
1

Attacker Capability based Dynamic Deception Model for
Large-Scale Networks
Md Ali Reza Al Amin1,*, Sachin Shetty1, Laurent Njilla2, Deepak K. Tosh3, and Charles Kamhoua4

1Old Dominion University, Norfolk, Virginia, USA
2Air Force Research Lab, Rome, New York, USA
3University of Texas at El Paso, El Paso, Texas, USA
4Army Research Lab, Adelphi, Maryland, USA

Abstract

In modern days, cyber networks need continuous monitoring to keep the network secure and available to legitimate users.
Cyber attackers use reconnaissance mission to collect critical network information and using that information, they make an
advanced level cyber-attack plan. To thwart the reconnaissance mission and counterattack plan, the cyber defender needs to
come up with a state-of-the-art cyber defense strategy. In this paper, we model a dynamic deception system (DDS) which
will not only thwart reconnaissance mission but also steer the attacker towards fake network to achieve a fake goal state. In
our model, we also capture the attacker’s capability using a belief matrix which is a joint probability distribution over the
security states and attacker types. Experiments conducted on the prototype implementation of our DDS confirm that the
defender can make the decision whether to spend more resources or save resources based on attacker types and thwart
reconnaissance mission.

Keywords: cyber deception, network security, POMCP, POMDP, SDN, exploit dependency graph.

Received on 30 May 2019, accepted on 13 July 2019, published on 01 August 2019

Copyright © 2019 Md Ali Reza Al Amin et al., licensed to EAI. This is an open access article distributed under the terms
of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.13-7-2018.162808

1. Introduction

The increasing rate of cyber networks and network devices
has brought attention to make more resilient in terms of the
security of the devices as well as cyber networks. The static
nature of these cyber networks let the attacker perform
reconnaissance activity and identify potential
vulnerabilities. Using the reconnaissance mission, the
attacker collects critical network information such as
network topology, open ports, and services running on
those ports, and unpatched vulnerabilities. Having that
critical information increases the probability to penetrate
the network and gaining access to critical infrastructure. As
reported by the Department of Homeland Security’s
Industrial Control Systems Cyber Emergency Response
Team (ICS-CERT), attacks on critical infrastructure
sectors (such as manufacturing, energy, communication,

*Corresponding author. Email: malam002@odu.edu

water, and transportation systems) have remained
persistent over the past few years, with 245 in 2014, 295 in
2015, 290 in 2016 and 310 in 2017 [43]. Methods and
techniques have developed to detect and mitigate those
attacks. Among those approaches, one technique is to patch
the vulnerability upon availability of patching. It is
typically time consuming and costly for a vendor to
discover and develop the patch. This significant delay puts
the cyber networks being operational without patching the
vulnerability, which is very risky. To address this issue,
one need to develop an active form of cyber defense system
which not only secure the cyber networks but also maintain
the system availability to the trusted users.

To develop such a system is difficult in presence of
active attackers in operational system because it can inject
series of exploits simultaneously. To model these
complexities, researchers have proposed graph-based tool
such as attack tree/graph. Unfortunately, the attack graphs

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

Md Ali Reza Al Amin et al.

2

can be enormously large for a medium-size cyber network
thus makes difficult to apply in an enterprise network. To
get rid of this issue, authors in [5] made an assumption on
the attacker’s behavior, named monotonicity, which states
that the success of the previous exploit will not interfere
with the success of future exploit. With the help of this
assumption, the significant amount of information from the
attack graph can be reduced and make a useful attack
graph.

It is always beneficial for a defender if it has prior
information on how an attacker can infiltrate the cyber
network. This knowledge will help the defender to take
appropriate actions to thwart any cyber-attack. One of the
difficulties with this approach is how to quantify the
attacker’s progression at any given time. The attacker’s
status is constantly changing based on the defender’s
action. Also, the defender has less information about the
attacker’s actual strategy and actions. The defender has
only access to a stream of noisy security alerts from
intrusion detection system (IDS), and the security alerts
suffer from a high rate of false alarm. The defender’s action
affects the system availability while maintaining the
security of the network. So, the defender needs to make a
trade-off between the availability cost and security cost.

In this paper, we aim to deceive the attacker with a fake
network while maintaining the trade-off between
availability and network resiliency. To do so, we use an
exploit dependency graph to capture the attacker’s
progression throughout the network. We represent the
exploit dependency graph as a hypergraph where nodes
represent security conditions and directed hyperedges
represent exploits. Each security conditions can be either
true or false. When the condition is true that means the
attacker possesses a certain capability. At any given time
and certain security states, attacker uses certain capabilities
to exploit the vulnerability. We incorporate these attacker
capabilities in our model to capture different kinds of
attacker behavior. Capturing attacker capabilities can help
the defender to save or enforce more resources to prevent
the attacker from reaching the goal. A TCP reset can block
an attacker from further penetrating if the attacker is a
novice attacker, but the action will not work for a more
knowledgeable attacker. This is why it is very critical for a
defender to learn the attacker's capability while the
defender is making a counterattack plan. To do so, the
defender maintains a belief matrix which is the joint
probability distribution over attacker type and actions. In
this paper, we defined attacker types based on the different
level of attacker knowledge, aggression, and stealthiness.
The belief matrix is constructed in such a way that it is
consistent with all available defender’s information such as
security alerts, previously deployed action. Defender
summarizes all this information make an optimal action
which all balance the trade-off between security and
availability. Taking optimal action casting as a partially
observable Markov decision process (POMDP).

To resolve the scalability issue due to the high
dimensionality of the defense problem, we use an online
algorithm based on the partially observable Monte-Carlo

planning [17], which simulates future possible state
trajectories from the current belief to evaluate the
effectiveness of various defender actions.

We use Software Defined Networking (SDN) to deceive
the attacker with a mix of true and false information in the
reconnaissance phase. These crafted information helps to
change the network view perception from attackers’ point
of view. Defender can analyze malicious traffic and
differentiate the traffic from trusted user to malicious user
using SDN. In this way, a trusted user can take seamless
services while the defender is brawling with the attacker.

As our main contribution in this paper, we develop a
dynamic deception system (DDS) to deceive the attacker
with the fake network while capturing attacker capabilities
and maintaining the trade-off between availability cost and
security cost. The key contributions of this paper are
summarized below,

(i) To evaluate our deception goal with the fake network,
we design and implement our DDS based on SDN.
With the combined functionality of our deception
server, online deception algorithm, and SDN
controller, we achieve the cyber network deception
while maintaining the network availability to the
trusted users.

(ii) By incorporating attacker capabilities in our model,
we show that the defender can decide when to spend
resources or save resources. By simulating our model,
it is evident that if the attacker’s knowledge level is
high where aggression and stealthiness level is
moderate, the defender should spend more resources
than the opposite one.

(iii) Using SDN and fake network, we show that using our
approach there is less infected real network hosts than
without our approach. This is because, the defender
successfully steers the attacker towards the fake
network by blocking vulnerabilities.

2. Related Work

Researchers have proposed cyber deception approaches
that introduce fake networks by varying system
characteristics [38], manipulating attacker's probes [36, 37]
and introducing virtual network interface controllers and
route mutation [39]. These approaches are focused on
introducing fake nodes from an attacker's point of view and
assume a static environment and attacker and defender
strategies.

In [38], authors introduce systems that change the view
of a cyber network by obscuring some system
characteristics where [36] alters the system view by
manipulating attackers’ probe. Trassare et al. [37] use
traceroute function to deceive the network reconnaissance
attack. In Dunlop et al. [42], authors propose a mechanism
where they hide IPv6 packets to achieve anonymity. They
added a virtual network interface controller and shared a
secret with all hosts. To defend against eavesdropping and
DoS attack Duan et al. [39] presents a Random Route

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

Attacker Capability based Dynamic Deception Model for Large-Scale Network

3

Mutation Technique to change the networks data flow.
Reconnaissance tools such as Nmap or Xprobe2 collects
critical network information like host OS or service by
analyzing the packet received after probe.

In recent publications [29], [30], and [31] authors
present a system that performs dynamic address space
randomization based on Software Defined Networking
(SDN). These approaches turn out an effective one, but
they suffer from high network overheads and also cannot
detect the malicious scanning source where we achieve
using our dynamic deception system.

The authors in [40], propose a defense system based on
IP address randomization and placement of network
decoys. In their system, they only consider the scanners
from the Internet but in our system, we consider insider
scanners as well as the malicious scanner from the internet.

 All these approaches in cyber deception area tend to
change the network view from an attacker’s point of view.
However, they all failed to answer the question of what if
the attacker enters the network where unpatched
vulnerabilities are present, and patches are not released yet.
A network administrator cannot just let the attacker
compromised the system. As we mentioned earlier, the
attacker always has time-advantage over unpatched
vulnerability where vulnerability exposure window is high.
A defender has to take defensive action while making a
tradeoff between availability and security. Our approach
not only changes the network view but also influence the
attacker to take the path toward fake networks while
keeping availability and security at a satisfactory level.

In [10], the authors use the dependency graph to provide
solutions for the cyber defense system. The issue with that
approach is network availability to the trusted user because
attacker always starts with the same static network and
defender have to take actions (system modification induces
blocked vulnerabilities) which will have a more significant
impact on availability. We solve this issue by introducing
fake networks along with real networks. Our approach will
help defender maintaining the network service availability
and collect critical intelligence information about the
attacker.

3. Overview

3.1 Background

Exploit Dependency Graph
The concept of attack trees and graphs were developed with
a goal in mind that one can study all possible sequences of
exploits that an intruder can take to infiltrate a network and
reach its goal(s) state. Attack graph consists of vertices
(system states) and edges (transition relations) where each
vertex connect each other via exploits. To generate an
attack graph, one has to enumerate all system states. In this
process, the attack graph quickly grows exponentially.
There are several attack graph applications in network
security such as vulnerability analysis, intrusion alert

correlation, and attack response system. Attack graph can
be applied in both penetration testing and network
hardening.

