
1

Automated RTL
Generator for Optimized Flop Repeater Network
Rahul S Bhatt1,*, Shweta Sharma1 and Shyam A1

1Intel Technologies India Pvt Ltd, Bangalore, India

Abstract

In all Hard IP (HIP) designs, there is a need for signals to travel from its source to destination module. To meet timing,
they are flop repeated based on the floorplan of the design. Different signals have unique repetition requirements based on
their functionality/timing criticality. Also signals may have single destination or multiple destinations.
The flop repeater structure for each signal should be optimized so that it has minimum number of flops and timing is also
met, to achieve desired targets for timing, area and power. This paper will show how we are creating optimized tree
structure based on mathematical techniques and generating automated RTL for such repeater flop module. This submission
presents a new tool ART (Auto Repeater Tool) that completely eliminates the manual effort/time required to generate
functional, ready to plug-in RTL.

Keywords: Optimized repeater flop structure, Repeater, Flop, Automated RTL, SREP/TREE, Logic design.

Received on 15 November 2019, accepted on 03 January 2020, published on 10 January 2020

Copyright © 2020 Rahul S Bhatt et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.13-7-2018.162634

1. Introduction

The Hard IP (HIP) designs, nowadays, are getting very
competitive in terms of power and area. The basic
element consuming power is the flip flop. The more the
number of flops, the greater the power consumption.
Modern designs are having thousands of signals which are
flop repeated multiple times from source to destination.
Most of the IPs have a dedicated module, let’s call it
“Repeater Channel”, which flop repeats these signals and
feeds them to their destination module. The functionality
of such Repeater Channel module is very critical as it has
to carefully flop repeat each signal based on multiple
parameters like its functionality, timing criticality,
number of endpoints (destination module) etc.

The important question is how to decide number of
flop stages required for these signals to travel from source
‘Misc Logic’ partition to ‘Data, Command, Control’

partitions. There are multiple factors which are taken into
account to calculate this.

• Floorplan of our IP (Dimensions of the different
partitions, Type/Name of each partitions) [Figure 1]

• Distance that the signal has to travel from source to
destination partition

• Single flop drive strength

EAI Endorsed Transactions
on Cloud Systems Research Article

*Corresponding author. Email: rahul.s.bhatt@intel.com

EAI Endorsed Transactions on
Cloud Systems

11 2019 - 05 2020 | Volume 6 | Issue 17 | e2

http://creativecommons.org/licenses/by/3.0/

Rahul S Bhatt, Shweta Sharma and Shyam A

2

DATA1

DATA2

DATA5

DATA3

DATA4

Command2

Control

Command1

M
I
S
C

L
O
G
I
C

R
E
P
E
A
T
E
R

C
H
A
N
N
E
L

Figure 1. Reference HIP Floorplan

Problem 1: All signals cannot be flop repeated in
same manner.

We need to come up with the custom structure for each
signal to have the optimized number of flops. This
structure can be a flop tree for multiple endpoints or a
serial repeater chain (SREP) for single endpoint.

Problem 2: Finding a tree structure with least
number of flops is very cumbersome.

We won’t be talking about the serial chains here as
they don’t need any optimization. Number of flop stages in
SREP, which is calculated based on geometry and flop
drive strength, is fixed for that geometry and it doesn’t
have any room for optimization. For example, if a signal
requires 5 stages to travel from partition A to partition B,
then in a SREP we cannot have 4 stages as geometry itself
requires 5 stages. However, if a signal is less timing
critical and we want to add more than 5 stages, we have an
option for that also.

There is a lot of scope for optimizing number of flops
in the tree structure. This is critical as there are multiple
mathematical ways to create the tree. Finding a tree
structure with least number of flops is very cumbersome
hence here we have developed an algorithm to solve this.

Traditionally we manually calculate number of
repeater flop stages needed & then hand code the RTL for
it, which is error prone, time consuming and not really
scalable. The process involves putting a series of flops
from source module till destination module with each flop
branching into maximum of 2 flops. This binary flop
generation is repeated till all the endpoints are connected.

The disadvantages of this approach are
• Increased Area & Power: More number of flops

are used as the generated tree structure may not
be optimal. This increased the area of the HIP.

• Manual & error prone: Time taken for
development is more as each signal has to be
hand coded.

We have developed an automated system which takes
all the necessary inputs and does all the calculation and

analysis. Our system comes up with an optimized tree
structure and automatically generates a functional RTL
module so the RTL we are getting is completely automated
and also most optimized. On top of that, user also has
flexibility to add additional flops for the signals that is not
timing critical.

