) 

Similarly, for the fake network, 

𝑃]Qs(𝑠F, 𝑢F, 𝜑F)

=

⎩
⎪
⎨

⎪
⎧E𝑃(𝑑p, 𝑎]|𝑎[) = 𝑃x]Qs(𝜑R), 𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸(𝑠F)	\	𝐵(𝑢F)

E𝑃(𝑑p, 𝑎]|𝑎[) = 𝑃]Qs(𝜑R), 𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸(𝑠F) ∩ 𝐵(𝑢F)

0																																				𝑤ℎ𝑒𝑛	𝑒𝑓q ∉ 𝐸(𝑠F) ⎭
⎪
⎬

⎪
⎫

																																																																																																												(4) 

By dividing the set of available exploits into two categories 
helps us to understand how an attacker change the attacking 
strategy. When defender does not block any exploits, 
attacker attempt with a probability which is defined by the 
term 𝑃x]<s(𝜑R)&𝑃x]Qs(𝜑R). On the other hand, attacker attempt 
with a probability 𝑃]<s(𝜑R)&𝑃]Qs(𝜑R), when defender blocks 
exploit. The value 0 means that there are no available set of 
exploits to be attempted. When the attacker is not able to 
identify blocked exploits in a security state for action 𝑢 that 
means 𝑃x]<s(𝜑R) = 𝑃]<s(𝜑R). On the other hand, if the attacker 
identifies that exploits are blocked in this security state, the 
attacker would not attempt it, 𝑃]<s(𝜑R) = 0. 

Exploits that are attempted with a probability depends 
on a certain parameter succeed, which is called attack 
success probability (ASP). To block vulnerabilities 
defender will choose the action from the action set 𝑢 ∈ 𝑈. 
Attacker always tries to create a set of available initial 
exploits from reconnaissance state to penetrate the 
network. So, for any given exploit, 𝑒𝑟q and 𝑒𝑓q, there is a 
probability of success,  

𝛼]<s(𝑠F, 𝑢F, 𝜑F) = �
𝛼x]<s	𝑤ℎ𝑒𝑛	𝑒𝑟q ∉ 𝐵(𝑢F)
0						𝑤ℎ𝑒𝑛	𝑒𝑟q ∈ 𝐵(𝑢F)

                 (5) 

Similarly, for the fake network, 

𝛼]Qs(𝑠F, 𝑢F, 𝜑F) = �
𝛼x]Qs	𝑤ℎ𝑒𝑛	𝑒𝑓q ∉ 𝐵(𝑢F)
0						𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐵(𝑢F)

                 (6) 

As soon as, the exploit attempts are successful, it enables 
all the postconditions, which eventually form the updated 
security state, as shown in Fig. 3. Defender's lack of 
information regarding the current security state and 
attacker true strategy which can be learned from noisy 
security alerts. In the next section, we describe how the 
defender uses that information to construct the belief by 
getting security alerts from the Intrusion Detection System 
(IDS). These security alerts are mixed with false positive 
and false negative alerts. For a defender, it is important to 
differentiate those mixed alerts for better defense actions. 
To do the modeling defender’s observation with the 
security state, we take the approach from our previous 
paper [9] which is described below. 

Intrusion Detection System (IDS) is a major component 
in this model because the defender’s certainty over the 
security state depends on security alert. IDS generate 
security alerts in a sequential form when an attacker 
attempts to exploit and progress through the network. 
Those security alerts are not free-form noise terms false 
positive and false negative. Even sometimes there will be 
no alert for exploit activity which solely depends on 
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attacker capability (stealthiness) termed as a false negative. 
Similarly, it generates alert for legitimate user activity 
termed as false positive. It is critically important for the 
defender to know the exploit activity is going on. Based on 
the alert, the defender will choose his defensive action to 
drive the attacker towards deployed fake networks. 
Filtering out the noisy alert from true alert is an important 
factor to improve the efficiency of the defender when it 
turns in real-time. In this work, we are considering only 
known vulnerabilities. There are several alert correlations 
with exploit activity techniques out there [12], [13], [14]. 
In this work, we are not focusing on alert correlation; 
rather, we are assuming that defender can do the alert 
correlation. Let 𝑍 = {𝑧,, 𝑧-, … , 𝑧/} and 𝑍′ = {𝑧,4 , 𝑧-4 , … , 𝑧/4 } 
represent the finite set of security alerts, real and fake 
network respectively, generated by the IDS which is 
eventually the observation set for the defender. Each of the 
alert from real nodes set and fake nodes set can be 
generated by the IDS, given by the set 𝑍(𝑒<R) =
{𝑧��(,), 𝑧��(-), … , 𝑧��(pR)} ∈ 𝑃(𝑍) and 𝑍�𝑒QR� =
{𝑧��(,), 𝑧��(-), … , 𝑧��(�R)} ∈ 𝑃′(𝑍′) where 𝑃(𝑍) and 𝑃′(𝑍′) 
are the power set of 𝑍 and 𝑍′. The vector of security alerts 
received by the defender at time 𝑡 + 1, denoted by 𝑦FV, ∈
Υ = {0,1}/�, consists of all security alerts triggered during 
the given iteration [10].  

To capture the uncertainty over the security state and 
attacker type we construct a belief matrix denoted by 𝛽F. 
This belief matrix is also called information state [15]. It 
combines all the defender’s available information into the 
matrix which includes initial security state, attacker type, 
history of all defense action from time 0 to 𝑡 − 1 and all 
observations (security alert) from time 0 to 𝑡 denoted by 
𝜁F = (𝛽I, 𝑢I, 𝑦I, … , 𝑢FS,, 𝑦F). The belief matrix represents 
joint probability distribution over security states and 
attacker types [10], is given below as a matrix form, 

𝛽F =

⎣
⎢
⎢
⎢
⎢
⎡ 𝛽F

,,,			𝛽F
,,- …	𝛽F

,,/�

𝛽F
-,,		𝛽F

-,- …	𝛽F
-,/�

.

.