Significant progress has been made in generating attack
graph automatically [1], [2], [3]. Along with the network
size, attack graphs grow exponentially which makes the
visualization nearly impossible for a human to understand
what’s going on. To deal with this complexity, [4]
proposed a system where one can reduce the attack graph
information without loss of any generality and create a
graph which grows quadratically. Authors in [5] made an
assumption regarding the attacker’s behavior which allows
to simplify the attack graph and also reduce the attack
information. The assumption named as monotonicity [5],
states that the success of one exploit does not interfere with
the attacker’s future ability to exploit. With the help of this
assumption, one does not need to enumerate all security
states, rather can create exploit dependency graph
describing how security conditions relate to exploit. The
advantage of exploit dependency graph is that it can be
easily generated for a large network where the
corresponding attack graphs would be obstinately very
large to generate. In [5], the authors construct a graph
where nodes represent security condition, and edges
represent exploit, which termed as exploit dependency
graph. Security conditions are the atomic fact that they can
be either true or false and exploits relate to security
conditions via preconditions and postconditions. The
approach taken by Ammann et al. in [5] is similar we adopt
in this paper to do the modelling of attack pathways using
exploit dependency graph. The edges in exploit
dependency graph relates security conditions in such a way
where a single exploit might have multiple preconditions
and multiple postconditions. Such edges which are
connects two sets of nodes rather than a pair of nodes we
called it hyperedges. The security conditions present in [5]
are a mix of different attributes which is true under normal
network configurations termed as initial conditions. During
an attack, attributes can be made true which is attack
conditions. With this issue, the initial conditions are set to
be always true whether a network is subject to be an attack
or not. For this reason, we take a slightly modified
definition from [6] where it does not include conditions
representing the normal network configuration explicitly
rather assume that the set of conditions solely consists of
attack conditions. This modification allows setting the
conditions of a network false which has not been subject to
an attack.

POMDP Approach
A partially observable Markov decision process (POMDP)
is a process which connects unobservant system states to
observations. POMDP is a combination of a Markov
decision process (MDP) to model system dynamics with a
hidden Markov model. The reward from the POMDP
approach depends on an agent’s action and sequence of
system state where the agent cannot see the system state
directly rather, the agent makes an observation. Based on
the observation agent construct a belief state which is a

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

4

probability distribution over system states. Based on the
belief matrix agent call the optimal action for each belief
state. The advantage of POMDP is that its general enough
to model different kinds of real-world problem such as
robot navigation problem, cybersecurity, machine
maintenance, and planning issue with uncertainty.

A discrete POMDP can be formally described as a 7-
tuple (𝑆, 𝐴, 𝑇, 𝑅, Ω, 𝑂, 𝛾), where

• 𝑆 = {𝑠,, 𝑠-, … , 𝑠/} is a set of states,
• 𝐴 = {𝑎,, 𝑎-, … , 𝑎/} is set of actions,
• 𝑇	is a set of conditional transition probabilities
𝑇(𝑠4	|	𝑠, 𝑎) for the state transition 𝑠 → 𝑠4,

• 𝑅: 𝑆 × 𝐴 → ℝ is the reward function,
• Ω = {𝑜,, 𝑜-, … , 𝑜<} is a set of observations,
• O is a set of conditional observation probabilities
𝑂(𝑜|𝑠4, 𝑎), and

• 𝛾 ∈ [0,1] is the discount factor.

At each time step, the system is in some state 𝑠 ∈ 𝑆 and
for the action 𝑎 ∈ 𝐴 taken by the agent the system state
transitioned from state 𝑠 to 𝑠4 ∈ 𝑆 with probability
𝑇(𝑠4	|	𝑠, 𝑎). While transitioning state, at the same time
agent receive an observation 𝑜 ∈ Ω with an observation
probability 𝑂(𝑜|𝑠4, 𝑎). At last, the agent receives the
reward 𝑅(𝑠, 𝑎). The ultimate goal is to choose an action in
each belief state which will maximize the expected future
discounted reward,

𝐸 DE𝛾F𝑅(𝑠F, 𝑎F)
G

FHI

J.

POMCP Framework
In large and fully observable domains, Monte-Carlo Tree
Search (MCTS) has tremendous performance in online
planning [6]. MCTS is a new approach to do online
planning. It overcomes the curse of dimensionality by
taking only sample states instead of taking the whole
possible system states. MCTS requires a black box to
simulate where the problems are too complicated or too
large to represent the probability distribution. It has another
advantage in terms of prior domain knowledge. In
estimation the potential, MCTS uses the random simulation
for long-term reward where it plans over the long horizon
and often effective in estimation the potential where any
prior domain knowledge or heuristics search is not present
[7].

The authors in [6] extended MCTS to partially
observable environments (POMDPs). Other planning
algorithms, i.e., value iteration [8] suffers from two
important issues referred to as scaling and history. For
example, for n-states value iteration algorithm creates n-
dimensional belief state, and it must evaluate all history
which is exponential in the horizon.

The search algorithm in [6] constructs a search tree of
histories which is online-based. The value of history is
estimated by the node of the search tree using Monte-Carlo

simulation. The start space in each simulation is sampled
from the current belief state, and transition and
observations are sampled from the black-box simulator.
The authors in [6] showed that for correct belief state the
planning algorithm converges to the optimal policy for any
finite horizon POMDP. Monte-Carlo simulation also can
be used in updating the agent belief state [6]. The important
feature of Partially Observable Monte-Carlo Planning
(POMCP) algorithm is that it uses the same set of Monte-
Carlo simulation for both trees search and belief state.

3.2 Threat Model and Assumptions

The model is based on a single attacker who is trying to
penetrate the network where we are going to capture the
attacker’s capability. Without considering the attacker’s
capability, a security model is a waste of resource or lack
of resource. Based on the attacker’s capability, the
defender is going to block vulnerabilities to thwart the
attacker and drive the attacker towards the fake network.
The defender is able to be blocking exploits by doing
system modification. Those system modifications have an
effect on normal system operation. This is why the
defender needs to estimate the true attacker’s capability.
For a novice attacker, might be it is sufficient to apply some
countermeasure rather than blocking a vulnerability. In our
previous paper [9], we assumed attacker capabilities;
however, in this paper, we incorporated attacker
capabilities to do the dynamic security model which is
presented in Fig. 1.

Figure 1. Dynamic security model

There are two main primary objectives of our dynamic
security model i.e., 1) quantify the security state and, 2)
taking the optimum deception action based on the attacker
capabilities. To quantify the security, we define the
security state as a current level of attacker progression. To
capture the attacker progression, we use an exploit
dependency graph [10] which is a directed acyclic
hypergraph, H = (N, E) consists of nodes and hyperedges.
Nodes represent a set of security conditions 𝑁 =
{𝑐,, 𝑐-, … , 𝑐/} and hyperedges represent a set of exploits
where 𝐸 = {𝑒,, 𝑒-, … , 𝑒/}. The security conditions in the
graph can be either true or false. When the security

Md Ali Reza Al Amin et al.

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

5

condition is in true state it means attacker has a particular
set of capabilities whereas false value represent attacker
does not possess any condition from hypergraph H. For an
example, if the attacker possesses a condition that could be
led to a conclusion that an attacker may build the trust
relationship between two hosts or the attacker reached the
goal state. To specify the goal state, we define a parameter
to represent the goal node 𝑁<

O ⊆ 𝑁,𝑁Q
O ⊆ 𝑁 where 𝑁<

O and
𝑁Q
O are real and fake network goal node, respectively. This

is the node defender wants to protect from an attacker.
Defender’s main objective is to protect the 𝑁<

O and drive
the attacker towards 𝑁Q

O.
Each exploit from hyperedges has two conditions,

termed as 𝑁RS(𝑝𝑟𝑒) and 𝑁RV(𝑝𝑜𝑠𝑡). We assume based on
[10] that, to attempt an exploit 𝑒R an attacker needs to set
true all of the preconditions of that exploit termed as 𝑗 ∈
𝑁RS. There are some exploits without having any
preconditions, 𝑁RS = ∅, termed as initial exploits and
denoted by 𝐸I. To attempt initial exploits attacker does not
need any prior capabilities (maliciously enabled). When an
attempt to an exploit is successful, all of its postconditions
become enabled and let the attacker penetrate more into the
network.

Figure 2. A sample Exploit Dependency graph with a
real network (left) and a fake network (right). The above

dependency graph for real & fake network H = (N,E)
consists of 𝑛[\ = 10 security conditions, 𝑛]\ = 11

exploits (in the form of hyperedges), 𝑛[^ = 13 security
conditions and 𝑛]^ = 11 exploits respectively. Triple-

encircled nodes are representing as goal conditions 𝑁<
O =

{𝑐,I}	𝑎𝑛𝑑	𝑁Q
O = {𝑐,-, 𝑐,a}.

In Fig. 2, we present an exploit dependency graph which is
created using Topological Vulnerability Analysis (TVA)
[11] tool to explain the model and the results. Whenever a
condition is enabled, it means an attacker is having a
particular set of capability where the current security state,
𝑠F, describes the set of capabilities of the attacker. A
security state, 𝑠 ⊆ 𝑁, is called a feasible security state if for
every condition 𝑐b ∈ 𝑆 there exists at least one exploit 𝑒R =

(𝑁RS, 𝑁RV) ∈ 𝐸 such that 𝑐b ∈ 𝑁RV𝑎𝑛𝑑	𝑁RS, 𝑁RV ⊆ 𝑠 [10] and
set 𝑆 = {𝑠,, … , 𝑠/} represents the state space for this model.
In this model, we assume defender will act first and taking
actions which eventually interfere with the attacker’s
progression and reduce the attack surface. The security
state evolves probabilistically as a function of defender’s
and attacker’s action [10]. We also assume that the
defender has the capability to take action in effect of
blocking vulnerabilities. This action includes changing
network configuration or shut down a port or any active
services. But in reality, the defender is not able to block any
individual vulnerability as per authors in [10], rather
defender’s action induces a set of blocked vulnerabilities.
On the other hand, sometimes defender’s action is not able
to block any vulnerability. To capture this behavior, we
assume that the defender has some certain set of actions.
The action which will block the vulnerability and influence
an attacker to choose a different network path. So, we
assume that the defender can change the network
configuration on the fly based on the attacker’s action to
prevent vertical movement. The space of defender’s
available action set is represented by 𝑈 = {𝑢I, 𝑢,, … , 𝑢/}.
Here, 𝑢I represents defender’s null action which
eventually means the defender will not block any exploit.
The remaining actions from the set of 𝑈, signifies the
network changes which will induce a set of blocked
exploits. Each action associated with the set of blocked
exploits influences the attacker to seek the available paths.
Defender’s action will have an impact on the availability of
the system to trusted users. So, it is a goal to a defender to
make the trade-off between network availability and
network security. To capture this behavior, we assign a cost
to each of the defender’s action set. Based on the cost, the
defender is able to choose an action which will limit the
progression of the attacker throughout the network and
minimizing the negative impact on the system availability.

