
Improving Performance in Component Based

Distributed Systems

Fahd N. Al-Wesabi1,*
, Huda G. Iskandar2 and Mokhtar M. Ghilan3

1Assistant professor, College of Science and Arts in Mahayel Asir, King Khalid University, KSA, Faculty of Computer and

IT, Sana’a University, Sana’a, Yemen

2Master candidate, Faculty of Computer and IT, Sana’a University, Sana’a, Yemen.
3Assistant professor, Faculty of Computer and IT, Sana’a University, Sana’a, Yemen.

Abstract

Assuring high performance is one of the most important factors when building computerized systems. In distributed

component-based systems different configurations and workloads are common. Over the years, many approaches were

proposed to analyse, predict, measure and evaluate the performance of component-based distributed systems in an attempt

to improve its performance. Higher performance results in better utilization of system resources, high throughput and quick

response time of user requests. In this paper, we extend the work of the E-Avala approach to improve the overall performance

of the proposed approach by adding power processing capabilities.

The proposed approach has been implemented and compared with previous approach using Arena simulation with varying

configuration parameters. Comparative results show that the proposed approach has given better performance with different

levels of processing powers.

Keywords: Distributed systems, component based distributed systems, performance, availability and delay time.

Received on 20 February 2019, accepted on 23 June 2019, published on 04 July 2019

Copyright © 2019 Fahd N. Al-Wesabi et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.13-7-2018.159357

1. Introduction

Many new business systems are now developed by

configuring off-the-shelf systems. However, some off-the-

shelf systems cannot meet all company’s requirement.

Therefore, a special designed software must be specially

developed. When developing new enterprise systems with

customized software, component-based software engineering

is considered an effective reuse-oriented way.

Component-based software engineering (CBSE) is the

successor of object-oriented software development [1,2] and

has been supported by commercial component frameworks

such as Microsoft's COM, Sun's EJB or CORBA CCM.

Software components are units of composition with explicitly

defined provided and require interfaces [1].

In today's world, distributed systems have replaced their

central ones. This is fairly understandable because distributed

systems have higher availability, reliability, and incremental

growth. In the case of component-based distributed systems,

software components are distributed across many different

hosts. Therefore, a decision should be made to locate the

platforms in which the components will be deployed [3].

When making such a decision, there are some issues needed

to be considered which are:

EAI Endorsed Transactions
on Scalable Information Systems Research Article

∗Corresponding author. Email: Fwesabi@gmail.com

EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e71

http://creativecommons.org/licenses/by/3.0/

1. Component requirements of hardware and software.

When designed, some components require certain

hardware architecture or software systems, so these

components should be deployed on a platform that

provides their hardware requirements and software

support.

2. The availability requirements of the system. in order to

satisfy the high availability requirement of some

systems, components should be deployed on more than

one platform. This means that, a substitutional

implementation of the component is available if platform

failure occurs.

3. Component communications. If communication level is

high between some components, they should be

deployed on the same platform or on physically close

platforms. This reduces communications latency when

sending and receiving messages between components

4. The overall performance of the system. Components

should be deployed on platforms with higher processing

capabilities to guarantee higher performance for the

system.

Improving availability in distributed systems had been

given due thought by the researchers in the past. Other

researches have proposed approaches to manage redeploying

components regarding dependency relations between them.

However, these researches have ignored the performance of a

distributed system. The implementation and evaluation of an

approach that increases the overall performance of the system

are complex due to the need of creating virtual tasks

processing the components to measure the system's

performance. Therefore, it should merit enough attention.

2. Related Works

Over the years, numerous approaches have been

proposed to evaluate the performance of component-based

software systems such as resource utilization, throughput and

response time. Some of these approaches are aimed to predict

performance and others to measure performance. The former

ones’ goal is to avoid performance problems in system

implementation by analysing the expected performance of a

component-based software design. These problems can lead

to redesigning the component-based software architecture

with substantial costs if not avoided. The latter ones are aimed

to analyse the performance of implemented and running

component-based systems to understand their performance

properties, to remove performance bottlenecks, determine

their maximum capacity, and recognize performance-critical

components.

 In [4], the research provided an extensible framework,

called Deployment Improvement Framework. This

framework’s goal is to improve the quality of service QoS of

a software-intensive system. The framework determined the

best deployment of software components onto hardware hosts

according to multiple, possibly conflicting QoS dimensions.

The design of the framework model and algorithms allows for

arbitrary specification of new QoS dimensions and their

improvement. They are also developing the capability to

automatically determine the best algorithm(s) based on

system characteristics and execution profile.