.
𝛽F
/�,,		𝛽F

/�,- …	𝛽F
/�,/�⎦

⎥
⎥
⎥
⎥
⎤

∈ ∆(𝑆 × Φ) 

The space ∈ ∆(𝑆 × Φ) represents the probability 
distribution over state and type space (𝑆 × Φ). In the 
matrix, 𝛽F presented in the double-stochastic matrix for 
each 𝑡. Each row in the matrix probability mass function 
over the type space for a given state, and each column 
represents a probability mass function over the space of 
security states for a given type [10].  

Defender update the matrix whenever any information 
reflects consisting of current defense action 𝑢F and 
observation vector 𝑦FV,. For any defense action 𝑢F = 𝑢 and 
observation 𝑦FV, = 𝑦q, the belief update is defined as 
𝑏FV, = �𝑇b(𝑏F, 𝑦q, 𝑢) 𝑠b ∈ 𝑆 where (𝑗)′𝑡ℎ is the update 
function, 𝑇b(𝑏F, 𝑦q, 𝑢) = 𝑃�𝑆FV, = 𝑠b	¡	𝑈F = 𝑢, 𝑌FV, =
𝑦q, 𝐵F = 𝑏F)	is given by [8], 

									𝑏FV,
b = 𝑇b(𝑏F, 𝑦q, 𝑢) =

£¤
¥(¦§)<¤s

¥ (¦§)

¨(¦§,©s,ª)
              (7) 

The above terms are defined below, 

𝑝bª(𝑏F) = 𝑃�𝑆FV, = 𝑠b	¡	𝑈F, 𝐵F) = E 𝑏FR𝑝Rbª

«�∈¬

(8) 

𝑟bqª (𝑏F) = 𝑃(𝑌FV,	|	𝑆FV, = 𝑠F, 𝑈F, 𝐵F)

= E 𝑏FR𝑟Rbqª

«�∈¬

(9) 

𝜌(𝑏F, 𝑦q, 𝑢) = 𝑃(𝑌FV,|	𝑈F, 𝐵F)
= E 𝑟bqª(𝑏F)𝑝bª(𝑏F)

«¤∈¬

(10) 

where 𝑝bª is the transition probability from state 𝑠R to 𝑠b 
under defense action u, and 𝑟bqª(𝑏F) = 𝑃(𝑌FV,	|	𝑆FV, =
𝑠F, 𝑈F, 𝐵F) is the probability that IDS will generate 
observation vector 𝑦q when transitioning from state 𝑠R to 𝑠b 
under a defense action u. Eq. (8) defines the trajectory of 
beliefs based on security alerts termed as observations and 
series of actions. Under a defense action u, transition 
probability 𝑠R to 𝑠b is controlled by a set of exploit events. 
For the available set of exploits from Eq. (1), each event in 
the set of exploits in the binary form (successful and 
unsuccessful). The belief update procedure is a controlled 
Markov Chain where control is defender action [10]. The 
majority of POMDP planning methods operate under 
Bayes theorem [16]. For a large-scale cyber network, a 
single Bayes update procedure could be computationally 
infeasible. To plan efficiently for large-scale POMDP, we 
adopted the model described in [17] for the approximation 
of the belief state. 
As it is mentioned earlier in this section that this model is 
based upon a single attacker who is trying to penetrate into 
the network. However, from multiple attackers’ 
perspective the model needs to be updated. As an example, 
if we think that there are two attackers in the network and 
defender is trying to deceive those two attackers, using our 
model defender can deceive one attacker at a time. Two 
attackers may appear at different locations in the network 
at the same time. As our model is state based so that to work 
with two or more attackers at a time, we need to improve 
our model. Another important factor, we need to consider 
that defender cannot block single vulnerability rather than 
defender’s action induce a set of blocked vulnerabilities. 
This is another reason why multiple attacker concept will 
not work with our model. 

4. Defender’s Action

As soon as the attacker progress through the network 
defender will take action in real-time to limit the attacker 
progression. Selection of action step can be improved if the 
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defender has some domain knowledge beforehand. To aid 
with the domain knowledge, we introduce the utility 
function. Before taking any defensive action, it is also 
necessary to measure the impact on availability and 
security cost. 

4.1 Utility Function 

Attacker builds an array of node utility function based on 
the base score metrics for exploiting vulnerabilities [18]. 
For every exploit, the attacker uses the metrics to justify 
the attack success probability which is illustrated in Eq. 
(13) and serves as the attacker's initial knowledge about the
network and vulnerability. The defender also creates the
same utility array. From [18], we borrow the impact (I), and
exploitability (V) metrics to define the defender's utility.

𝐼 = 10.41 ∗ (1 − (1 − 𝐶𝐼) ∗ (1 − 𝐼𝐼) ∗ (1 − 𝐴𝐼) (11)

𝑉R = 20 ∗ 𝐴𝐶 ∗ 𝐴𝐼 ∗ 𝐴𝑉 (12) 

The above terms are defined as CI = ConfImpact, II= 
IntegImpact, AI = AvailImpact, I = Impact, Vi = 
Exploitability, AC = AccessComplexity, AI = 
Authentication and AV = Accessvector. The utility array 
function is defined below, 

𝑈p(<,Q) = 𝐼 ∗ 𝑉R (13) 

Example 1: Consider a scenario where there are five nodes 
and attacker send scan queries to the neighbors of node 1. 
The defender needs to respond to the scan queries 
deceptively by mixing of true/false information at random. 
Here, 2, 3 are real nodes and 4, 5 are fake nodes having 
following vulnerabilities vul(𝑛-), vul(𝑛a), vul(𝑛i) and 
vul(𝑛j). Defender wants to drive the attacker towards node 
4 and 5. We are assuming that using above utility array 
equation defender come up with the following values 
𝑈p(𝑛-) = 15, 𝑈p(𝑛a) = 5, 𝑈p(𝑛i) = 30, and Ua(n5) = 50. A 
true rational attacker will go after node 5. 