Based on the single attacker who is trying to infiltrate
the system can only increase its capability by exploiting
more vulnerabilities. On the other hand, it also increases
the chance of being detected. Defender’s goal is to prevent
the exploitation of a vulnerability on the real network and
to allow the exploitation on the fake network. From the
monotonicity assumption, we know that once an attacker
enables a condition, it remains enabled all the time. For a
given security state, 𝑠F, the attacker will have some set of
available exploits described by 𝐸(𝑠F). From the available
set of exploits, attacker will attempt exploits based on his
capabilities. Available set of exploits is defined by Eq. (1)
which is given below for real and fake network,

𝐸(𝑠F = 𝑠) = {𝑒𝑟R = (𝑁RS, 𝑁RV) ∈ |𝑁RS ⊂ 𝑠,𝑁RV ⊈ 𝑠} (1)
𝐸(𝑠F = 𝑠) = {𝑒𝑓R = (𝑁RS, 𝑁RV) ∈ |𝑁RS ⊂ 𝑠,𝑁RV ⊈ 𝑠} (2)

Two essential requirements must be satisfied for an exploit
𝑒R = (𝑁RS, 𝑁RV) to be available: (1) 𝑁RS ⊂ 𝑠, i.e., all of the
exploit’s preconditions must be satisfied :(2) 𝑁RV ⊈ 𝑠, i.e.,
the exploit’s postconditions must not all be satisfied [10].

Attacker Capability based Dynamic Deception Model for Large-Scale Network

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

6

Figure 3. Sample evolution (real network) of the security
state for a given state-action-type (𝑠F, 𝑢F, 𝜑F): (a) Consider

the security state 𝑠F = {𝑐,𝑐-𝑐a𝑐i𝑐j} (green circle) and
defense action 𝑢F = 𝑢 where 𝐵(𝑢) = {𝑒j, 𝑒l} (here

blocked exploits are shown with red shaped hyperedge).
So, the available set of exploits using Eq. (1) is 𝐸(𝑠F) =
{𝑒j𝑒l𝑒m𝑒n} and (b) attacker attempt each exploit, which

does not
lie within a set of blocked exploits, with a probability of
attack and succeed which is defined by Eq. (3,5). In this

example, only exploits 𝑒m, 𝑒n are succeeded and
the updated security state is 𝑠F = {𝑐m, 𝑐n} (green circle). In

the above figure, doubled circle shaded
shape represents the security state.

Fig 3. describes the set of available exploits for the security
state 𝑠F. Fig. 3 is produced from the exploit dependency
graph presented in Fig. 2.

The strategy attacker will take solely depends on
attacker capability. To model attacker types we assume an
attacker will be one of 𝑛 types which are represented by the
set Φ = {𝜑,, 𝜑-, … , 𝜑/}. Each type of attacker 𝜑R ∈ Φ will
have the conditional attack probabilities (CAP) over the
exploits. CAP depends on the parameters such as
defender’s action 𝑑p, the available set of exploits 𝑎], and
attacker capabilities 𝑎]. For a given security state 𝑠F and
under a defense action 𝑢F the CAP over the real network
exploit 𝑒𝑟q ∈ 𝐸 is given by,

𝑃]<s(𝑠F, 𝑢F, 𝜑F)

=

⎩
⎪
⎨

⎪
⎧E𝑃(𝑑p, 𝑎]|𝑎[) = 𝑃x]<s(𝜑R), 𝑤ℎ𝑒𝑛	𝑒𝑟q ∈ 𝐸(𝑠F)	\	𝐵(𝑢F)

E𝑃(𝑑p, 𝑎]|𝑎[) = 𝑃]<s(𝜑R), 𝑤ℎ𝑒𝑛	𝑒𝑟q ∈ 𝐸(𝑠F) ∩ 𝐵(𝑢F)

0																													𝑤ℎ𝑒𝑛	𝑒𝑟q ∉ 𝐸(𝑠F) ⎭
⎪
⎬

⎪
⎫

	(3)

Similarly, for the fake network,

𝑃]Qs(𝑠F, 𝑢F, 𝜑F)

=

⎩
⎪
⎨

⎪
⎧E𝑃(𝑑p, 𝑎]|𝑎[) = 𝑃x]Qs(𝜑R), 𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸(𝑠F)	\	𝐵(𝑢F)

E𝑃(𝑑p, 𝑎]|𝑎[) = 𝑃]Qs(𝜑R), 𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸(𝑠F) ∩ 𝐵(𝑢F)

0																																				𝑤ℎ𝑒𝑛	𝑒𝑓q ∉ 𝐸(𝑠F) ⎭
⎪
⎬

⎪
⎫

																																																																																																												(4)

By dividing the set of available exploits into two categories
helps us to understand how an attacker change the attacking
strategy. When defender does not block any exploits,
attacker attempt with a probability which is defined by the
term 𝑃x]<s(𝜑R)&𝑃x]Qs(𝜑R). On the other hand, attacker attempt
with a probability 𝑃]<s(𝜑R)&𝑃]Qs(𝜑R), when defender blocks
exploit. The value 0 means that there are no available set of
exploits to be attempted. When the attacker is not able to
identify blocked exploits in a security state for action 𝑢 that
means 𝑃x]<s(𝜑R) = 𝑃]<s(𝜑R). On the other hand, if the attacker
identifies that exploits are blocked in this security state, the
attacker would not attempt it, 𝑃]<s(𝜑R) = 0.

Exploits that are attempted with a probability depends
on a certain parameter succeed, which is called attack
success probability (ASP). To block vulnerabilities
defender will choose the action from the action set 𝑢 ∈ 𝑈.
Attacker always tries to create a set of available initial
exploits from reconnaissance state to penetrate the
network. So, for any given exploit, 𝑒𝑟q and 𝑒𝑓q, there is a
probability of success,

𝛼]<s(𝑠F, 𝑢F, 𝜑F) = �
𝛼x]<s	𝑤ℎ𝑒𝑛	𝑒𝑟q ∉ 𝐵(𝑢F)
0						𝑤ℎ𝑒𝑛	𝑒𝑟q ∈ 𝐵(𝑢F)

 (5)

Similarly, for the fake network,

𝛼]Qs(𝑠F, 𝑢F, 𝜑F) = �
𝛼x]Qs	𝑤ℎ𝑒𝑛	𝑒𝑓q ∉ 𝐵(𝑢F)
0						𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐵(𝑢F)

 (6)

As soon as, the exploit attempts are successful, it enables
all the postconditions, which eventually form the updated
security state, as shown in Fig. 3. Defender's lack of
information regarding the current security state and
attacker true strategy which can be learned from noisy
security alerts. In the next section, we describe how the
defender uses that information to construct the belief by
getting security alerts from the Intrusion Detection System
(IDS). These security alerts are mixed with false positive
and false negative alerts. For a defender, it is important to
differentiate those mixed alerts for better defense actions.
To do the modeling defender’s observation with the
security state, we take the approach from our previous
paper [9] which is described below.

Intrusion Detection System (IDS) is a major component
in this model because the defender’s certainty over the
security state depends on security alert. IDS generate
security alerts in a sequential form when an attacker
attempts to exploit and progress through the network.
Those security alerts are not free-form noise terms false
positive and false negative. Even sometimes there will be
no alert for exploit activity which solely depends on

Md Ali Reza Al Amin et al.

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

7

attacker capability (stealthiness) termed as a false negative.
Similarly, it generates alert for legitimate user activity
termed as false positive. It is critically important for the
defender to know the exploit activity is going on. Based on
the alert, the defender will choose his defensive action to
drive the attacker towards deployed fake networks.
Filtering out the noisy alert from true alert is an important
factor to improve the efficiency of the defender when it
turns in real-time. In this work, we are considering only
known vulnerabilities. There are several alert correlations
with exploit activity techniques out there [12], [13], [14].
In this work, we are not focusing on alert correlation;
rather, we are assuming that defender can do the alert
correlation. Let 𝑍 = {𝑧,, 𝑧-, … , 𝑧/} and 𝑍′ = {𝑧,4 , 𝑧-4 , … , 𝑧/4 }
represent the finite set of security alerts, real and fake
network respectively, generated by the IDS which is
eventually the observation set for the defender. Each of the
alert from real nodes set and fake nodes set can be
generated by the IDS, given by the set 𝑍(𝑒<R) =
{𝑧��(,), 𝑧��(-), … , 𝑧��(pR)} ∈ 𝑃(𝑍) and 𝑍�𝑒QR� =
{𝑧��(,), 𝑧��(-), … , 𝑧��(�R)} ∈ 𝑃′(𝑍′) where 𝑃(𝑍) and 𝑃′(𝑍′)
are the power set of 𝑍 and 𝑍′. The vector of security alerts
received by the defender at time 𝑡 + 1, denoted by 𝑦FV, ∈
Υ = {0,1}/�, consists of all security alerts triggered during
the given iteration [10].

To capture the uncertainty over the security state and
attacker type we construct a belief matrix denoted by 𝛽F.
This belief matrix is also called information state [15]. It
combines all the defender’s available information into the
matrix which includes initial security state, attacker type,
history of all defense action from time 0 to 𝑡 − 1 and all
observations (security alert) from time 0 to 𝑡 denoted by
𝜁F = (𝛽I, 𝑢I, 𝑦I, … , 𝑢FS,, 𝑦F). The belief matrix represents
joint probability distribution over security states and
attacker types [10], is given below as a matrix form,

𝛽F =

⎣
⎢
⎢
⎢
⎢
⎡ 𝛽F

,,,			𝛽F
,,- …	𝛽F

,,/�

𝛽F
-,,		𝛽F

-,- …	𝛽F
-,/�

.

.

.
𝛽F
/�,,		𝛽F

/�,- …	𝛽F
/�,/�⎦

⎥
⎥
⎥
⎥
⎤

∈ ∆(𝑆 × Φ)

The space ∈ ∆(𝑆 × Φ) represents the probability
distribution over state and type space (𝑆 × Φ). In the
matrix, 𝛽F presented in the double-stochastic matrix for
each 𝑡. Each row in the matrix probability mass function
over the type space for a given state, and each column
represents a probability mass function over the space of
security states for a given type [10].

