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Abstract 

INTRODUCTION: A number of promising designs of electric vehicles use separate wheeled motors. In this case, an 

important task of designing a power supply system is to provide effective control of electric motors and battery charge / 

discharge modes. 

OBJECTIVES: The paper considers the problem of determining optimal coefficients of the electric motor proportional-

integral (PI) controller and their influence on the power distribution in the electric vehicle on-board power supply system. 

METHODS: It is proposed to implement separate adaptive control of electric motors, taking into account conditions of 

operating, road surface, and other factors. There are introduced two options for the motor controller implementation: an 

adaptive PI-controller and an intelligent PI-controller with an adaptive observer based on a neural network. 

RESULTS: The simulation results show that the adaptive PI-controller provides a reduction in the transient duration, but 

insufficient energy efficiency.  Intelligent PI controller on the base of neuroregulator provides 2 times reduction of 

transition time, reduction of energy losses and engine overshoot. 

CONCLUSION: The use of the neuroregulator makes it possible to automatically select and adjust PI controller 

coefficients. In addition, the proposed control method reduces inrush currents and torque spikes, that prolongs the service 

life of mechanical components. During motor operation, the neural network can continue learning and adjusting PI-

controller coefficients to changes in operating conditions (for example, seasonal) and motor parameters. Assumed 

outcomes of this solution will be improving electric vehicle characteristics, increasing mileage and battery life time, and 

prospective transition to an electronic differential. 

Keywords: Energy optimization, nature-inspired computing techniques, neural network electric vehicle, PI-regulator,
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1. Introduction**

Air pollution from internal combustion engines and oil

resources depletion stimulates the development and 

implementation of electric vehicles. Electric cars are 
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only of the authors, and the Commission cannot be held responsible for any 

use which may be made of the information contained therein. 

designed to be energy efficient and environmentally 

friendly. These requirements are interconnected. Disposing 

of rechargeable batteries and manufacturing new ones is also 

detrimental to the environment. The battery life of industrial 

electric vehicles is quite short and does not usually exceed 

three years [1, 2]. A battery life depends not only on the 

distance of run but also on the mode of operation. Efficiency 

of an on board power system ensures not only low power 

consumption, but also a long battery life.  

The indicator of power control efficiency is specific energy 

intensity, or energy consumption per kilometre (kW*h/km) [1, 2]. 

In this case, we take into account one-charge distance, including 

regenerative braking. Equally important is to ensure a long 

battery life [1]. One of the promising ways to achieve required 
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characteristics is separate adaptive control of wheel motors, when 

each wheel operates in an individual mode. This is especially 

important, for example, in the case of skidding or sliding of one 

of the wheels when a car is in the starting mode. Using adaptive 

control for each wheel increases power reserve and the battery 

life. It also improves the electric vehicle performance in general. 

Distributed drives make it possible to eliminate the mechanical 

differential. This simplifies the mechanical layout of the power 

train and, as a result, reduces the vehicle weight and maintenance 

cost. 

Since the operational mode of a power supply system 

depends on operating conditions, road conditions, and 

charging and discharging modes of batteries, adaptive 

control is required to ensure efficient operation. Adaptive 

control involves changing the current and voltage 

coefficients of electric motor regulators, control of recovery 

and battery charging modes. 

2. Related work

Adaptive control and monitoring of wheel motors for 

electric vehicles are recognized as one of the promising 

directions of electric vehicle development [3]. A number of 

studies [4, 5, 6] present the comparative analysis of adaptive 

control algorithms which are used in sensorsless control 

systems for alternating current electric motors.  

An adaptive method based on determining the rotational 

speed and active resistance of the stator is described in [7]. 

A feature of the method is the use of a state observer as a 

part of the adaptive control system. The state observer is an 

adjustable real-time model of the controlled object that 

allows estimating unknown values from known parameters. 

This model can be implemented in coordinates convenient 

for the motor controller synthesis. The use of an observer 

does not complicate the control system. This approach 

makes it possible to control a motor without additional test 

inputs. However, it does not support adjusting observer 

parameters and, as a result, current surge protection in the 

case of motor speed reduction. The effect of motor 

magnetization is not taken into account. In addition, this 

method is applicable to a single type of electric motors. 

In [8], it was proposed to use the electric motor itself as a 

reference model for an observer, and the full-order model of 

electromagnetic processes as an adjustable model. The 

article describes a new regulator adjusting law based on 

analysis of its stability. The experimental study confirmed 

applicability of the proposed approach. However, it does not 

ensure stable motor operation in the generation mode, and 

the suggested method of adjusting observer parameters has 

no theoretical justification. 

An adaptive control based on the fuzzy logic is 

introduced in [6]. However, the effectiveness of the 

proposed method was not analyzed for cases of an 

asynchronous electric motor control, non-stationarity of 

motor parameters as well as variations in the equivalent 

inertia moment of the motor. 