2. ART Framework

The system we have developed consists of 3 different
utilities working together.

Utility1: Excel
Floorplan based Flop Calculator

Utility2: “C
Language”

Tree Optimizer

Utility3: PERL

RTL Code
Generator

F
l
o
r
p
l
a
n

Flop Drive
Strength

Partition
Dimension

Flop
Degradation

Distance
between
Partitions

Flop Count
between
Partitions

Optimized
Tree

Structure

Figure 2. Overview of RTL Generator Framework

Utility 1 Floorplan based Flop Calculator: It is the
master utility which controls the whole flow. This
calculates the number of flops needed between source
module and destination module based on the floorplan. It
passes all these inputs to Tree Optimizer in ‘.csv’ format.

Utility 2 Tree Optimizer: This is C based algorithm.
Inputs are the number of flop stages and the degradation
factors for various fanouts. Flop calculator then takes the
optimum tree structure dumped by Tree Optimizer and
then excel file is passed to the ‘RTL Code Generator’.

Utility 3 RTL Code Generator: The RTL Code
Generator generates a functional RTL code in .sv format
and can be plugged in to create signal repetition between
modules.

2.1. Floorplan based Flop Calculator

Below is the snapshot of the excel sheet in which we feed
the required inputs and information to do the
mathematical calculation.

Table1: Partition
Dimensions

Table2: Flop Drive
Strength for critical

and non-critical
signals

Table3: Degradation
in flop drive strength
if flop is driving 2 and

3 flops

Table4: Floorplan
Text Representation

Table7: Information
used to generate an

RTL

Table5: Distance
getting calculated

automatically
between each

partitions in floorplan

Table6: Minimum
flops required
between each

partitions in floorplan

Button1: To get the
Distance Table5

Button2: To get the
minimum flop Table6

Button3: To get the
Revised tree after the

degradation in
distance

 Figure 3. Floorplan Inputs and Calculations

EAI Endorsed Transactions on
Cloud Systems

11 2019 - 05 2020 | Volume 6 | Issue 17 | e2

3

Calculations are done automatically with click of a button
embedded in Excel Sheet. These buttons will run the
VBA macro to generate the data.
Table1 consists of the dimensions of the partitions our IP
is having.
Table2 is the drive strength of a flop when it is driving a
single flop.
Table 3 indicates how much degradation the flop will
have in its drive strength when it is driving 2 and 3 flops
further down.
Table 4 is the textual representation of our floorplan
which indicates which partition is at what position.
Button1 gives us the Table5 which is the midpoint
distance between each partitions in floorplan.

We are using midpoint distance and not specific X/Y
location of ports on the border as X/Y location of ports is
very specific to Back-End and subject to change.

We want to have a little flexibility for the Back-End by
not being too specific by having exact distance. Midpoint
of partition gives us pessimistic distance which gives us
extra margin in terms of distance. The ports interacting
with North partitions are mostly located above the
midpoint of the source partition boundary and those
interacting with South partitions are mostly located below
the midpoint of the source partition boundary.

There are 2 different cases for midpoint distance
calculation.

Case 1: Distance between adjacent partitions (e.g.
between Data5-Data4, Data5-Data3…Data5-Control).
To calculate center to center distance between partition x
and partition y, following is the formula we used in the
VBA macro.

.
(1)

Where,
Xheight = height of partition x
Yheight = height of partition y
XYheight = Sum of height of all partitions between x and

y

Case 2: Distance between source partition (Misc
Logic) to end partitions (data, command and control).
To calculate the center to center distance between Misc
Logic and Partition Command1, we have used following
formula.

.
(2)

Where,
rptheight = Height of Repeater Channel partition
cmd1height = Height of Command1 partition

tillCmd1height = Sum of height of all partitions from top
till Command1 partition

MiscLogicheight = Height of Misc Logic partition
MiscLogicOffset = Distance between bottom edge of

Repeater Channel and bottom edge of Misc Logic.

Button2 gives us the minimum number of flops
required between each partition in Table6 which is based
on Table5 and Table2. This will divide the distance we
got in Table5 by the Table 2 numbers of ‘For Critical’ and
‘Non Critical’ Flop Drive Strength and round it up to the
nearest ceiling value.

Button3 generates an optimized tree structure, which is
an output of Tree Optimizer (.exe file), for all the
predefined signal categories in Table 7. We are passing
the .exe file to the excel macro running behind this button
which runs the executable file within the macro and
captures the output in Table 7.