Defender update the matrix whenever any information
reflects consisting of current defense action 𝑢F and
observation vector 𝑦FV,. For any defense action 𝑢F = 𝑢 and
observation 𝑦FV, = 𝑦q, the belief update is defined as
𝑏FV, = �𝑇b(𝑏F, 𝑦q, 𝑢) 𝑠b ∈ 𝑆 where (𝑗)′𝑡ℎ is the update
function, 𝑇b(𝑏F, 𝑦q, 𝑢) = 𝑃�𝑆FV, = 𝑠b	¡	𝑈F = 𝑢, 𝑌FV, =
𝑦q, 𝐵F = 𝑏F)	is given by [8],

									𝑏FV,
b = 𝑇b(𝑏F, 𝑦q, 𝑢) =

£¤
¥(¦§)<¤s

¥ (¦§)

¨(¦§,©s,ª)
 (7)

The above terms are defined below,

𝑝bª(𝑏F) = 𝑃�𝑆FV, = 𝑠b	¡	𝑈F, 𝐵F) = E 𝑏FR𝑝Rbª

«�∈¬

(8)

𝑟bqª (𝑏F) = 𝑃(𝑌FV,	|	𝑆FV, = 𝑠F, 𝑈F, 𝐵F)

= E 𝑏FR𝑟Rbqª

«�∈¬

(9)

𝜌(𝑏F, 𝑦q, 𝑢) = 𝑃(𝑌FV,|	𝑈F, 𝐵F)
= E 𝑟bqª(𝑏F)𝑝bª(𝑏F)

«¤∈¬

(10)

where 𝑝bª is the transition probability from state 𝑠R to 𝑠b
under defense action u, and 𝑟bqª(𝑏F) = 𝑃(𝑌FV,	|	𝑆FV, =
𝑠F, 𝑈F, 𝐵F) is the probability that IDS will generate
observation vector 𝑦q when transitioning from state 𝑠R to 𝑠b
under a defense action u. Eq. (8) defines the trajectory of
beliefs based on security alerts termed as observations and
series of actions. Under a defense action u, transition
probability 𝑠R to 𝑠b is controlled by a set of exploit events.
For the available set of exploits from Eq. (1), each event in
the set of exploits in the binary form (successful and
unsuccessful). The belief update procedure is a controlled
Markov Chain where control is defender action [10]. The
majority of POMDP planning methods operate under
Bayes theorem [16]. For a large-scale cyber network, a
single Bayes update procedure could be computationally
infeasible. To plan efficiently for large-scale POMDP, we
adopted the model described in [17] for the approximation
of the belief state.
As it is mentioned earlier in this section that this model is
based upon a single attacker who is trying to penetrate into
the network. However, from multiple attackers’
perspective the model needs to be updated. As an example,
if we think that there are two attackers in the network and
defender is trying to deceive those two attackers, using our
model defender can deceive one attacker at a time. Two
attackers may appear at different locations in the network
at the same time. As our model is state based so that to work
with two or more attackers at a time, we need to improve
our model. Another important factor, we need to consider
that defender cannot block single vulnerability rather than
defender’s action induce a set of blocked vulnerabilities.
This is another reason why multiple attacker concept will
not work with our model.

4. Defender’s Action

As soon as the attacker progress through the network
defender will take action in real-time to limit the attacker
progression. Selection of action step can be improved if the

Attacker Capability based Dynamic Deception Model for Large-Scale Network

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

8

defender has some domain knowledge beforehand. To aid
with the domain knowledge, we introduce the utility
function. Before taking any defensive action, it is also
necessary to measure the impact on availability and
security cost.

4.1 Utility Function

Attacker builds an array of node utility function based on
the base score metrics for exploiting vulnerabilities [18].
For every exploit, the attacker uses the metrics to justify
the attack success probability which is illustrated in Eq.
(13) and serves as the attacker's initial knowledge about the
network and vulnerability. The defender also creates the
same utility array. From [18], we borrow the impact (I), and
exploitability (V) metrics to define the defender's utility.

𝐼 = 10.41 ∗ (1 − (1 − 𝐶𝐼) ∗ (1 − 𝐼𝐼) ∗ (1 − 𝐴𝐼) (11)

𝑉R = 20 ∗ 𝐴𝐶 ∗ 𝐴𝐼 ∗ 𝐴𝑉 (12)

The above terms are defined as CI = ConfImpact, II=
IntegImpact, AI = AvailImpact, I = Impact, Vi =
Exploitability, AC = AccessComplexity, AI =
Authentication and AV = Accessvector. The utility array
function is defined below,

𝑈p(<,Q) = 𝐼 ∗ 𝑉R (13)

Example 1: Consider a scenario where there are five nodes
and attacker send scan queries to the neighbors of node 1.
The defender needs to respond to the scan queries
deceptively by mixing of true/false information at random.
Here, 2, 3 are real nodes and 4, 5 are fake nodes having
following vulnerabilities vul(𝑛-), vul(𝑛a), vul(𝑛i) and
vul(𝑛j). Defender wants to drive the attacker towards node
4 and 5. We are assuming that using above utility array
equation defender come up with the following values
𝑈p(𝑛-) = 15, 𝑈p(𝑛a) = 5, 𝑈p(𝑛i) = 30, and Ua(n5) = 50. A
true rational attacker will go after node 5.

4.2 Cost Function

In cyber-deception, there is a possibility where you can
leverage the availability cost over the security cost. There
are two benefits when the attacker is in the fake network:
1) defender can collect as much as intelligence information
on the adversary which helps to derive the attacker’s
capability, intentions, and targets, etc., 2) defender can
maximize the network availability to the trusted user
during a cyber-attack. An availability cost 𝑐p for each
action defender take to drive the adversary towards the fake
network. For some defense action, there will be no impact
on the availability, and sometimes there will be a more
significant impact. To formalize this notion, we represent
the availability cost 𝑐p:	𝑈 → ℝ for each defense action
taken by the defender similarly for the security cost
𝑐«:	𝑆 × 𝑈 → ℝ to depict the cost while the system is in

various security state under defense action u. Here, we are
considering the availability of a node regarding end-to-end
packet delay (considering IT system).

End-to-End Packet Delay
Let’s assume that, 𝑑³ and N represent total delay and
number devices between a source and destination. The end-
to-end delay defined in [19] as,

𝑑³ = 𝑁�𝑑£<´[+ 𝑑F<p/« + 𝑑£<´£ + 𝑑µª]ª]�

+ 𝑑£<´[´

(14)

The above equation’s terms are defined as follows 𝑑£<´[=
processing delay, 𝑑F<p/« = transmission delay, 𝑑£<´£ =
propagation delay, 𝑑µª]ª] = queuing delay and 𝑑£<´[´ =
processing overhead because of authentication, integrity,
and confidentiality. For an uncongested enterprise
network, 𝑑µª]ª] ≃ 0 and the distance between a source and
destination node is very small so that 𝑑£<´£ ≃ 0. The
processing delay, 𝑑£<´[, is often negligible; however, it
strongly influences a router’s maximum throughput, which
is the maximum rate at which a router can forward packets
[24]. So that, Eq. (14) can be reduced to,

𝑑³ = 𝑁 × 𝑑F<p/« (15)

where 𝑑F<p/« = 𝐿/𝑅, L = packet size and R = transmission
rate. For every defense action, defender will measure the
total end-to-end packet delay. So, the availability cost in
terms of delay is defined as follows 𝑐ª = 𝑑³. We assign
more cost to the goal conditions (attacker's target node) as
defender's goal is to keep away the attacker from achieving
the goal. The total cost regarding a security state and
defense action is given below,

𝑐�𝑠F, 𝑢F, 𝜑𝑡� = (1 − 𝑓)𝑐«�𝑠F, 𝜑𝑡� + 𝑓 ∗ 𝑑³(𝑢F) (16)

Here, f, is a weighted factor, determines which cost focused
more (f = 0 represents defender is concerned only with
security cost, f = 1 means defender is only concerned with
availability cost). The proposed online deception algorithm
is based on an existing online solver [9], computes optimal
action from deception standpoint to deceive attacker with
the fake network while balancing availability and security
cost.

5. Dynamic Deception System

In our dynamic deception system (DDS), we deploy fake
networks along with the real networks to deceive the
attacker and drive the attacker towards the fake network
while the attacker is in real network. In this approach,
defender can save more availability cost in terms of
securing the cyber network. To deploy the fake network
and make it as looks like the real network we use software
defined networking (SDN). The core part of our dynamic
deception system consists of SDN flow rules generated by

Md Ali Reza Al Amin et al.

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

9

our SDN controller which working with a deception server
and make the network traffic in the way to looks like
different than it actually is.

5.1 System Architecture Overview

Figure 4. DDS system architecture

Our dynamic deception system consists of five components
such as a) a SDN controller which generates the flow rules
dynamically and control the network traffic, b) deception
server which manipulates network traffic, imitate some
virtual network resources based on the user policy, and
perform the online deception algorithm, c) delay handler
which keeps the bandwidth balance between real and fake
network, so that attacker couldn’t distinguish the real and
fake network, d) IDS alert correlation server is responsible
for correlating the alert with the exploit activity, e) SDN
network elements are responsible to controlling and
analyzing the network traffic after getting the flow rules
from SDN controller. When packet arrives at SDN switch,
which is connected to our system, the SDN controller
generates flow rule in accordance with our fake network.
The packet either sends to the deception server or send to
the destination after tagging each packet. When the packet
sent to the deception server, the packet is crafted in
accordance with the fake network when reply back to the
sender by adding artificial delay to make consistency. If the
packet is sent to the real network, an artificial delay is
added when reply back to the sender to make consistency
between real network and fake network. For a very large
network, the deception server could be a bottleneck
because of a large number of requests can come to the
server. To handle this issue, our deception server can be
replicated so that each of the deception servers can handle
a certain number of requests. Our system is implemented
using in Python. We use POX framework [22] to
implement the SDN controller and Scapy framework [23]
to implement our deception server. We use mininet [21],
which is the current state-of-art SDN network emulator to
test our implementation. In Fig. 4 we presented a
systematic architectural overview of our DDS system. In

the next couple of sections, we briefly describe our DDS
system.

5.2 Online Deception Algorithm

For online deception algorithm, we took the approach
described in our previous paper [9] which is described
below.