4.2 Cost Function 

In cyber-deception, there is a possibility where you can 
leverage the availability cost over the security cost. There 
are two benefits when the attacker is in the fake network: 
1) defender can collect as much as intelligence information
on the adversary which helps to derive the attacker’s
capability, intentions, and targets, etc., 2) defender can
maximize the network availability to the trusted user
during a cyber-attack. An availability cost 𝑐p for each
action defender take to drive the adversary towards the fake
network. For some defense action, there will be no impact
on the availability, and sometimes there will be a more
significant impact. To formalize this notion, we represent
the availability cost 𝑐p:	𝑈 → ℝ for each defense action
taken by the defender similarly for the security cost
𝑐«:	𝑆 × 𝑈 → ℝ to depict the cost while the system is in

various security state under defense action u. Here, we are 
considering the availability of a node regarding end-to-end 
packet delay (considering IT system). 

End-to-End Packet Delay 
Let’s assume that, 𝑑³ and N represent total delay and 
number devices between a source and destination. The end-
to-end delay defined in [19] as,  

𝑑³ = 𝑁�𝑑£<´[ + 𝑑F<p/« + 𝑑£<´£ + 𝑑µª]ª]�

+ 𝑑£<´[´

(14) 

The above equation’s terms are defined as follows 𝑑£<´[ = 
processing delay, 𝑑F<p/« = transmission delay, 𝑑£<´£ = 
propagation delay, 𝑑µª]ª] = queuing delay and 𝑑£<´[´ = 
processing overhead because of authentication, integrity, 
and confidentiality. For an uncongested enterprise 
network, 𝑑µª]ª] ≃ 0 and the distance between a source and 
destination node is very small so that 𝑑£<´£ ≃ 0. The 
processing delay, 𝑑£<´[, is often negligible; however, it 
strongly influences a router’s maximum throughput, which 
is the maximum rate at which a router can forward packets 
[24]. So that, Eq. (14) can be reduced to, 

𝑑³ = 𝑁 × 𝑑F<p/« (15) 

where 𝑑F<p/« = 𝐿/𝑅, L = packet size and R = transmission 
rate. For every defense action, defender will measure the 
total end-to-end packet delay. So, the availability cost in 
terms of delay is defined as follows 𝑐ª = 𝑑³. We assign 
more cost to the goal conditions (attacker's target node) as 
defender's goal is to keep away the attacker from achieving 
the goal. The total cost regarding a security state and 
defense action is given below, 

𝑐�𝑠F, 𝑢F, 𝜑𝑡� = (1 − 𝑓)𝑐«�𝑠F, 𝜑𝑡� + 𝑓 ∗ 𝑑³(𝑢F) (16) 

Here, f, is a weighted factor, determines which cost focused 
more (f = 0 represents defender is concerned only with 
security cost, f = 1 means defender is only concerned with 
availability cost). The proposed online deception algorithm 
is based on an existing online solver [9], computes optimal 
action from deception standpoint to deceive attacker with 
the fake network while balancing availability and security 
cost. 

5. Dynamic Deception System

In our dynamic deception system (DDS), we deploy fake 
networks along with the real networks to deceive the 
attacker and drive the attacker towards the fake network 
while the attacker is in real network. In this approach, 
defender can save more availability cost in terms of 
securing the cyber network. To deploy the fake network 
and make it as looks like the real network we use software 
defined networking (SDN). The core part of our dynamic 
deception system consists of SDN flow rules generated by 
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our SDN controller which working with a deception server 
and make the network traffic in the way to looks like 
different than it actually is.  

5.1 System Architecture Overview 

Figure 4. DDS system architecture 

Our dynamic deception system consists of five components 
such as a) a SDN controller which generates the flow rules 
dynamically and control the network traffic, b) deception 
server which manipulates network traffic, imitate some 
virtual network resources based on the user policy, and 
perform the online deception algorithm, c) delay handler 
which keeps the bandwidth balance between real and fake 
network, so that attacker couldn’t distinguish the real and 
fake network, d) IDS alert correlation server is responsible 
for correlating the alert with the exploit activity, e) SDN 
network elements are responsible to controlling and 
analyzing the network traffic after getting the flow rules 
from SDN controller. When packet arrives at SDN switch, 
which is connected to our system, the SDN controller 
generates flow rule in accordance with our fake network. 
The packet either sends to the deception server or send to 
the destination after tagging each packet. When the packet 
sent to the deception server, the packet is crafted in 
accordance with the fake network when reply back to the 
sender by adding artificial delay to make consistency. If the 
packet is sent to the real network, an artificial delay is 
added when reply back to the sender to make consistency 
between real network and fake network. For a very large 
network, the deception server could be a bottleneck 
because of a large number of requests can come to the 
server. To handle this issue, our deception server can be 
replicated so that each of the deception servers can handle 
a certain number of requests. Our system is implemented 
using in Python. We use POX framework [22] to 
implement the SDN controller and Scapy framework [23] 
to implement our deception server. We use mininet [21], 
which is the current state-of-art SDN network emulator to 
test our implementation. In Fig. 4 we presented a 
systematic architectural overview of our DDS system. In 

the next couple of sections, we briefly describe our DDS 
system. 

5.2 Online Deception Algorithm 

For online deception algorithm, we took the approach 
described in our previous paper [9] which is described 
below.  

Online defense algorithm is a heuristic search algorithm 
for determining defense actions in real-time as the attacker 
progresses through the network and security alerts are 
generated where scalability is achieved via a sample-based, 
online defense algorithm that takes advantage of the 
structure of the security model to enable computation in 
large-scale domains. After employing defense actions (e.g., 
blocking vulnerability) defender can evaluate the 
improvements by assessing the attacker’s attacking path. 
For a scalable network, computing optimal action while 
deceptively interacting with the attacker is a challenge. 
Offline POMDP solver aims to compute the optimal action 
for each belief state before runtime. Although such solvers 
have improved their efficiency [24], capturing the optimal 
action can be intractable for large networks. To resolve this 
issue, Silver and Veness [6] developed an online algorithm 
termed as Partially Observable Monte-Carlo Planning 
(POMCP) to handle large-scale network while computing 
optimal action. Online methods interleave the computation 
and execution (runtime) phases of policy, yielding a much 
more scalable approach than offline methods. 