Genetic algorithms show good results in regulating the 

rotating speed of an asynchronous electric motor [8]. 

However, it is necessary to preprocess a large amount of 

data using wavelet filtering to increase the genetic algorithm 

convergence. The experimental study shows that the use of a 

genetic algorithm in power control systems leads to self-

oscillations, which causes a significant error in observer's 

control signals, especially in start and brake modes. 

A hardware-software control system with an observer is 

described in [7]. The observer is used in a sensorless control 

system of an asynchronous electric motor. It is implemented as a 

library routine for the Texas Instruments TMS processor. The 

control algorithm is based on minimizing the objective function 

of adjusting variables. Reactive power is not measured; it is 

calculated (recovered) using the measured value of the 

electromotive force. In turn, the adjusting law of the sensorless 

observer uses reactive power to recover motor speed. 

The review shows that observer-based control systems 

are a promising solution for electric motor control systems. 

The observer makes it possible to determine motor operating 

mode parameters such as the current vector, the wheel 

speed, power consumption, etc., for different transient 

processes. This allows taking into account the “history” of 
effects of road conditions, transported cargo weight etc. on 

transient processes and battery current consumption. In the 

case of separate control of wheel motors, the controller takes 

into account the difference in tire-road adhesion on different 

sides of the vehicle. This prevents wheel slippage and 

maintains the optimal mode of the motor operation. As a 

result, an observer-based control system increases the motor 

energy efficiency. However, the corresponding algorithms 

for the observer and the control system as a whole have not 

yet been developed. 

3. Proposed solution

It is proposed to build the motor control system based on a 

proportional integral (PI) controller using an observer. The 

receding horizon control (RHC) strategy [9] is chosen to 

perform the predictive control. According to this strategy, 

the observer predicts the reaction of the controlled object 

over a certain time interval in the future. The prediction of 

the current, voltage and motor speed is performed taking 

into account previous data, transients, and the system 

robustness. The task of the motor control system is to 

generate control signals in such a way as to minimize the 

objective function. The fitness function is the difference 

between the output signals of a real controlled object and an 

ideal model [7, 10]. 

To build the control system, a vector control method [4, 

11, 12–16] was chosen. The choice is due to the fact that the

method makes it possible to control not only the magnitude 

and frequency of the supply voltage, but also the phase. This 

allows the system to control the speed and torque on the 

motor shaft independently. The use of vector equations to 

calculate adjustable variables ensures the adjustment 

accuracy and fully corresponds to the problem being solved. 

To study the introduced solution, the model of the power 

supply system with adaptive control was developed using 

the Matlab modelling environment (Figure 1).  
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Figure 1. Structural diagram of the vector PI controller with an observer 

The following indicators are proposed to evaluate the 

control system quality: 

 peak currents in motion,

 transient time,

 rotor speed,

 magnetic flux,

 resistance moment on the motor shaft.

The observer can be implemented in various ways. First, 

the control unit model based on a non-adaptive observer was 

studied. Two operation laws of observer were considered. 

In the first case, the motor speed was determined as the 

derivative of the angle, and the angle was calculated by 

equation (1) [16]. 

     (1) 

where     is the recovered angle,        and  are α and β 
projections of the rotor magnetic flux, respectively. 

In the second case, the motor speed was determined 

according to expression (2), and the angle was calculated as 

an integral of the speed [16]. 

    (2) 

where is the recovered rotational speed,  and  are 

proportional and integral coefficiens respectively, 

are increment of the current on axis a and  β respectively.

Simulation results are shown in Figure 2. 

Figure 2. Motor simulation results for two laws 
of PI controller operation  

PI controller coefficients are usually preselected 

automatically or manually. This is a non-trivial task, because 

it is difficult to preset the coefficients optimally. For 

example, Figure 2 shows that there is an integral error in 

determining rotor rotation angles, regardless of the method 

of determining the speed and angle. This is because integral 

coefficient Ki in expression (2) is not optimal for this mode. 

In addition, in expressions 1 and 2, the value of the rotor 

flux is actually non-linear. This leads to an increase in the 

control error. Another limitation of this model is that 

simulating reverse motion downhill requires an additional 

identification signal in the stator circuit. There is also no 

way to determine the coefficients of the controller for 

starting the engine in this mode, since expression 2 should 

only generate positive and non-zero speed values for the 

proper functioning of the system. This complicates the 
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determination of speed.4. PI controller based on an adaptive 

observer 

The next step aimed at improving the effectiveness of the 

control system is the introduction of an adaptive observer 

(Figure 3). 

Figure 3. Structural diagram of the adaptive regulator 

Adaptation of the observer is performed by a module 

called the “Adaptation Law Adjuster”. It compares magnetic

flux of the model and generates the speed estimation signal 

. The PI-controller uses this signal as an adapting signal. 