Online defense algorithm is a heuristic search algorithm
for determining defense actions in real-time as the attacker
progresses through the network and security alerts are
generated where scalability is achieved via a sample-based,
online defense algorithm that takes advantage of the
structure of the security model to enable computation in
large-scale domains. After employing defense actions (e.g.,
blocking vulnerability) defender can evaluate the
improvements by assessing the attacker’s attacking path.
For a scalable network, computing optimal action while
deceptively interacting with the attacker is a challenge.
Offline POMDP solver aims to compute the optimal action
for each belief state before runtime. Although such solvers
have improved their efficiency [24], capturing the optimal
action can be intractable for large networks. To resolve this
issue, Silver and Veness [6] developed an online algorithm
termed as Partially Observable Monte-Carlo Planning
(POMCP) to handle large-scale network while computing
optimal action. Online methods interleave the computation
and execution (runtime) phases of policy, yielding a much
more scalable approach than offline methods.

POMCP algorithm is based on and makes use of
POMDP [24]. There are two types of nodes in POMCP:
belief nodes which represent a belief state and action nodes
which are their children nodes that can reach by doing an
action. In this work, action selection procedure as same as
POMCP algorithm described in [6] and belief update
procedure is based on [10] where it solves the large
observation space problem. In POMCP, a belief state
updates when a sample observation matches with real-
world observation, but for large observation space, it barely
matches with real-world observation. In the modified belief
update procedure presented in Algorithm 1 check a
statement whether each incoming alert 𝑧R ∈ 𝑍 match with
over a security state, 𝑍(𝑠) = 𝑍(𝑒). The alerts are generated
whenever an attacker attempts an exploit. Alerts not in Z(s)
cannot be generated by exploit activity for that security
state. We are referring those alerts are false alerts for
defender.

An agent begins the simulation by calling a generative
model provides a sample successor state, observation and
cost given a state and action, (𝑠4, 𝑦, 𝑐)~𝐺(𝑠, 𝑢). The
modified belief update procedure is given in Algorithm 1,
where 𝔅F is a state-action pair named particles. History of
search tree as shown in Fig. 5,

Attacker Capability based Dynamic Deception Model for Large-Scale Network

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

10

Figure 5. An illustration of POMCP in an environment
with 2 actions, 2 observations, 50 states, and no

intermediate rewards. The agent constructs a search tree
from multiple simulations and evaluates each history by
its mean return (left). The agent uses the search tree to
select a real action a and observes a real observation o

(middle) [9].

is constructed by calling the generative model and
successive sampling from current belief. Monte-Carlo Tree
Search (MCTS) uses Monte-Carlo simulation for assessing
search tree nodes [25]. In the search tree, nodes represent
histories and branches from the node in forwarding
direction represents the possible future histories because of
having partial observability of the fundamental process. A
simpler version of MCTS uses greedy tree policy at the
very beginning of the simulation, where it selects the action
with the highest value. UCT algorithm [26] is used to
improve the greedy action selection stage. In the search
tree, each action selection is made using UCB1 [27], and
the state is being viewed as multi-armed bandit rule to
balance the exploration and exploitation. In the UCT
algorithm, there is an option to use the domain knowledge
[26] to initialize the new nodes. We use the utility array
function 𝑈p(<,Q) as our initial domain knowledge which is
improved during more simulation runs. The optimum
action for the defender while interacting with the attacker
turns into a POMDP. Casting optimum action is defined as
below,

𝑉¼(𝑏I)
=E𝛾F𝑐(𝑏F, 𝑢F, 𝜑𝑡)

G

FHI

(17)

=E𝛾F𝐸�𝑐�𝑠F, 𝑢F, 𝜑𝑡�	|	𝑏I, 𝜋
G

FHI

where 0 < 𝛾 < 1 is the discount factor, and 𝑐(𝑏F, 𝑢F, 𝜑𝑡)
represents the cost under attacker types 𝜑F for each belief
state 𝑏F when an action 𝑢F is selected from the space of
action where 𝑐(𝑏F, 𝑢F) = ∑ 𝑏FR𝑐�𝑠F, 𝑢F, 𝜑𝑡�.«�∈¬ For each
belief state, defense action generates according to the
policy function and belief update must follow the
procedure defined in Eq. (14.7). The optimal policy 𝜋∗ is
obtained by optimizing the long-term cost, which is given
below,

𝜋∗ = 𝑎𝑟𝑔min
¼
𝑉¼(𝑏I) (18)

The optimal policy defined in Eq. (18) specifies the optimal
action for each belief state 𝑏F ∈ ∆(𝑆 × 𝜑) where the
expected minimum expected cost calculated over the
infinite time horizon. The defender will choose the action
where the cost makes the trade-off between availability and
security cost.

In POMCP, a belief state updates when a sample
observation matches with real-world observation, but for
large observation space, it barely matches with real-world
observation. In the modified belief update procedure
presented in Algorithm 1, check a statement whether each
incoming alert 𝑧R ∈ 𝑍 match with over a security state,
𝑍(𝑠) = 𝑍(𝑒). The alerts are generated whenever an
attacker attempts an exploit. Alerts not in 𝑍(𝑠) cannot be
generated by exploit activity for that security state. We
refer those alerts are false alarms for the defender. To
evaluate the scalability of our approach, we experimented
our online deception algorithm on a graph consisting 160
conditions (nodes), 150 exploits (hyperedges), 60 defense
actions, 35 security alerts resulting more than 109
observation vectors. The resulting security states from this
example exceed 100 million. The pseudocode for modified
belief update is given below,

5.3 Software Defined Network Controller

In our DDS, the primary objective of the SDN controller is
to generate network flow rules based upon the arrival of
network packets. The generated flow rules later forward to
SDN switch to control and analyse the network traffic. For
our deception model, we use the following flow rules based
on our fake network needs,

Routing Packets to or from the Fake Network
The use of fake network makes our model dynamic in the
sense that it changes the attacker’s perception about
network structure from the real one. With the mix of real
and fake information make the network significantly larger
than the actual one. The network flows from and to the fake
network are monitored and analyzed by the SDN controller
to identify the infected host.

Dynamic Address Translation
To send the fake network information along with the real
network information, our deception system rewrites packet
headers on-the-fly based.

ARP Request Forwarding

Md Ali Reza Al Amin et al.

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

11

In our system, ARP request forwarding the most important
part as all the requests are handled by our deception server.
Usually, a network is flooded by ARP request to discover
a host and match the IP address with MAC address.
Deception server receives ARP request and responds with
an appropriate response.

Routing of DHCP Packets
As fake networks associated with DHCP lease, our
deception server serves as a DHCP server. It leases IP to
the fake network’s host when any host from the fake
networks trying to connect with the network.

Routing of DNS Packets
To make sure the reachability to the legitimate services,
DNS requests are handled by our deception server. To
forward the DNS packets appropriate flow rules between
host and the deception server are generated.

5.4 Deception Server

In our deception server, there are six components to
deceive the cyber adversary and handle the packets coming
from hosts connected with the network and crafted the
packet based on the fake networks. Below we briefly
discuss the six components,

DHCP Handler
The DHCP handler acts as a DHCP server in our deception
server and responsible for assigning DHCP lease to hosts
which are trying to connect with the network.

ARP Handler
All ARP requests are forwarded by appropriate flow rules
to our deception server. Based on our fake network
specifications, our deception server modified the request
and sent back to the requesting host.

ICMP Handler
ICMP error messages are forwarded by the specific rules to
our deception server. Packets with the message like
destination host unreachable contain nested packet. Such a
nested packet cannot be updated automatically in the SDN
switches. We forward such packets to our deception server
and crafted accordingly and send back to the destination.

DNS Handler
To make sure the reachability to the legitimate services,
DNS requests are handled by our deception server and
creates appropriate responses.

Gateway Simulator
Gateway simulator is using to make the fake network more
realistic as some of the components from the fake network
does not have any endpoints. Such endpoints are like
routers or gateway. If our deception server receives any
probing request, it sends back an appropriate response to
the destination.

Route Simulator
Route simulator is using in our deception server to reply
packets with mapping functions like traceroute. If the
probing request to any node has lower TTL value than
specified in our fake network, our deception server handles
those packets on behalf of router/gateway between the
scanning source node and destination node.

5.5 Delay Handler

Besides the traditional scanning method, advance level
attackers can analyze the statistics of round-trip time and
measured bandwidth on links to find the inconsistency
[44]. To make the real and fake network indistinguishable,
we take a similar approach described in [44]. By adding
artificial delay to certain packets, we change the link
bandwidth and host delays. To make the consistency,
firstly, we collect measurement data from real network
nodes and use those data as the basis for our fake network.

6. Evaluation

6.1 Experimental Setup and Metrics

Now we will investigate an illustrative example using the
sample exploit dependency graph presented in Fig. 2. For
this example, we assume an attacker will 𝑛p = 4 types by
varying attacker knowledge, aggression, and stealthiness
level. We will present four use cases, how defender
deceives the attacker with a fake network for four attacker
types. Aggression level is defined by the conditional attack
probabilities and success, which in terms called the rate of
movement of the attacker throughout the real network.
Knowledge level is defined by the Eq (3), (4) where the
separation of two parameters 𝑃x]<s(𝜑R) & 𝑃]<s(𝜑R) dictate the
knowledge level of the attacker. Stealthiness is described by
the false alarm and the probabilities of detection. In the below
table we presented the four attacker types Φ =
{𝜑,, 𝜑-, 𝜑a, 𝜑i} with their knowledge, aggression and
stealthiness level.

Table 1. Four attacker types

Attacker
Types

Knowledge Aggression Stealthiness

Type-I High Moderate High
Type-II Moderate High High
Type-III Moderate Moderate Moderate
Type-IV Low Low Low

The weight cost in Eq. (16) is 0.5 and the discount factor 𝛾
= 0.95. In total (real & fake) there are 𝑛« = 356 security
states and 𝑛Ä = 12 security alerts leading to 2,- = 4096
distinct observation vectors. To approximate the belief, all
simulations use particles 𝑛q = 1500. For this simulation, we
assume that the exploit dependency graph is already

Attacker Capability based Dynamic Deception Model for Large-Scale Network

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

12

generated using TVA (Topological Vulnerability Analysis)
[11]. We use the [28] software package to use the POMCP
solver in our simulation and use python and Matlab to
implement our model. In the section, we are going to
present our simulation results for each of the attacker types
defined in Table 1. In Table 2. we presented probabilities
of detection for real networks for each of the four attacker
types.