Table7 consists of the initial optimized Tree structure
given by our “C” based algorithm which takes .csv file as
an input. We have divided all the input signals into some
predefined categories based on the functionality of these
signals. Tree structure for each of these categories will be
different depending on the stages required and number of
endpoints.

2.2. Tree Optimizer

Tree optimizer is a C based algorithm. It takes the
distances between source and destination endpoints, flop
drive strength and degradation factors as inputs and
dumps the optimized tree structure for the given input.
This is implemented based on the tree data structure. Here
root of tree will be the source endpoint and all leaf nodes
represent the destination endpoint. Each node in between
root and tree is a flop. Tree Optimizer mainly has 3
phases.

Phase 1:
In phase 1 it finds the farthest endpoint (say x) from the
source and creates a chain of flops to connect from the
source module to x. In C, each flop is realized using a
node of tree.

In Figure 4, MISC is the source module and we need to
repeat the MISC signal to Data1, Data2, Data3, Data4,
Data5 and Data6 modules. Farthest destination endpoint
here is Data1 so in phase 1 we create a tree where the root
is MISC and has only 1 leaf node - Data1. The number of
levels of this tree will be equal to the flop drive length
between MISC and Data1. The chain will look like below
if the flop drive length is 6. In this phase each of the
nodes (node1:6) are assigned its height position relative to
the source endpoint.

Automated RTL Generator for Optimized Flop Repeater Network

EAI Endorsed Transactions on
Cloud Systems

11 2019 - 05 2020 | Volume 6 | Issue 17 | e2

Rahul S Bhatt, Shweta Sharma and Shyam A

4

Source
Endpoint

Destination
Endpoints

Data1

Data2

Data3

Data4

Data5

Data6MISC

1

2

3

4

5

6

Figure 4. Tree Optimizer Phase 1

Phase 2:
In phase 2 the algorithm looks at the farthest endpoint
from the leaf node of the main chain. In the above
example the farthest is Data 6 (from Data1). It then
calculate the number of flops required to connect to each
of the nodes. i.e., the number of flops needed to branch
from node 1 to Data6, node 2 to Data6 etc.

In the above example, number of flops needed to reach
Data6

• From node 1 is 5 (To match the delay between Data1
and Data6).

• From node 2 is 4.
• From node 3 is 3 etc.

This calculation is done for all the destination
endpoints. While doing the calculation there may be cases
that from a node in main chain to Data6, it might take less
flops than from that node to Data1. These nodes should
not be considered as it will increase the delay for all the
destination endpoints.

From the calculation, we find the node with least
number of flops required to reach Data6. If this node has
children less than the number of fanouts, then we add
nodes till Data6, else next node, with least number of
flops, is considered. If it takes least number of flops from
node3, then the tree will look like below:

This process is repeated for all the destination endpoint
till the full tree is found.

Source
Endpoint

Destination
Endpoints

Data1

Data2

Data3

Data4

Data5

Data6MISC

1

2

3

4

5

6

4

5

6

Figure 5. Tree Optimizer Phase 2

Phase 3
In this phase we have a tree structure with root at MISC
and 6 leaf nodes – Data1:6. Now we parse through the
tree to calculate the distance from the MISC to each node
with degradation in consideration for each node because
of one flop driving multiple endpoints. This distance is
compared with the actual distance from the floorplan. If
any of the node’s calculated distance (by parsing the tree)
is less than the actual distance (from floorplan), then the
number of flops needed to reach from MISC to that flop is
increased and rerun the program from Phase 1.

Figure 6. Tree Optimizer Phase 3 Output

So at the end of the Phase 3, we will get the most
optimal tree structure which is passed to Table 7 in excel.
Then the excel file is passed to RTL Code Generator.
Refer Figure 6 for sample Tree Optimizer output.

2.3. RTL Code Generator

The PERL based script takes the tree structure and serial
repeater count as input from Table 7 along with another
tab in the excel sheet which consists of signal level
information as shown in below snapshot.

Input signal
name

Input signal
type e.g.

logic,
struct_name

etc

Auto
generated

Output signal
name

Clock used to
flop repeat
input signal

One of the
predefined

signal
category

from Table7
for input

signal

Special Flop
Type

(OPTIONAL)
e.g. RST flop,

EN flop

Condition for
special flop

type

Option to
have

Additional
number of
stages the

user want to
relax for

input signal
on top of
Minimum
required
stages in
Table7

Auto
generated

Relaxed Tree
structure if
“Relaxation

Parameter” is
present

Input signal
width

Button to
generate

output signal
name

Button to
generate

Relaxed Tree

Figure 7. RTL Generator Utility

PERL script takes this excel sheet as input and
generates an RTL module with optimized number of
repeater flops. It will declare the input and output signals

EAI Endorsed Transactions on
Cloud Systems

11 2019 - 05 2020 | Volume 6 | Issue 17 | e2

Automated RTL Generator for Optimized Flop Repeater Network

5

along with the intermediate logic declaration of the
interconnect signals for tree. It will also assign the final
stage tree outputs to the output ports. Below is the
snapshot of RTL generated for signal (Command_Enable)
mentioned in the excel sheet.