The function of converting compared vector quantities (in 

this case, fluxes) into a scalar signal of speed estimation at 

the controller output is called the adaptation law. 

The model of the described system was developed and 

simulated in Matlab. The case study included applying a 

load corresponding to the movement of the M1 class car in 

the urban cycle according to [2].  

The following values were observed: motor currents ( ), 
transient times ( ), motor speed ( ), and load moment on 

the shaft ( ). An example of experimental results is shown 

in Figure 4. 

It can be seen that the adaptive controller shows 

satisfactory results in terms of the transient time in the case 

of changing the motor speed. The task was to increase the 

motor speed from 0 to 100 rad/s; after one second, the speed 

should be reduced to 50. Achieving the required speed took 

0.5 s. After that, the motor gained speed up to 105 rad/s, 

then the speed error decreased to zero within 0.5 seconds. 

Thus, in this experiment, the overshoot error does not 

exceed 5 %, which corresponds to the average value of the 

entire series of experimental studies [14]. 

However, the diagram analysis shows that the used PI 

control methods do not exclude current surges. For example, 

a current surge occurred when a reduction in motor speed 

from 100 to 50 rad/s was performed in accordance with the 

task (Figure 4, Graph 2, the time period from 1.01 to 1.2 s.). 

Due to this surge about 15 V of battery power were wasted. 

Since an intermittent cycle of motion is typical for urban 

traffic, such a useless consumption of battery power leads to 

a significant decrease in the distance on one charge. 

5. Intelligent PI controller based on a
neuroregulator

Studies of the developed model show that the choice of PI 

controller coefficients at the stability boundary of the system 

makes it possible to reduce the transition time, improve 

important control characteristics, such as accuracy and 

stability, and, as a result, reduce energy consumption and 

decrease currents that destroy the battery. 

Figure 4. Transients in the power supply system and the electric motor 
controlled by the adaptive PI controller 
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To increase the efficiency of the controller, its 

coefficients should be adjusted taking into account 

individual engine instance characteristics and their changes 

during operation. One of the promising ways to implement 

an intelligent adaptive module for selecting and adjusting 

the PI controller coefficients is to use neural networks as an 

adaptive observer [17–22]. This approach is expected to

increase motor control efficiency and battery life, motor 

operating stability, and possibly overall performance of the 

control system.  

The task of the neuroregulator in this system is to 

minimize deviations of the rotor speed (ωr) and stator

current (Is) from ideal values by adjusting the PI controller 

coefficients. The functional diagram of the adaptive 

regulator learning is shown in Figure 5.  

Figure 5. Structural diagram  
of the adaptive neuroregulator learning 

It includes: a model of a dynamic object with a feedback 

on deviation with a real object, an identifier of the object 

parameters (the motor EMF, rotor current, magnetic flux, 

and speed). 

The choice of a dual-mass electromechanical system 

(DMEMS) is because the torque transmission uses a 

mechanical gear motor variator for matching rotational 

speeds of the motor shaft and the drive wheel. In many 

cases, this kinematic scheme contains elastic elements [23]: 

long shafts, torsions, elastic couplings, etc. Mechanical 

systems with elastic links are usually reduced to dual-mass 

mechanical systems. This is especially true for electric 

motors operating in intensive dynamic modes, typical for 

electric vehicles. To build the adaptive neural observer, it is 

proposed to use a multilayer neural network with delay 

lines, trained using error back propagation [22]. 

The network has three levels and uses two delay lines to 

take into account previous values of rotor speed and stator 

current of the electric motor. Delay lines are introduced to 

analyze time sequences that describe the motor operation. To 

reduce noise, the control object output is averaged. The 

output signal from the control object enters the input layer 

of the neural network in the next clock cycle. 

The disadvantage of applying untrained neural networks 

is the absence of a priori knowledge about the control 

object. It is proposed to carry out preliminary neural 

network training. A neural network training sample is 

prepared with the use of the ideal mathematical model of the 

motor. The model describes the dependence of the rotor 

speed, stator current, and the motor shaft torque on the 

selected PI controller coefficients [9]. 

After training, the neural network was integrated into the 

adaptive   control module. Modelling and testing the control 

system with the neuroregulator was performed under the 

same conditions as the conventional adaptive observer. 

Simulation results are shown in Figure 6. 

Diagrams show that in the case of task to increase the 

motor speed from 0 up to 100 rad/s the transient time is 

reduced from 0.6 to 0.3 seconds due to the prediction of the 

electric motor reaction. Thus, the use of the neuro- regulator 

provided the motor speed stabilization 2.1 times faster. In 

the case of the task on decreasing the rotor speed from 100 

down to 50, the transient time is also reduced. As a result, 

useless energy consumption has declined too. The adaptive 

coefficient regulation with the use of the neuroregulator 

eliminates overshoot of the motor speed. Therefore, it can be 

concluded that the use of a neuroregulator makes the system 

more stable regardless of the trajectory and traffic conditions 

of electric vehicles. 