Table 2. Probability of detection for each of the attacker
types

A
le
rt

Exploit
𝑒, 𝑒- 𝑒a 𝑒i 𝑒j 𝑒l 𝑒m 𝑒n 𝑒Å 𝑒,I 𝑒,,

𝑧,
0.3
0.3
0.4
0.8

0.4
0.5
0.4
0.2

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

𝑧-
0
0
0
0

0.2
0.4
0.4
0.6

0.3
0.2
0.3
0.8

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

𝑧a
0
0
0
0

0
0
0
0

0.4
0.3
0.3
0.6

0.3
0.4
0
0.7

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

𝑧i
0
0
0
0

0
0
0
0

0
0
0
0

0.4
0.2
0.5
0.6

0.4
0.3
0.4
0.7

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

𝑧j
0
0
0
0

0
0
0
0

0
0
0
0

0.2
0
0.4
0.7

0.5
0.3
0.4
0.8

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

𝑧l
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0.5
0.3
0.4
0.6

0.2
0.4
0.3
0.7

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

𝑧m 0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0.6
0.3
0.2
0.8

0.2
0.5
0.3
0.7

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

𝑧n
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0.2
0.5
0.3
0.7

0.3
0.5
0.4
0.6

0.3
0.2
0.4
0.7

0
0
0
0

0
0
0
0

0
0
0
0

𝑧Å
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0.4
0.5
0.2
0.7

0.3
0.2
0.5
0.7

0
0
0
0

𝑧,I
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0.5
0.4
0.5
0.6

0.2
0.3
0.5
0.7

0.2
0.4
0.6
0.8

0
0
0
0

𝑧,,
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0.3
0.5
0.6
0.8

0.2
0.4
0.3
0.7

0
0
0
0

𝑧,-
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0.3
0.4
0.4
0.8

0
0
0
0

𝑧,a
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0.3
0.3
0.4
0.8

In Table 2. columns represent attempted exploit, and rows
present the triggered alert. Each entry from the table
represents the probability of detection under each of the
attack types.

6.2 Experimental Results

Use Case I
For this use case, we use attacker Type-I (𝜑,) from Table
1. We calculated the conditional attack probabilities for
real and fake networks using Eq. (3) & (4) which is
presented below.

�𝑃]<s(𝜑,), 𝑃]<s(𝜑,)� = (0.8,0.3)		𝑓𝑜𝑟	𝑒𝑟q ∈ 𝐸I

�𝑃]Qs(𝜑,), 𝑃]Qs(𝜑,)� = (0.8,0.3)		𝑓𝑜𝑟	𝑒𝑓q ∈ 𝐸I

�𝑃]<s(𝜑,), 𝑃]<s(𝜑,)� = (0.7,0.3)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒i, 𝑒j, 𝑒l, 𝑒n, 𝑒Å}

�𝑃]Qs(𝜑,), 𝑃]Qs(𝜑,)� = (0.9,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒j, 𝑒m}

�𝑃]<s(𝜑,), 𝑃]<s(𝜑,)� = (0.7,0.3)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒m, 𝑒,I, 𝑒,,}

�𝑃]Qs(𝜑,), 𝑃]Qs(𝜑,)� = (0.9,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒m, 𝑒n}

Similarly, for attack success probability we use Eq. (5) &
(6) which is given below,

𝛼𝑒𝑟𝑘(𝜑1) = Ê
0.7											𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸0
0.5						𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸\𝐸0

𝛼]Qs(𝜑,) = �
0.85											𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸I
0.7						𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸\𝐸I

As we defined earlier, the space of actions is the power set
of each defense action. In this simulation, we consider there
are three actions for real network which induce a set of
block exploits defined as, 𝐵(𝑢,) = {𝑒,, 𝑒-, 𝑒a}, 𝐵(𝑢-) =
{𝑒i, 𝑒j, 𝑒l, 𝑒m, 𝑒n}, 𝐵(𝑢a) = {𝑒Å, 𝑒,I, 𝑒,,}. Similarly, for the
fake network, 𝐵(𝑢,) = {𝑒j, 𝑒m}, 𝐵(𝑢,) = {𝑒m, 𝑒n} where
the cost of each action is 0.30. The sample evolution of
computed deception policy when 𝑁«RÌ = 5000 is given in
Fig. 7 & 8.

Figure 6. Sample evolution of deception policy when
attacker is in real network.

Security state is represented by shaded node and blocked
exploits are represented

Md Ali Reza Al Amin et al.

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

13

by red shaped hyperedge.

It is assumed that the security state starts from the empty
state defined as, 𝑠I = ∅. The defender uses utility array
function to construct the initial belief which is defined in
Eq. (13). We run the simulation 5000 times.

Figure 7. Sample evolution of deception policy when the
attacker is in the fake network.

Security state is represented by shaded node, and blocked
exploits are represented

by red shaped hyperedge.

The defender initially (from t=1 to t=4) does not take any
action to save the availability cost. As the attacker progress
and enable more conditions, defender belief gradually
updates based on the received security alerts. Then
defender begins to deploy actions (t=5) to block exploits.
As we know from monotonicity assumption, once a
security condition enabled it remains to enable all the time.
Whenever defender belief reflects that attacker is close to
goal conditions will block the exploits to prevent the
attacker from reaching his goal. As we can see from Fig. 6
at time step t=8, defender blocks exploits {𝑒n, 𝑒Å, 𝑒,I}
which prevents the attacker from moving forward. From
this point, the attacker will try to progress from another
point as he received the response from the defender in the
reconnaissance stage with a mix of true and false
information. Then he moves toward the fake network, Fig.
7, based on his available set of exploits dictated by Eq. (1).
At this stage defender let the attacker move forward. From
time step t=9 to 13, defender action is null. As it (fake) is
same as the real network from the attacker perspective, the
defender will take action only when attacker has an
alternative way to reach the next security state (see time
steps t=14-20 in Fig. 7).

Table 3. Performance evaluation table for real to real and
real to fake

Simulation
Runs

No. of
Times

Attacker
Starts with
Real Node

No. of
Times

Attacker
Ends on

Real Node

No. of
Times

Attacker
Ends on

Fake Node

500
1000
1500
2000
3000
4000
5000

15
13
11
10
8
7
6

13
10
7
6
3
1
0

2
3
4
4
5
6
6

In Table 3, we present our performance evaluation data
while attacker start to exploit real initial nodes
vulnerability and ended up with real to real network end
state and real to fake end state. The numerical numbers in
the 2nd column represent how many times out of 25 sample
runs attacker start with real network initial nodes and 3rd
column represents how many times attacker ended up with
real network end state without transition to the fake
network and 4th column represents how many times
attacker make transition from real network to fake network
and end up with fake goal state. In Table 4, we present the
same statistics for the fake network.

Table 4. Performance evaluation table for fake to fake and
fake to real

Simulation
Runs

No. of
Times

Attacker
Starts with
Fake Node

No. of
Times

Attacker
Ends on

Fake Node

No. of
Times

Attacker
Ends on

Real Node
500
1000
1500
2000
3000
4000
5000

10
12
14
15
17
18
19

10
12
14
15
17
18
19

0
0
0
0
0
0
0

From Table 4, we can see that up to 76% of the time
attacker starts with the fake initial nodes and carry out the
series of exploit to achieve the fake goal state. When the
𝑁«RÌ = 500, out of 25 sample runs 15 times attacker start
with the real network (Table 3) and 13 times ended up with
real network goal state because of poor quality of possible
future histories estimation. When the number of
simulations increases and more possible future histories are
taken into account, the action estimation quality increased
as well as policy function (e.g. 𝑁«RÌ = 5000, 19 times out
of 25 times attacker start and ended up with fake goal state).

0 20 40 60 80
t

0

2

4

6

8

10

di
sc

ou
nt

ed
 c

os
t

N_Sim=500

0 20 40 60 80
t

0

2

4

6

8

10

di
sc

ou
nt

ed
 c

os
t

N_Sim=2000

Attacker Capability based Dynamic Deception Model for Large-Scale Network

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

14

Figure 8. Discounted cost

In Fig. 8, we plot the discounted cost against each time step
for 25 sample runs while attacker in real network state.
When 𝑁«RÌ = 500, 15 times attacker starts with the real
network where out of 15 times attacker reached the real
goal state (node) 13 times. Trajectories which ended up
with the red circle, represents the path where attacker
reached the goal. Initially, for low simulation counts e.g.,
𝑁«RÌ = 500 defender does not have much information
about attacker's strategy, capability. Because of this,
defender aggressively blocks exploit from the very
beginning (t = 0), which eventually produces a low quality
of estimation and ended up with less availability. For poor
estimation, attacker also reaches into the goal node several
times as shown in Fig. 8 upper left corner. As soon as,
simulation count increases more possible future histories
are included which results in high quality of estimation
(which set of exploits to be blocked). As it is evident from
Fig. 8 bottom right corner, though attacker starts with real
network for 5000 trials but could not reach any goal state.

Use Case II
For use case II, we use attacker type II (𝜑-) from the Table
1 where attacker knowledge, aggression and stealthiness
level as follows moderate, high, and high respectively. The
conditional attack probabilities and success probabilities
are given below for this use case,

�𝑃]<s(𝜑-), 𝑃]<s(𝜑-)� = (0.7,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ 𝐸I

�𝑃]Qs(𝜑-), 𝑃]Qs(𝜑-)� = (0.7,0.7)		𝑓𝑜𝑟	𝑒𝑓q ∈ 𝐸I

�𝑃]<s(𝜑-), 𝑃]<s(𝜑-)� = (0.8,0.4)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒i, 𝑒j, 𝑒m}

�𝑃]Qs(𝜑-), 𝑃]Qs(𝜑-)� = (0.9,0.6)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒j, 𝑒m}

�𝑃]<s(𝜑-), 𝑃]<s(𝜑-)� = (0.7,0.5)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒Å, 𝑒Å, 𝑒,,}

�𝑃]Qs(𝜑-), 𝑃]Qs(𝜑-)� = (0.9,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒m, 𝑒n}

attack success probability,

𝛼𝑒𝑟𝑘(𝜑2) = Ê
0.8											𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸0
0.5						𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸\𝐸0

𝛼]Qs(𝜑-) = �
0.85											𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸I
0.7						𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸\𝐸I

We kept other simulation parameters same as for use case
I as we are evaluating use case II for the same exploit
dependency graph, we presented in Fig 1. In this
simulation, we present the performance evaluation table to
capture the attacker progression from real to real and real
to fake network.
Table 5. Performance evaluation table for real to real and

real to fake

Simulation
Runs

No. of
Times

Attacker
Starts with
Real Node

No. of
Times

Attacker
Ends on

Real Node

No. of
Times

Attacker
Ends on

Fake Node
500
1000
1500
2000
3000
4000
5000

14
12
12
9
8
7
4

9
8
7
5
4
2
0

5
4
5
4
4
5
4

From Table 5 we can see that, the number times attacker
starts with the real node less than the use case I because
attacker has less knowledge level than previous use case.
The results are reasonable because attacker hardly
distinguishes the real and fake network. Also, it is difficult
for the attacker to discover which exploits are not blocked
by the defender in a security state. In Table 6, we present
the same simulation results for the fake network.