POMCP algorithm is based on and makes use of 
POMDP [24]. There are two types of nodes in POMCP: 
belief nodes which represent a belief state and action nodes 
which are their children nodes that can reach by doing an 
action. In this work, action selection procedure as same as 
POMCP algorithm described in [6] and belief update 
procedure is based on [10] where it solves the large 
observation space problem. In POMCP, a belief state 
updates when a sample observation matches with real-
world observation, but for large observation space, it barely 
matches with real-world observation. In the modified belief 
update procedure presented in Algorithm 1 check a 
statement whether each incoming alert 𝑧R ∈ 𝑍 match with 
over a security state, 𝑍(𝑠) = 𝑍(𝑒). The alerts are generated 
whenever an attacker attempts an exploit. Alerts not in Z(s) 
cannot be generated by exploit activity for that security 
state. We are referring those alerts are false alerts for 
defender.  

An agent begins the simulation by calling a generative 
model provides a sample successor state, observation and 
cost given a state and action, (𝑠4, 𝑦, 𝑐)~𝐺(𝑠, 𝑢). The 
modified belief update procedure is given in Algorithm 1, 
where 𝔅F is a state-action pair named particles. History of 
search tree as shown in Fig. 5, 
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Figure 5. An illustration of POMCP in an environment 
with 2 actions, 2 observations, 50 states, and no 

intermediate rewards. The agent constructs a search tree 
from multiple simulations and evaluates each history by 
its mean return (left). The agent uses the search tree to 
select a real action a and observes a real observation o 

(middle) [9]. 

is constructed by calling the generative model and 
successive sampling from current belief. Monte-Carlo Tree 
Search (MCTS) uses Monte-Carlo simulation for assessing 
search tree nodes [25]. In the search tree, nodes represent 
histories and branches from the node in forwarding 
direction represents the possible future histories because of 
having partial observability of the fundamental process. A 
simpler version of MCTS uses greedy tree policy at the 
very beginning of the simulation, where it selects the action 
with the highest value. UCT algorithm [26] is used to 
improve the greedy action selection stage. In the search 
tree, each action selection is made using UCB1 [27], and 
the state is being viewed as multi-armed bandit rule to 
balance the exploration and exploitation. In the UCT 
algorithm, there is an option to use the domain knowledge 
[26] to initialize the new nodes. We use the utility array
function 𝑈p(<,Q) as our initial domain knowledge which is
improved during more simulation runs. The optimum
action for the defender while interacting with the attacker
turns into a POMDP. Casting optimum action is defined as
below,

𝑉¼(𝑏I) 
=E𝛾F𝑐(𝑏F, 𝑢F, 𝜑𝑡)

G

FHI

 
(17) 

=E𝛾F𝐸�𝑐�𝑠F, 𝑢F, 𝜑𝑡�	|	𝑏I, 𝜋 
G

FHI

 

where 0 < 𝛾 < 1 is the discount factor, and 𝑐(𝑏F, 𝑢F, 𝜑𝑡) 
represents the cost under attacker types 𝜑F for each belief 
state 𝑏F when an action 𝑢F is selected from the space of 
action where 𝑐(𝑏F, 𝑢F) = ∑ 𝑏FR𝑐�𝑠F, 𝑢F, 𝜑𝑡�.«�∈¬  For each 
belief state, defense action generates according to the 
policy function and belief update must follow the 
procedure defined in Eq. (14.7). The optimal policy 𝜋∗ is 
obtained by optimizing the long-term cost, which is given 
below, 

𝜋∗ = 𝑎𝑟𝑔min
¼
𝑉¼(𝑏I) (18) 

The optimal policy defined in Eq. (18) specifies the optimal 
action for each belief state 𝑏F ∈ ∆(𝑆 × 𝜑) where the 
expected minimum expected cost calculated over the 
infinite time horizon. The defender will choose the action 
where the cost makes the trade-off between availability and 
security cost. 

In POMCP, a belief state updates when a sample 
observation matches with real-world observation, but for 
large observation space, it barely matches with real-world 
observation. In the modified belief update procedure 
presented in Algorithm 1, check a statement whether each 
incoming alert 𝑧R ∈ 𝑍 match with over a security state, 
𝑍(𝑠) = 𝑍(𝑒). The alerts are generated whenever an 
attacker attempts an exploit. Alerts not in 𝑍(𝑠) cannot be 
generated by exploit activity for that security state. We 
refer those alerts are false alarms for the defender. To 
evaluate the scalability of our approach, we experimented 
our online deception algorithm on a graph consisting 160 
conditions (nodes), 150 exploits (hyperedges), 60 defense 
actions, 35 security alerts resulting more than 109 
observation vectors. The resulting security states from this 
example exceed 100 million. The pseudocode for modified 
belief update is given below, 

5.3 Software Defined Network Controller 

In our DDS, the primary objective of the SDN controller is 
to generate network flow rules based upon the arrival of 
network packets. The generated flow rules later forward to 
SDN switch to control and analyse the network traffic. For 
our deception model, we use the following flow rules based 
on our fake network needs, 

Routing Packets to or from the Fake Network 
The use of fake network makes our model dynamic in the 
sense that it changes the attacker’s perception about 
network structure from the real one. With the mix of real 
and fake information make the network significantly larger 
than the actual one. The network flows from and to the fake 
network are monitored and analyzed by the SDN controller 
to identify the infected host. 

Dynamic Address Translation 
To send the fake network information along with the real 
network information, our deception system rewrites packet 
headers on-the-fly based.  

ARP Request Forwarding 
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In our system, ARP request forwarding the most important 
part as all the requests are handled by our deception server. 
Usually, a network is flooded by ARP request to discover 
a host and match the IP address with MAC address. 
Deception server receives ARP request and responds with 
an appropriate response.  

Routing of DHCP Packets 
As fake networks associated with DHCP lease, our 
deception server serves as a DHCP server. It leases IP to 
the fake network’s host when any host from the fake 
networks trying to connect with the network.  

Routing of DNS Packets 
To make sure the reachability to the legitimate services, 
DNS requests are handled by our deception server. To 
forward the DNS packets appropriate flow rules between 
host and the deception server are generated. 

5.4 Deception Server 

In our deception server, there are six components to 
deceive the cyber adversary and handle the packets coming 
from hosts connected with the network and crafted the 
packet based on the fake networks. Below we briefly 
discuss the six components, 

DHCP Handler 
The DHCP handler acts as a DHCP server in our deception 
server and responsible for assigning DHCP lease to hosts 
which are trying to connect with the network.  