Figure 8. Sample of RTL generated for single
signal

The beauty of this is whenever there is a change in the
tree structure (because of updated flop drive strength or
change in the position of one of the partition), the updated
RTL will be generated automatically with a click of a
button. Designer won’t have to go through the hassle of
breaking the existing connections to include updated
repeater structure. If new signals are added then
integration of those will be required.

This will be applicable to all the signals going from
one partition to another. If the signal is travelling from
source partition to destination directly without any flops,
it will be a feedthrough signal. Such signal can be
included in respective signal category and will be taken
care by simple assign statement.

3. Results

Following tree diagrams and tables show the comparison
in number of flops seen using traditional approach vs the
new automated approach mentioned in the paper.

3.1. Un-optimized Traditional Tree

1

2

5

6

10

11

9

4

8

12

3

7

Source
Endpoint

Destination
Endpoint 1

Destination
Endpoint 2

Destination
Endpoint 3

Destination
Endpoint 4

Destination
Endpoint 5

Figure 9. Un-optimized Tree Structure for a signal
category Data1:N

Table 1. Number of flops without optimized tree

3.2. Optimized Tree That ART has
Generated

1 4

8

9

7

3 6

10

2

5

Source
Endpoint

Destination
Endpoint 1

Destination
Endpoint 2

Destination
Endpoint 3

Destination
Endpoint 4

Destination
Endpoint 5

Figure 10. Optimized Tree Structure for a signal
category Data1:N

Table 2. Number of flops with Optimized Tree

3.3. Area Savings with New Automated
Approach

Table 3. % Savings Calculation

The Optimization & Area savings increase as the HIP
designs

• Become more complex and hence
floorplan/dimension increases.

• This causes the number of repeater stages to
increase. (time-consuming & error prone)

• Hence increasing the optimization brought in by Tree
optimizer utility.

4. Summary

This complete system, consisting of all 3 utilities, can be
used for multiple projects in Intel in which this kind of

EAI Endorsed Transactions on
Cloud Systems

11 2019 - 05 2020 | Volume 6 | Issue 17 | e2

Rahul S Bhatt, Shweta Sharma and Shyam A

6

repeater flops are required. With our solution we have
designed a tool that

• Takes the floorplan information, distance from the
source module to the destination and single flop
drive strength as the input.

• Algorithmically finds out a tree structure with
minimal number of flops.

• Generates the optimal functional RTL FUB that is
ready to plug in.

The advantages of our solutions are:

• Less Area: This approach generates the least number
of flops needed for a given source endpoint to
destination endpoint. Thus area and flop delay are
optimized.

• Automated: It needs minimal manual effort and it
generates a functional RTL which is ready to plug-in.
Thus the development is faster, easy to use and less
prone to errors.

• Scalable: Adding new signals just requires adding
the corresponding fields in the input to the tool and
rerun the program again.

• Fast development: Using tool to generate automated
RTL, aids quicker development & faster simulation
readiness.

Optimized & automatic RTL, generated using the tool
described in this document, is being intercepted in one of
the Intel’s IPs.

Acknowledgements.
We would like to thank Krishnamurthy B Venkataramana and
Rajeev Gopalan for motivating and guiding us to create this
system. We would like to thank Satheesh Pillai for letting us
know the challenges back-end team is facing to close the timing
on such module. We would like to thank Ryan Joseph who
provided us more insights of the problems encountered in such
module. We would like to thank Alex P Thomas, who is the first
user of this tool, for providing us valuable feedback which made
us improve our system. We would like to acknowledge the effort
of Aman Aggarwal, who had helped us to develop few VBA
macros for tool.

References
[1] Eng Keong Teh; Mohamad Adzhar Md Zawawi; Mohamed

Fauzi Packeer Mohamed; Nor Ashidi Mat Isa, "Access-
Practical System-on-a-Chip Flop Repeater Insertion with a
Meta-heuristic Technique", 2018, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems

EAI Endorsed Transactions on
Cloud Systems

11 2019 - 05 2020 | Volume 6 | Issue 17 | e2