Table 6. Performance evaluation table for fake to fake and
fake to real

Simulation
Runs

No. of
Times

Attacker
Starts with
Fake Node

No. of
Times

Attacker
Ends on

Fake Node

No. of
Times

Attacker
Ends on

Real Node
500
1000
1500
2000
3000
4000
5000

11
13
13
16
17
18
21

11
13
13
16
17
18
21

0
0
0
0
0
0
0

Table 6 represents the statistics on how many times
attacker go back to real node from the fake node. As we
stated earlier that as soon as attacker enters the fake
network, attacker cannot go back to the real node. We can
conclude based on this simulation that up to 84% of the

0 20 40 60 80
t

0

2

4

6

8

10

di
sc

ou
nt

ed
 c

os
t

N_Sim=4000

0 20 40 60 80
t

0

2

4

6

8

10

di
sc

ou
nt

ed
 c

os
t

N_Sim=5000

Md Ali Reza Al Amin et al.

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

15

time attacker starts with the fake initial nodes and carry out
the series of exploit to achieve the fake goal state because
of moderate level of knowledge skill.

Use Case III
For use case III, we use attacker type III (𝜑a) from the
Table 1 where attacker knowledge, aggression and
stealthiness level as follows moderate, moderate, and
moderate respectively. The conditional attack probabilities
and success probabilities are given below for this use case,

�𝑃]<s(𝜑a), 𝑃]<s(𝜑a)� = (0.8,0.2)		𝑓𝑜𝑟	𝑒𝑟q ∈ 𝐸I

�𝑃]Qs(𝜑a), 𝑃]Qs(𝜑a)� = (0.8,0.2)		𝑓𝑜𝑟	𝑒𝑓q ∈ 𝐸I

�𝑃]<s(𝜑a), 𝑃]<s(𝜑a)� = (0.7,0.3)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒i, 𝑒j, 𝑒m}

�𝑃]Qs(𝜑a), 𝑃]Qs(𝜑a)� = (0.7,0.3)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒j, 𝑒m}

�𝑃]<s(𝜑a), 𝑃]<s(𝜑a)� = (0.7,0.3)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒Å, 𝑒Å, 𝑒,,}

�𝑃]Qs(𝜑a), 𝑃]Qs(𝜑a)� = (0.8,0.2)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒m, 𝑒n}

attack success probability,

𝛼𝑒𝑟𝑘(𝜑3) = Ê
0.8											𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸0
0.5						𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸\𝐸0

𝛼]Qs(𝜑a) = �
0.85											𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸I
0.7						𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸\𝐸I

The performance evaluation table for this simulation is
presented in below,

Table 7. Performance evaluation table for real to real and
real to fake

Simulation
Runs

No. of
Times

Attacker
Starts with
Real Node

No. of
Times

Attacker
Ends on

Real Node

No. of
Times

Attacker
Ends on

Fake Node
500
1000
1500
2000
3000
4000
5000

11
11
10
8
7
7
3

7
8
8
5
2
2
0

4
3
2
3
5
5
3

The number of times attacker starts with the real node is
increased in this simulation. As defender beliefs reflect that
attacker is more knowledgeable, the conditional attack
probabilities are higher than the previous case. In fact, in
this simulation, the numbers are higher than previous two
use cases. This is because defender possesses a high
knowledge level. Because of his high knowledge level, he
has the ability to find out the blocked exploits before he
moves. As soon as the attacker identifies the blocked
exploits, he will not attempt it unlit defender changed her
action. In this case, up to 88% of the time attacker starts
with the fake initial nodes.

Use Case IV
For use case IV, we use attacker type IV (𝜑i) from the
Table 1 where attacker knowledge, aggression and
stealthiness level as follows low, low, and low respectively.
The conditional attack probabilities for attacker type IV are
given below,

�𝑃]<s(𝜑i), 𝑃]<s(𝜑i)� = (0.9,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ 𝐸I

�𝑃]Qs(𝜑i), 𝑃]Qs(𝜑i)� = (0.9,0.7)		𝑓𝑜𝑟	𝑒𝑓q ∈ 𝐸I

�𝑃]<s(𝜑i), 𝑃]<s(𝜑i)� = (0.8,0.7)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒i, 𝑒j, 𝑒m}

�𝑃]Qs(𝜑i), 𝑃]Qs(𝜑i)� = (0.7,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒j, 𝑒m}

�𝑃]<s(𝜑i), 𝑃]<s(𝜑i)� = (0.8,0.6)		𝑓𝑜𝑟	𝑒𝑟q

∈ {𝑒Å, 𝑒Å, 𝑒,,}

�𝑃]Qs(𝜑i), 𝑃]Qs(𝜑i)� = (0.8,0.7)		𝑓𝑜𝑟	𝑒𝑟q ∈ {𝑒m, 𝑒n}

attack success probabilities,

𝛼𝑒𝑟𝑘(𝜑4) = Ê
0.8											𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸0
0.5						𝑤ℎ𝑒𝑛	𝑒𝑟𝑘 ∈ 𝐸\𝐸0

𝛼]Qs(𝜑i) = �
0.85											𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸I
0.7						𝑤ℎ𝑒𝑛	𝑒𝑓q ∈ 𝐸\𝐸I

The performance evaluation table for this simulation is
presented below,

Table 8. Performance evaluation table for real to real and
real to fake

Simulation
Runs

No. of
Times

Attacker

No. of
Times

Attacker

No. of
Times

Attacker

Attacker Capability based Dynamic Deception Model for Large-Scale Network

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

16

Starts with
Real Node

Ends on
Real Node

Ends on
Fake Node

500
1000
1500
2000
3000
4000
5000

12
10
10
9
9
5
2

1
0
0
2
1
0
0

11
10
10
7
8
5
2

From Table 8, we can see that though attacker starts with
the real node few times but end up into the real network
goal node very few times. The number times attacker ended
up on fake goal node is higher than any of the previous
three use cases. This is because of the attacker skillset
(knowledge, aggression, and stealthiness) reflects as a
novice attacker. From the statistics, we can infer that up to
92% of time attacker starts with the fake node and ended
up with fake goal state. In this case, defender did not use
many resources to block this attacker. As defender’s belief
reflects that it is a novice attacker. This is why defender
saved a lot of resources in terms of availability and security
cost.

We also investigate the host infection rate with and
without our DDS based on network scanning techniques.
To do this, we implemented some previous common
scanning techniques [29], [30], [31], and [32] which is also
discussed in the related work section. To implement these
scanning techniques, we use a python library name libnmap
[33] which provides an API to Nmap [34] as well as python

scapy framework. Based on the discussion [35], an
adversarial scanner first selects the scanning space which
is denoted by Ω. In the scanning space, attacker selects the
IP addresses to probe. Also, the address distance denoted

by 𝜆, specifies the numerical differences between IP
address of scanner and scanning target [35].

Table 9. The performance statistics for all attacker types

Attacker Types Performance Statistics
Type-I 76%
Type-II 84%
Type-III 88%
Type-IV 92%

Local Preference Scanning discussed in [29], is a kind
of biased scanning technique. In this technique, based on
the localhost information some specific regions of a
network are chosen. But there is an issue, for the current
state-of-the-art computer networks, hosts are not uniformly
distributed within the address apace. The attacker can
increase the speed to detect vulnerable host by scanning IP
address where it densely populated [35].

Preference sequential scanning probes the IP address
sequentially. In preference scanning technique, attacker
use local preference and selects start IP address with small
address distance 𝜆(ℎ) to the host IP address.

Non-preference sequential scanning is the same as
preference sequential scanning, but it selects the starting IP
address in a random manner within the scanning space Ω.

Preference parallel using parallelism to increase the
scanning performance with a drawback of causing a large
amount of network traffic. For our simulation, we use 10
parallel probing messages.

In Fig. 9 we presented the performance of dynamic
deception system. We deployed 20 subnets, and in each
there are 45 hosts are present. The fake network nodes are
evenly distributed throughout the subnet. From the

Figure 9. Average vulnerable host detection rate in minutes for the scanning strategies Preference Parallel, Local
Preference, Preference Sequential, Non- Preference Sequential with and without our DDS system

1 2 3 4 5 6 7 8 9 10 15 25 35 50 60 70 90 100 110 120

Times(minutes)

0

0.2

0.4

0.6

0.8

1

In
fe

cte
d

Ho
st

De
te

cti
on

 R
at

e

DDS No DDS

1 2 3 4 5 6 7 8 9 10 15 25 35 50 60 70 90 100 110 120

Times(minutes)

0

0.2

0.4

0.6

0.8

1

In
fe

cte
d

Ho
st

De
te

cti
on

 R
at

e

DDS No DDS

1 2 3 4 5 6 7 8 9 10 15 25 35 50 60 70 90 100 110 120

Times(minutes)

0

0.2

0.4

0.6

0.8

1

In
fe

ct
ed

 H
os

t D
et

ec
tio

n
Ra

te

DDS No DDS

1 2 3 4 5 6 7 8 9 10 15 25 35 50 60 70 90 100 110 120

Times(minutes)

0

0.2

0.4

0.6

0.8

1

In
fe

ct
ed

 H
os

t D
et

ec
tio

n
Ra

te

DDS No DDS

Md Ali Reza Al Amin et al.

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

17

performance figure, we can see that with our DDS the
infected host detection rate is less than without DDS. Here
infected host means attacker successfully exploit the
vulnerabilities in that host. From the Fig. 9 it can be
inferred that defender successfully drive the attacker
towards fake network by blocking vulnerabilities in the real
network.