In [5], the study described dependency management

between component during dynamic reconfiguration by

analysing and managing static and dynamic dependencies.

The proposed work provided consistent reconfiguration of

distributed systems and handled nested dependencies.

However, the study didn’t handle data dependencies and or

its effect during dynamic reconfiguration.

Availability is considered to be one of the most important

criteria that affect the usefulness and efficiency of a

distributed system. It depends on how the system components

are deployed on the available hosts. If the components that

have high level of communication are located on the same

host, the availability will definitely be higher given that all

the components are working properly.

In an attempt to increase availability in distributed and

mobile environments which can be decreased due to network

connectivity losses, the research in [6] proposed an algorithm

called Avala to improve availability in component-based

distributed systems via redeployment. The proposed study

supported runtime redeployment to increase the software

system's availability by monitoring the system, estimating its

redeployment architecture, and affecting the estimated

redeployment architecture. The approach proposed reduced

the overall interaction latency in the system and considered to

provide a fast-approximate solution compared to the other

previous exponentially complex solutions. However, the

proposed work did not deal with constraints in the solution

space neither study the dependency relations between

components.

 In [7], the proposed study has presented an extension of

the Avala model [6] called E-Avala by providing a

dependency relation between the components and

implementing replication mechanism. However, issues such

as dealing with functional consistency of components and

including additional system parameters such components

structure (e.g. hierarchical representations of the components

must be properly addressed.

In many approaches, an agent technology has been

presented to address issues in distributed system information

retrieval and in distributed system integration.

In [8], an agent-based monitor provided dynamic mechanism

for redeploying or replicating components for the approaches

presented in [6] Avala and [7] E-Avala. As mentioned earlier,

these two approaches aimed to improve availability in

component-based distributed systems via redeployment and

replication. Agents make the decision of whether redeploying

or replicating is more appropriate based on the interaction

between the system and components.

In terms of performance, balancing load is considered

one of the most important approaches to achieve better

performance in distributed systems.

In [9], the research has presented two algorithms which aimed

to balance load in distributed systems. The algorithms are

simple, adaptive and based on the hierarchical structure. They

EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e7

Fahd N. Al-Wesabi, Huda G. Iskandar and Mokhtar M. Ghilan

2

worked in two levels of groups and nodes. The algorithms

started by distributing the arrival loads on the groups and

nodes with specific biases according to each node and group

current load state. Then they transmit arrival loads by

selecting the group and node with minimum load state. The

proposed algorithms have presented an improvement -

especially when the system is not fully overloaded- in terms

of drop rate, throughput and response time for various

numbers of nodes and tasks.

A clustered algorithm was presented to provide dynamic

load balancing in distributed systems with their diversity of

serving capabilities advantage [10]. Each cluster has three

nodes and a supporting node. The load balancer has a queue

in which the load of each cluster node load is stored. Nodes

are decided whether they are heavily loaded or not by using

threshold value. If a node is overloaded, the load balancer is

responsible to identify the most appropriate node to transfer

the overload to it. The proposed approach reduced

communication cost and complexity. However, it only works

for a cluster with three nodes.

The proposed method in [11] assumed n nodes. Each

node has a backup node which aimed to identify the

underloaded nodes and transfer the unserved tasks to them. It

is also responsible for each node tasks in case of a failure in

its node. The system preserves a load balanced state due to

transferring extra load from overloaded nodes to under-

loaded nodes. In this work, the overall performance of the

system is enhanced due to minimized response time and the

nodes of the systems are not overloaded for maximum time.

3. Factors Influencing Component
Performance

In component-based distributed systems the performance of

reusable software components is difficult to be determined

because there are other factors influencing the provided

performance like the context the component is deployed into

beside the component implementation. The main factors that

have impact on software components performance are

mentioned below:

(i) Component implementation: Functionality specified by

an interface can be implemented by component

developers in different ways. Two components running

on the same resources and given the same inputs can

provide the same service functionally but exhibit

different execution times.

(ii) Required services: If a component service X invokes

required service Y, then the execution time of Y is added

up to the execution time of X. each component execution

time is calculated by adding up the execution time of all

required services.

(iii) Deployment platform: software components may be

deployed to different platforms by software architects. In

a deployment platform, many software layers can be

included such as component container, virtual machine,

operating system, etc. and hardware such as processor,

storage device, network.

(iv) Usage profile: component services can be invoked by

different clients with different input parameters. Values

of input parameters can change the execution time of

services. In addition to input parameters, component can

receive other parameters from the required service which

can also impact the total execution time of a service.

Furthermore, components can have an internal state from

an initialization or former executions, which changes

execution times.