To verify coefficient adjustment and the PI controller 

stability, there are set artificially into the current 

measurement channels to simulate the 15% increasing in the 

resistance of rotor and stator windings due to temperature 

changes. In Figure 6, the results of introducing disturbance 

can be observed at 0.8 and 1.7 seconds. As it can be seen in 

Figure 6, the neural network-based adaptive controller 

successfully compensated the parameter instability. 

During the motor operation, the neural network continues 

to train and adjust PI controller coefficients obtained within 

pre-training. The neuroregulator provides adjusting PI 

controller coefficients in real time. This allows PI controller 

to take into account the control object nonlinearity. In 

addition, neuron networks allow changing the control law by 

means of correction of neuron weights and displacements 

without a significant change in the control system structure. 

Evaluation of the energy efficiency of the 
proposed solution 

It is assumed that the proposed solution will provide higher 

energy efficiency compared to an unregulated PI controller 

due to faster achievement of the optimal range of slip 

values. 
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The possibility to influence on the electric motor slip 

through increasing the rotor speed is described by the 

following expression [24]: – ,    (3)

where is the nominal value of the stator field 

revolutions,  is the rotor speed,  is the effective stator 

field speed. 

Losses for the induction motor are added up from [24]: 

,       (4) 

where   is the number of stator winding phases,   ,    are 

active resistances of stator and rotor winding circuits 

respectively,     are variable losses,     are constant losses, 

described by expression: 

= (5) 

Variable losses can also be expressed through losses in 

the rotor, which are connected with electromagnetic power 

and slip as: 

,   (6) 

where   is the slip relative to the ideal idle speed   ,   is 

the electromagnetic moment. 

The    and    adjusting performed by the neural 

network allows optimizing the rotor speed at start-up, 

operation in static mode and transient processes of an 

induction motor, thereby affecting the motor slip. Setting the 

optimum slip value   makes it possible to reduce the current 

consumption [24]. 

The motor operation in the section of the mechanical 

characteristic corresponding to the motor slips exceeding the 

critical value occurs only in transient conditions. Therefore, 

the equation of mechanical characteristic in most cases can 

be simplified by replacing the working section with a 

segment of a straight line passing through the origin [24]. 

The critical motor slip is determined by the expression: 

         (7) 

In transient modes, variable losses depend on time, and 

their value is an integral function. In the general case, 

energy losses during the transition process      are equal: 

     (8) 

Figure 7 shows the dependence of motor losses on slip. 

Point 1 corresponds to the critical slip calculated in 

accordance with expression (8) for the motor with the power 

of       , and efficiency          Point 2 corresponds to 

the optimal slip and its setting time is halved from 0,6 to 0,3 

s. This result is obtained by optimization using the proposed

neuroregulator.

As can be seen in the figure, the difference in instantaneous

power loss between the points exceeds            .

This is approximately 25% of variable motor losses.

Figure 6. Transients in the power supply system and the electric motor  
controlled by the intelligent adaptive PI controller with the neuro-regulator 
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Figure 7. Dependence of motor losses on slip 

Losses on the motor slip depend on the setting time of the 

slip point. To ensure high efficiency, the motor should 

operate at the rated load with low slip, that is, the motor 

should have a small critical slip. Transient losses obtained 

for the motor with a neuroregulator is integrated according 

to expression (8). Results prove reduction of resulting losses 

compared with a non-adaptive PI controller by an average of 

36%. This confirms the increase in electric motor energy 

efficiency as a result of using the proposed solution. 

6. Conclusion

The simulation results show that the use of the proposed 

intelligent adaptive PI controller provides a significant 

reduction in motor energy losses. In addition, the proposed 

method of determining PI-controller coefficients reduces the 

inrush currents and torque spikes, which prolongs the 

service life of mechanical components. The use of a 

neuroregulator makes it possible to select PI controller 

coefficients automatically. 

During further motor operation, the neural network can 

continue to learn and adjust the PI-controller to changes in 

operating conditions (for example, seasonal) and motor 

parameters.  

Our next steps in future research will be to improve 

controlling of the combined power source for an electric 

vehicle consisting of a supercapacitor and a battery. We 

assume that the suggested system will provide more data for 

the adaptive operation of the charge-discharge device of the 

electric vehicle power supply. It can also improve the 

efficiency of the recovery (recuperation) mode. This will 

allow getting more energy from the motor in different 

driving modes, depending on the angle of descent (rise) of 

an electric vehicle on the track. Assumed outcomes of this 

solution will be improving electric vehicle characteristics, 

increasing mileage and battery life time, and prospective 

transition to an electronic differential.  
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