From Table 9, it is clearly evident that as soon as
attacker knowledge level is decreasing, defender can save
more resources in terms of network availability to
legitimate users. Based on our simulation results, it is
evident that the defender can decide when and where to
spend more resources or save resources.

7. Conclusion

In this paper, we show that with our dynamic defense
system defender can save resource in terms of availability
cost and security cost. By introducing fake networks, we
also alter the perception of network view to the attacker,
and defender’s action influence an attacker to take fake
network attack path towards fake goal state. Using SDN,
the defender can analyze the malicious traffic and reply
back to the attacker with a mix of true and false
information. After adding attacker capabilities in the
model, we learned that if the attacker’s knowledge level is
high and aggression and stealthiness level are moderate, the
defender needs to spend more resources than the opposite
case.

Acknowledgements.
This work is supported by the Office of the Assistant
Secretary of Defense for Research and Engineering (OASD
(R & E)) agreement FA8750-15-2-0120.

References
[1] Ramakrishnan CR, Sekar R. Model-based analysis of

configuration vulnerabilities 1. Journal of Computer
Security. 2002 Jan 1;10(1-2):189-209.

[2] Ritchey, R.W. and Ammann, P., 2000, May. Using
model checking to analyze network vulnerabilities.
In Proceeding 2000 IEEE Symposium on Security and
Privacy. S&P 2000(pp. 156-165). IEEE.

[3] Sheyner, O., Haines, J., Jha, S., Lippmann, R. and
Wing, J.M., 2002, May. Automated generation and
analysis of attack graphs. In Proceedings 2002 IEEE
Symposium on Security and Privacy (pp. 273-284).
IEEE.

[4] Noel, S. and Jajodia, S., 2004, October. Managing
attack graph complexity through visual hierarchical
aggregation. In Proceedings of the 2004 ACM
workshop on Visualization and data mining for
computer security (pp. 109-118). ACM.

[5] Ammann, P., Wijesekera, D. and Kaushik, S., 2002,
November. Scalable, graph-based network
vulnerability analysis. In Proceedings of the 9th ACM

Conference on Computer and Communications
Security (pp. 217-224). ACM.

[6] Silver, D. and Veness, J., 2010. Monte-Carlo planning
in large POMDPs. In Advances in neural information
processing systems (pp. 2164-2172).

[7] Kocsis, L. and Szepesvári, C., 2006, September. Bandit
based monte-carlo planning. In European conference
on machine learning (pp. 282-293). Springer, Berlin,
Heidelberg.

[8] Kaelbling, L.P., Littman, M.L. and Cassandra, A.R.,
1998. Planning and acting in partially observable
stochastic domains. Artificial intelligence, 101(1-2),
pp.99-134.

[9] Md Ali Reza Al Amin, Sachin Shetty, Laurent Njilla,
Deepak Tosh and Charles Kamhoua "Online Cyber
Deception System using PartiallyObservable Monte-
Carlo Planning Framework", Securecomm, 2019

[10] E. Miehling, M. Rasouli, and D. Teneketzis, “A pomdp
approach to the dynamic defense of large-scale cyber
networks,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 10, pp. 2490–2505,
2018.

[11] Jajodia, S., Noel, S. and O’berry, B., 2005. Topological
analysis of network attack vulnerability. In Managing
Cyber Threats (pp. 247-266). Springer, Boston, MA.

[12] B. Morin, L. M´e, H. Debar, and M. Ducass´e, “M2d2:
A formal data model for ids alert correlation,” in
International Workshop on Recent Advances in
Intrusion Detection. Springer, 2002, pp. 115–137.

[13] R. Gula, “Correlating ids alerts with vulnerability
information,” 2002.

[14] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer,
“Comprehensive approach to intrusion detection alert
correlation,” IEEE Transactions on dependable and
secure computing, vol. 1, no. 3, pp. 146–169, 2004.

[15] Astrom, K.J., 1965. Optimal control of Markov
processes with incomplete state information. Journal of
mathematical analysis and applications, 10(1), pp.174-
205.

[16] Ross, S., Pineau, J., Paquet, S. and Chaib-Draa, B.,
2008. Online planning algorithms for
POMDPs. Journal of Artificial Intelligence
Research, 32, pp.663-704.

[17] Silver, D. and Veness, J., 2010. Monte-Carlo planning
in large POMDPs. In Advances in neural information
processing systems (pp. 2164-2172).

[18] Mell, P., Scarfone, K. and Romanosky, S., 2007, June.
A complete guide to the common vulnerability scoring
system version 2.0. In Published by FIRST-Forum of
Incident Response and Security Teams (Vol. 1, p. 23).

[19] Hasan, K., Shetty, S., Hassanzadeh, A., Salem, M.B.
and Chen, J., 2018, May. Modeling Cost of
Countermeasures in Software Defined Networking-
enabled Energy Delivery Systems. In 2018 IEEE
Conference on Communications and Network Security
(CNS) (pp. 1-9). IEEE.

[20] Kurose, J.F., 2005. Computer networking: A top-down
approach featuring the internet, 3/E. Pearson Education
India.

[21] Team, M., 2018. Mininet-realistic virtual sdn network
emulator.

[22] Pox—Python SDN Controller. Accessed on Mar. 21,
2016. [Online]. Available:
http://www.noxrepo.org/pox/about-pox/

[23] Scapy. Accessed on Mar. 21, 2016. [Online]. Available:
http://www.secdev.org/projects/scapy/

Attacker Capability based Dynamic Deception Model for Large-Scale Network

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

18

[24] Kurniawati, H., Hsu, D. and Lee, W.S., 2008, June.
Sarsop: Efficient point-based pomdp planning by
approximating optimally reachable belief spaces.
In Robotics: Science and systems (Vol. 2008).

[25] Coulom, R., 2006, May. Efficient selectivity and
backup operators in Monte-Carlo tree search.
In International conference on computers and
games (pp. 72-83). Springer, Berlin, Heidelberg.

[26] Kocsis, L. and Szepesvári, C., 2006, September. Bandit
based monte-carlo planning. In European conference
on machine learning (pp. 282-293). Springer, Berlin,
Heidelberg.

[27] Auer, P., Cesa-Bianchi, N. and Fischer, P., 2002. Finite-
time analysis of the multiarmed bandit
problem. Machine learning, 47(2-3), pp.235-256.

[28] P. Emami, A. J. Hamlet, and C. Crane, “Pomdpy: An
extensible framework for implementing pomdps in
python,” 2015.

[29] Al-Shaer, E., Duan, Q. and Jafarian, J.H., 2012,
September. Random host mutation for moving target
defense. In International Conference on Security and
Privacy in Communication Systems (pp. 310-327).
Springer, Berlin, Heidelberg.

[30] Jafarian, J.H., Al-Shaer, E. and Duan, Q., 2015, April.
Adversary-aware IP address randomization for
proactive agility against sophisticated attackers.
In 2015 IEEE Conference on Computer
Communications (INFOCOM) (pp. 738-746). IEEE.

[31] Jafarian, J.H., Al-Shaer, E. and Duan, Q., 2012, August.
Openflow random host mutation: transparent moving
target defense using software defined networking.
In Proceedings of the first workshop on Hot topics in
software defined networks (pp. 127-132). ACM.

[32] Weaver, N., Paxson, V., Staniford, S. and Cunningham,
R., 2003, October. A taxonomy of computer worms.
In Proceedings of the 2003 ACM workshop on Rapid
malcode(pp. 11-18). ACM.

[33] Python API for nMap. Accessed on Mar. 21, 2016.
[Online]. Available: https://libnmap.readthedocs.org/

[34] Nmap Network Scanner. Accessed on Jun. 25, 2016.
[Online]. Available: https://nmap.org/

[35] Zou, C.C., Towsley, D. and Gong, W., 2006. On the
performance of Internet worm scanning
strategies. Performance Evaluation, 63(7), pp.700-723.

[36] Albanese, M., Battista, E., Jajodia, S. and Casola, V.,
2014, October. Manipulating the attacker's view of a
system's attack surface. In 2014 IEEE Conference on
Communications and Network Security (pp. 472-480).
IEEE.

[37] Trassare, S.T., Beverly, R. and Alderson, D., 2013,
November. A technique for network topology
deception. In MILCOM 2013-2013 IEEE Military
Communications Conference (pp. 1795-1800). IEEE.

[38] Schlenker, A., Thakoor, O., Xu, H., Fang, F., Tambe,
M., Tran-Thanh, L., Vayanos, P. and Vorobeychik, Y.,
2018, July. Deceiving cyber adversaries: A game
theoretic approach. In Proceedings of the 17th
International Conference on Autonomous Agents and
MultiAgent Systems (pp. 892-900). International
Foundation for Autonomous Agents and Multiagent
Systems.

[39] Duan, Q., Al-Shaer, E. and Jafarian, H., 2013, October.
Efficient random route mutation considering flow and
network constraints. In 2013 IEEE Conference on
Communications and Network Security (CNS) (pp.
260-268). IEEE.

[40] Sun, J. and Sun, K., 2016, April. DESIR: Decoy-
enhanced seamless IP randomization. In IEEE
INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications (pp. 1-9).
IEEE.

[41] Zonouz, S.A., Khurana, H., Sanders, W.H. and
Yardley, T.M., 2013. RRE: A game-theoretic intrusion
response and recovery engine. IEEE Transactions on
Parallel and Distributed Systems, 25(2), pp.395-406.

[42] Dunlop, M., Groat, S., Marchany, R. and Tront, J.,
2012. Implementing an IPv6 moving target defense on
a live network. In Moving Target Research Symposium
2012. Cyber-Physical Systems Virtual Organization.

[43] Department of Homeland Security. Industrial Control
Systems Cyber Emergency Response Team (ICS-
CERT). Accessed: Sep. 22, 2019. [Online]. Available:
https://ics-cert.us-cert.gov/

[44] Achleitner, S., La Porta, T.F., McDaniel, P., Sugrim, S.,
Krishnamurthy, S.V. and Chadha, R., 2017. Deceiving
network reconnaissance using SDN-based virtual
topologies. IEEE Transactions on Network and Service
Management, 14(4), pp.1098-1112.

Md Ali Reza Al Amin et al.

EAI Endorsed Transactions on
Security and Safety

04 2019 - 08 2019 | Volume 6 | Issue 21 | e2