ARP Handler 
All ARP requests are forwarded by appropriate flow rules 
to our deception server. Based on our fake network 
specifications, our deception server modified the request 
and sent back to the requesting host. 

ICMP Handler 
ICMP error messages are forwarded by the specific rules to 
our deception server. Packets with the message like 
destination host unreachable contain nested packet. Such a 
nested packet cannot be updated automatically in the SDN 
switches. We forward such packets to our deception server 
and crafted accordingly and send back to the destination. 

DNS Handler 
To make sure the reachability to the legitimate services, 
DNS requests are handled by our deception server and 
creates appropriate responses. 

Gateway Simulator 
Gateway simulator is using to make the fake network more 
realistic as some of the components from the fake network 
does not have any endpoints. Such endpoints are like 
routers or gateway. If our deception server receives any 
probing request, it sends back an appropriate response to 
the destination. 

Route Simulator 
Route simulator is using in our deception server to reply 
packets with mapping functions like traceroute. If the 
probing request to any node has lower TTL value than 
specified in our fake network, our deception server handles 
those packets on behalf of router/gateway between the 
scanning source node and destination node.  

5.5 Delay Handler 

Besides the traditional scanning method, advance level 
attackers can analyze the statistics of round-trip time and 
measured bandwidth on links to find the inconsistency 
[44]. To make the real and fake network indistinguishable, 
we take a similar approach described in [44]. By adding 
artificial delay to certain packets, we change the link 
bandwidth and host delays. To make the consistency, 
firstly, we collect measurement data from real network 
nodes and use those data as the basis for our fake network. 

6. Evaluation

6.1 Experimental Setup and Metrics 

Now we will investigate an illustrative example using the 
sample exploit dependency graph presented in Fig. 2. For 
this example, we assume an attacker will 𝑛p = 4 types by 
varying attacker knowledge, aggression, and stealthiness 
level. We will present four use cases, how defender 
deceives the attacker with a fake network for four attacker 
types. Aggression level is defined by the conditional attack 
probabilities and success, which in terms called the rate of 
movement of the attacker throughout the real network. 
Knowledge level is defined by the Eq (3), (4) where the 
separation of two parameters 𝑃x]<s(𝜑R) & 𝑃]<s(𝜑R) dictate the 
knowledge level of the attacker. Stealthiness is described by 
the false alarm and the probabilities of detection. In the below 
table we presented the four attacker types Φ =
{𝜑,, 𝜑-, 𝜑a, 𝜑i} with their knowledge, aggression and 
stealthiness level. 

Table 1. Four attacker types 

Attacker 
Types 

Knowledge Aggression Stealthiness 

Type-I High Moderate High 
Type-II Moderate High High 
Type-III Moderate Moderate Moderate 
Type-IV Low Low Low 

The weight cost in Eq. (16) is 0.5 and the discount factor 𝛾 
= 0.95. In total (real & fake) there are 𝑛« = 356 security 
states and 𝑛Ä = 12 security alerts leading to 2,- = 4096 
distinct observation vectors. To approximate the belief, all 
simulations use particles 𝑛q = 1500. For this simulation, we 
assume that the exploit dependency graph is already 
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generated using TVA (Topological Vulnerability Analysis) 
[11]. We use the [28] software package to use the POMCP 
solver in our simulation and use python and Matlab to 
implement our model. In the section, we are going to 
present our simulation results for each of the attacker types 
defined in Table 1. In Table 2. we presented probabilities 
of detection for real networks for each of the four attacker 
types. 

Table 2. Probability of detection for each of the attacker 
types 

A
le
rt 

Exploit 
𝑒, 𝑒- 𝑒a 𝑒i 𝑒j 𝑒l 𝑒m 𝑒n 𝑒Å 𝑒,I 𝑒,, 

𝑧, 
0.3 
0.3 
0.4 
0.8 

0.4 
0.5 
0.4 
0.2 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

𝑧- 
0 
0 
0 
0 

0.2 
0.4 
0.4 
0.6 

0.3 
0.2 
0.3 
0.8 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

𝑧a 
0 
0 
0 
0 

0 
0 
0 
0 

0.4 
0.3 
0.3 
0.6 

0.3 
0.4 
0 
0.7 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

𝑧i 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0.4 
0.2 
0.5 
0.6 

0.4 
0.3 
0.4 
0.7 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

𝑧j 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0.2 
0 
0.4 
0.7 

0.5 
0.3 
0.4 
0.8 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

𝑧l 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0.5 
0.3 
0.4 
0.6 

0.2 
0.4 
0.3 
0.7 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

𝑧m 0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0.6 
0.3 
0.2 
0.8 

0.2 
0.5 
0.3 
0.7 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

𝑧n 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0.2 
0.5 
0.3 
0.7 

0.3 
0.5 
0.4 
0.6 

0.3 
0.2 
0.4 
0.7 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

𝑧Å 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0.4 
0.5 
0.2 
0.7 

0.3 
0.2 
0.5 
0.7 

0 
0 
0 
0 

𝑧,I 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0.5 
0.4 
0.5 
0.6 

0.2 
0.3 
0.5 
0.7 

0.2 
0.4 
0.6 
0.8 

0 
0 
0 
0 

𝑧,, 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0.3 
0.5 
0.6 
0.8 

0.2 
0.4 
0.3 
0.7 

0 
0 
0 
0 

𝑧,- 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0.3 
0.4 
0.4 
0.8 

0 
0 
0 
0 

𝑧,a 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0.3 
0.3 
0.4 
0.8 

In Table 2. columns represent attempted exploit, and rows 
present the triggered alert. Each entry from the table 
represents the probability of detection under each of the 
attack types.  

6.2 Experimental Results 

Use Case I 
For this use case, we use attacker Type-I (𝜑,) from Table 
1. We calculated the conditional attack probabilities for
real and fake networks using Eq. (3) & (4) which is
presented below.

�𝑃]<s(𝜑,), 𝑃]<s(𝜑,)� = (0.8,0.3)		𝑓𝑜𝑟	𝑒𝑟q ∈ 𝐸I 

�𝑃]Qs(𝜑,), 𝑃]Qs(𝜑,)� = (0.8,0.3)		𝑓𝑜𝑟	𝑒𝑓q ∈ 𝐸I 

�𝑃]<s(𝜑,), 𝑃]<s(𝜑,)� = (0.7,0.3)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒i, 𝑒j, 𝑒l, 𝑒n, 𝑒Å} 

�𝑃]Qs(𝜑,), 𝑃]Qs(𝜑,)� = (0.9,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒j, 𝑒m} 

�𝑃]<s(𝜑,), 𝑃]<s(𝜑,)� = (0.7,0.3)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒m, 𝑒,I, 𝑒,,} 

�𝑃]Qs(𝜑,), 𝑃]Qs(𝜑,)� = (0.9,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒m, 𝑒n} 

Similarly, for attack success probability we use Eq. (5) & 
(6) which is given below,

𝛼𝑒𝑟𝑘(𝜑1) = Ê
0.7											𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸0
0.5						𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸\𝐸0

 

𝛼]Qs(𝜑,) = �
0.85											𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸I
0.7						𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸\𝐸I

 

As we defined earlier, the space of actions is the power set 
of each defense action. In this simulation, we consider there 
are three actions for real network which induce a set of 
block exploits defined as, 𝐵(𝑢,) = {𝑒,, 𝑒-, 𝑒a}, 𝐵(𝑢-) =
{𝑒i, 𝑒j, 𝑒l, 𝑒m, 𝑒n}, 𝐵(𝑢a) = {𝑒Å, 𝑒,I, 𝑒,,}. Similarly, for the 
fake network, 𝐵(𝑢,) = {𝑒j, 𝑒m}, 𝐵(𝑢,) = {𝑒m, 𝑒n} where 
the cost of each action is 0.30. The sample evolution of 
computed deception policy when 𝑁«RÌ = 5000 is given in 
Fig. 7 & 8.  

Figure 6. Sample evolution of deception policy when 
attacker is in real network. 

Security state is represented by shaded node and blocked 
exploits are represented 
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by red shaped hyperedge. 

It is assumed that the security state starts from the empty 
state defined as, 𝑠I = ∅. The defender uses utility array 
function to construct the initial belief which is defined in 
Eq. (13). We run the simulation 5000 times.  

Figure 7. Sample evolution of deception policy when the 
attacker is in the fake network. 

Security state is represented by shaded node, and blocked 
exploits are represented 

by red shaped hyperedge. 

The defender initially (from t=1 to t=4) does not take any 
action to save the availability cost. As the attacker progress 
and enable more conditions, defender belief gradually 
updates based on the received security alerts. Then 
defender begins to deploy actions (t=5) to block exploits. 
As we know from monotonicity assumption, once a 
security condition enabled it remains to enable all the time. 
Whenever defender belief reflects that attacker is close to 
goal conditions will block the exploits to prevent the 
attacker from reaching his goal. As we can see from Fig. 6 
at time step t=8, defender blocks exploits {𝑒n, 𝑒Å, 𝑒,I} 
which prevents the attacker from moving forward. From 
this point, the attacker will try to progress from another 
point as he received the response from the defender in the 
reconnaissance stage with a mix of true and false 
information. Then he moves toward the fake network, Fig. 
7, based on his available set of exploits dictated by Eq. (1). 
At this stage defender let the attacker move forward. From 
time step t=9 to 13, defender action is null. As it (fake) is 
same as the real network from the attacker perspective, the 
defender will take action only when attacker has an 
alternative way to reach the next security state (see time 
steps t=14-20 in Fig. 7).  

Table 3. Performance evaluation table for real to real and 
real to fake 

Simulation 
Runs 

No. of 
Times 

Attacker 
Starts with 
Real Node 

No. of 
Times 

Attacker 
Ends on 

Real Node 

No. of 
Times 

Attacker 
Ends on 

Fake Node 

500 
1000 
1500 
2000 
3000 
4000 
5000 

15 
13 
11 
10 
8 
7 
6 

13 
10 
7 
6 
3 
1 
0 

2 
3 
4 
4 
5 
6 
6 

In Table 3, we present our performance evaluation data 
while attacker start to exploit real initial nodes 
vulnerability and ended up with real to real network end 
state and real to fake end state. The numerical numbers in 
the 2nd column represent how many times out of 25 sample 
runs attacker start with real network initial nodes and 3rd 
column represents how many times attacker ended up with 
real network end state without transition to the fake 
network and 4th column represents how many times 
attacker make transition from real network to fake network 
and end up with fake goal state. In Table 4, we present the 
same statistics for the fake network. 

Table 4. Performance evaluation table for fake to fake and 
fake to real 

Simulation 
Runs 

No. of 
Times 

Attacker 
Starts with 
Fake Node 

No. of 
Times 

Attacker 
Ends on 

Fake Node 

No. of 
Times 

Attacker 
Ends on 

Real Node 
500 
1000 
1500 
2000 
3000 
4000 
5000 

10 
12 
14 
15 
17 
18 
19 

10 
12 
14 
15 
17 
18 
19 

0 
0 
0 
0 
0 
0 
0 

From Table 4, we can see that up to 76% of the time 
attacker starts with the fake initial nodes and carry out the 
series of exploit to achieve the fake goal state. When the 
𝑁«RÌ = 500, out of 25 sample runs 15 times attacker start 
with the real network (Table 3) and 13 times ended up with 
real network goal state because of poor quality of possible 
future histories estimation. When the number of 
simulations increases and more possible future histories are 
taken into account, the action estimation quality increased 
as well as policy function (e.g. 𝑁«RÌ = 5000, 19 times out 
of 25 times attacker start and ended up with fake goal state). 
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Figure 8. Discounted cost 

In Fig. 8, we plot the discounted cost against each time step 
for 25 sample runs while attacker in real network state. 
When 𝑁«RÌ = 500, 15 times attacker starts with the real 
network where out of 15 times attacker reached the real 
goal state (node) 13 times. Trajectories which ended up 
with the red circle, represents the path where attacker 
reached the goal. Initially, for low simulation counts e.g., 
𝑁«RÌ = 500 defender does not have much information 
about attacker's strategy, capability. Because of this, 
defender aggressively blocks exploit from the very 
beginning (t = 0), which eventually produces a low quality 
of estimation and ended up with less availability. For poor 
estimation, attacker also reaches into the goal node several 
times as shown in Fig. 8 upper left corner. As soon as, 
simulation count increases more possible future histories 
are included which results in high quality of estimation 
(which set of exploits to be blocked). As it is evident from 
Fig. 8 bottom right corner, though attacker starts with real 
network for 5000 trials but could not reach any goal state. 

Use Case II 
For use case II, we use attacker type II (𝜑-) from the Table 
1 where attacker knowledge, aggression and stealthiness 
level as follows moderate, high, and high respectively. The 
conditional attack probabilities and success probabilities 
are given below for this use case, 

�𝑃]<s(𝜑-), 𝑃]<s(𝜑-)� = (0.7,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ 𝐸I 

�𝑃]Qs(𝜑-), 𝑃]Qs(𝜑-)� = (0.7,0.7)		𝑓𝑜𝑟	𝑒𝑓q ∈ 𝐸I 

�𝑃]<s(𝜑-), 𝑃]<s(𝜑-)� = (0.8,0.4)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒i, 𝑒j, 𝑒m} 

�𝑃]Qs(𝜑-), 𝑃]Qs(𝜑-)� = (0.9,0.6)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒j, 𝑒m} 

�𝑃]<s(𝜑-), 𝑃]<s(𝜑-)� = (0.7,0.5)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒Å, 𝑒Å, 𝑒,,} 

�𝑃]Qs(𝜑-), 𝑃]Qs(𝜑-)� = (0.9,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒m, 𝑒n} 

attack success probability, 

𝛼𝑒𝑟𝑘(𝜑2) = Ê
0.8											𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸0
0.5						𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸\𝐸0

 

𝛼]Qs(𝜑-) = �
0.85											𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸I
0.7						𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸\𝐸I

 

We kept other simulation parameters same as for use case 
I as we are evaluating use case II for the same exploit 
dependency graph, we presented in Fig 1. In this 
simulation, we present the performance evaluation table to 
capture the attacker progression from real to real and real 
to fake network. 
Table 5. Performance evaluation table for real to real and 

real to fake 

Simulation 
Runs 

No. of 
Times 

Attacker 
Starts with 
Real Node 

No. of 
Times 

Attacker 
Ends on 

Real Node 

No. of 
Times 

Attacker 
Ends on 

Fake Node 
500 
1000 
1500 
2000 
3000 
4000 
5000 

14 
12 
12 
9 
8 
7 
4 

9 
8 
7 
5 
4 
2 
0 

5 
4 
5 
4 
4 
5 
4 

From Table 5 we can see that, the number times attacker 
starts with the real node less than the use case I because 
attacker has less knowledge level than previous use case. 
The results are reasonable because attacker hardly 
distinguishes the real and fake network. Also, it is difficult 
for the attacker to discover which exploits are not blocked 
by the defender in a security state. In Table 6, we present 
the same simulation results for the fake network. 

Table 6. Performance evaluation table for fake to fake and 
fake to real 

Simulation 
Runs 

No. of 
Times 

Attacker 
Starts with 
Fake Node 

No. of 
Times 

Attacker 
Ends on 

Fake Node 

No. of 
Times 

Attacker 
Ends on 

Real Node 
500 
1000 
1500 
2000 
3000 
4000 
5000 

11 
13 
13 
16 
17 
18 
21 

11 
13 
13 
16 
17 
18 
21 

0 
0 
0 
0 
0 
0 
0 

Table 6 represents the statistics on how many times 
attacker go back to real node from the fake node. As we 
stated earlier that as soon as attacker enters the fake 
network, attacker cannot go back to the real node. We can 
conclude based on this simulation that up to 84% of the 
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time attacker starts with the fake initial nodes and carry out 
the series of exploit to achieve the fake goal state because 
of moderate level of knowledge skill.  

Use Case III 
For use case III, we use attacker type III (𝜑a) from the 
Table 1 where attacker knowledge, aggression and 
stealthiness level as follows moderate, moderate, and 
moderate respectively. The conditional attack probabilities 
and success probabilities are given below for this use case, 

�𝑃]<s(𝜑a), 𝑃]<s(𝜑a)� = (0.8,0.2)		𝑓𝑜𝑟	𝑒𝑟q ∈ 𝐸I 

�𝑃]Qs(𝜑a), 𝑃]Qs(𝜑a)� = (0.8,0.2)		𝑓𝑜𝑟	𝑒𝑓q ∈ 𝐸I 

�𝑃]<s(𝜑a), 𝑃]<s(𝜑a)� = (0.7,0.3)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒i, 𝑒j, 𝑒m} 

�𝑃]Qs(𝜑a), 𝑃]Qs(𝜑a)� = (0.7,0.3)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒j, 𝑒m} 

�𝑃]<s(𝜑a), 𝑃]<s(𝜑a)� = (0.7,0.3)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒Å, 𝑒Å, 𝑒,,} 

�𝑃]Qs(𝜑a), 𝑃]Qs(𝜑a)� = (0.8,0.2)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒m, 𝑒n} 

attack success probability, 

𝛼𝑒𝑟𝑘(𝜑3) = Ê
0.8											𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸0
0.5						𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸\𝐸0

 

𝛼]Qs(𝜑a) = �
0.85											𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸I
0.7						𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸\𝐸I

 

The performance evaluation table for this simulation is 
presented in below,  

Table 7. Performance evaluation table for real to real and 
real to fake 

Simulation 
Runs 

No. of 
Times 

Attacker 
Starts with 
Real Node 

No. of 
Times 

Attacker 
Ends on 

Real Node 

No. of 
Times 

Attacker 
Ends on 

Fake Node 
500 
1000 
1500 
2000 
3000 
4000 
5000 

11 
11 
10 
8 
7 
7 
3 

7 
8 
8 
5 
2 
2 
0 

4 
3 
2 
3 
5 
5 
3 

The number of times attacker starts with the real node is 
increased in this simulation. As defender beliefs reflect that 
attacker is more knowledgeable, the conditional attack 
probabilities are higher than the previous case. In fact, in 
this simulation, the numbers are higher than previous two 
use cases. This is because defender possesses a high 
knowledge level. Because of his high knowledge level, he 
has the ability to find out the blocked exploits before he 
moves. As soon as the attacker identifies the blocked 
exploits, he will not attempt it unlit defender changed her 
action. In this case, up to 88% of the time attacker starts 
with the fake initial nodes.  

Use Case IV 
For use case IV, we use attacker type IV (𝜑i) from the 
Table 1 where attacker knowledge, aggression and 
stealthiness level as follows low, low, and low respectively. 
The conditional attack probabilities for attacker type IV are 
given below,  

�𝑃]<s(𝜑i), 𝑃]<s(𝜑i)� = (0.9,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ 𝐸I 

�𝑃]Qs(𝜑i), 𝑃]Qs(𝜑i)� = (0.9,0.7)		𝑓𝑜𝑟	𝑒𝑓q ∈ 𝐸I 

�𝑃]<s(𝜑i), 𝑃]<s(𝜑i)� = (0.8,0.7)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒i, 𝑒j, 𝑒m} 

�𝑃]Qs(𝜑i), 𝑃]Qs(𝜑i)� = (0.7,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒j, 𝑒m} 

�𝑃]<s(𝜑i), 𝑃]<s(𝜑i)� = (0.8,0.6)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒Å, 𝑒Å, 𝑒,,} 

�𝑃]Qs(𝜑i), 𝑃]Qs(𝜑i)� = (0.8,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒m, 𝑒n} 

attack success probabilities, 

𝛼𝑒𝑟𝑘(𝜑4) = Ê
0.8											𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸0
0.5						𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸\𝐸0

𝛼]Qs(𝜑i) = �
0.85											𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸I
0.7						𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸\𝐸I

 

The performance evaluation table for this simulation is 
presented below, 

Table 8. Performance evaluation table for real to real and 
real to fake 

Simulation 
Runs 

No. of 
Times 

Attacker 

No. of 
Times 

Attacker 

No. of 
Times 

Attacker 
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Starts with 
Real Node 

Ends on 
Real Node 

Ends on 
Fake Node 

500 
1000 
1500 
2000 
3000 
4000 
5000 

12 
10 
10 
9 
9 
5 
2 

1 
0 
0 
2 
1 
0 
0 

11 
10 
10 
7 
8 
5 
2 

From Table 8, we can see that though attacker starts with 
the real node few times but end up into the real network 
goal node very few times. The number times attacker ended 
up on fake goal node is higher than any of the previous 
three use cases. This is because of the attacker skillset 
(knowledge, aggression, and stealthiness) reflects as a 
novice attacker. From the statistics, we can infer that up to 
92% of time attacker starts with the fake node and ended 
up with fake goal state. In this case, defender did not use 
many resources to block this attacker. As defender’s belief 
reflects that it is a novice attacker. This is why defender 
saved a lot of resources in terms of availability and security 
cost.  

We also investigate the host infection rate with and 
without our DDS based on network scanning techniques. 
To do this, we implemented some previous common 
scanning techniques [29], [30], [31], and [32] which is also 
discussed in the related work section. To implement these 
scanning techniques, we use a python library name libnmap 
[33] which provides an API to Nmap [34] as well as python

 

scapy framework. Based on the discussion [35], an 
adversarial scanner first selects the scanning space which 
is denoted by Ω. In the scanning space, attacker selects the 
IP addresses to probe. Also, the address distance denoted 

by 𝜆, specifies the numerical differences between IP 
address of scanner and scanning target [35].  

Table 9. The performance statistics for all attacker types 

Attacker Types Performance Statistics 
Type-I 76% 
Type-II 84% 
Type-III 88% 
Type-IV 92% 

Local Preference Scanning discussed in [29], is a kind 
of biased scanning technique. In this technique, based on 
the localhost information some specific regions of a 
network are chosen. But there is an issue, for the current 
state-of-the-art computer networks, hosts are not uniformly 
distributed within the address apace. The attacker can 
increase the speed to detect vulnerable host by scanning IP 
address where it densely populated [35].  

Preference sequential scanning probes the IP address 
sequentially. In preference scanning technique, attacker 
use local preference and selects start IP address with small 
address distance 𝜆(ℎ) to the host IP address.  

Non-preference sequential scanning is the same as 
preference sequential scanning, but it selects the starting IP 
address in a random manner within the scanning space Ω. 

Preference parallel using parallelism to increase the 
scanning performance with a drawback of causing a large 
amount of network traffic. For our simulation, we use 10 
parallel probing messages. 

 
 

In Fig. 9 we presented the performance of dynamic 
deception system. We deployed 20 subnets, and in each 
there are 45 hosts are present. The fake network nodes are 
evenly distributed throughout the subnet. From the 

Figure 9. Average vulnerable host detection rate in minutes for the scanning strategies Preference Parallel, Local 
Preference, Preference Sequential, Non- Preference Sequential with and without our DDS system 
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performance figure, we can see that with our DDS the 
infected host detection rate is less than without DDS. Here 
infected host means attacker successfully exploit the 
vulnerabilities in that host. From the Fig. 9 it can be 
inferred that defender successfully drive the attacker 
towards fake network by blocking vulnerabilities in the real 
network. 

From Table 9, it is clearly evident that as soon as 
attacker knowledge level is decreasing, defender can save 
more resources in terms of network availability to 
legitimate users. Based on our simulation results, it is 
evident that the defender can decide when and where to 
spend more resources or save resources. 

7. Conclusion

In this paper, we show that with our dynamic defense 
system defender can save resource in terms of availability 
cost and security cost. By introducing fake networks, we 
also alter the perception of network view to the attacker, 
and defender’s action influence an attacker to take fake 
network attack path towards fake goal state. Using SDN, 
the defender can analyze the malicious traffic and reply 
back to the attacker with a mix of true and false 
information. After adding attacker capabilities in the 
model, we learned that if the attacker’s knowledge level is 
high and aggression and stealthiness level are moderate, the 
defender needs to spend more resources than the opposite 
case.   
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