(v) Resource contention: Typically, software component

does not execute as a single process in isolation on a

given platform. The induced waiting times for accessing

limited resources add up to the execution time of a

software component [1].

As mentioned above, deployment platform is one of the

factors influencing component performance whether software

or hardware as processor. In this research will include

processor as an attempt to improve the performance of the

proposed approach.

4. The Proposed Approach

The previous approaches do not take a processor factor into

account when ranking the hosts in the system. We consider

this to be a very important issue in distributed systems as

mentioned previously because in some situations it is difficult

to deploy certain components in certain hosts if they have less

processing capabilities or if hosts have unequal distribution

of workload. In our approach, we employ the notion CPU

speed in host ranking formulas (1) and (2) which is defined

below. The initial ranking of hardware nodes is performed by

calculating, for each hardware node i, the Initial Host Rank

(IHRi,) as follows:

 𝑰𝑯𝑹𝒊=∑ 𝑹𝑬𝑳𝒌
𝒋=𝟏 (𝒉𝒊, 𝒉𝒋)+MEM (𝒉𝒊)+ CPU (𝒉𝒊) (1)

where 𝒉𝟏, 𝒉𝟐, …, 𝒉𝒌 (1 ≤ k) stands for hosts, ∑ 𝑹𝑬𝑳𝒌
𝒋=𝟏 (𝒉𝒊,

𝒉𝒋) is reliability between 𝒉𝒊and 𝒉𝒋, MEM(𝒉𝒊) is the memory

of 𝒉𝒊 , and CPU(𝒉𝒊) is the processor speed of 𝒉𝒊 . The next

host to be selected is the one with the highest memory

capacity, highest CPU speed and highest link quality (i.e.,

highest value of reliability) with the host(s) already selected.

Host Rank (HR) is calculated as follows:

𝑯𝑹𝒊(𝒉𝒊)= ∑ 𝑹𝑬𝑳𝒎
𝒋=𝟏 (𝒉𝒊, MH (𝒉𝒋)) +MEM (𝒉𝒊)

+CPU (𝒉𝒊) (2)

Where m is the number of hosts that are already selected, 𝑹𝑬𝑳
(𝒉𝒊, MH (𝒉𝒊)) is a function that determines the reliability

between selected host h and hosts of mapped components.

EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e7

Improving Performance in Component Based Distributed Systems

3

5. Experimental Setup, Results and

Discussion

After we experimented and implemented the algorithm of our

approach, we evaluated its performance and compared it with

the existing previous approach based on the criteria of delay

time, and the number of processes. This subsection introduces

results discussion and evaluation of our approach as a

contribution to this paper. A methodological description of

the process is introduced, as well.

 Evaluating the performance of our proposed approach,

different scenarios of transactions on different system

configuration parameters were conducted. Then, the

performance average of the proposed approach was

found.

 Results study of CPU effect on system performance

against our approach and previous approach for different

scenarios of transactions on different system

configuration parameters was conducted. Then, we

found the maximum average performance and compared

it in the two approaches.

Each step mentioned above is presented in a separate

subsection in this paper.

5.1. Experimental Parameters and Setup

In order to test the proposed approach and compare it with

other approaches, we conducted a series of simulation

experiments. The experimental environment (CPU: Intel

Core™i5 M450/2.40 GHz, RAM: 4.0 GB, Windows 7, and

Java Programming language with Eclipse KEPLER, and

Arena simulation.) is explained below:

 First, we implemented the proposed approach and analysis

the performance of the proposed approach against the

previous approach.

 Then the effect of adding CPU factor has been studied in

our approach with the existing previous approach and

compared their results.

The experiments parameters were categorized according to

the CPU speed into three classes: low, mid and high sampled

as A, B, and C respectively.

 To measure the performance of our proposed approach

and compare it with the current developed approach which

has been developed under a similar environment and criteria,

we used the delay time and number of processes.

 We evaluate the efficiency and feasibility of the proposed

approach by conducting a series of experiments based on

various configuration parameters of the proposed approach

and previous approach with different level of CPU speed.

5.2. Experimental Results

In this subsection, we present the evaluation for the

performance of our approach against CPU speed of different

scenarios of transactions. First, we present the study results

and analysis performance for our approach and previous

approach against different CPU speed. Then, we find the best

performance average of which approach that has the best

performance. Finally, we assess the effect of our approach on

the previous approach. In each class, we have taken the

average results for 20 different randomly generated

architecture configurations by using the parameters presented

below in Table 1.

 Table 1. System Input Parameters

Input Parameter Value

No of components 100

No of hosts 20

Min component memory (in KB) 2

Max component memory (in KB) 8

Min host memory (in KB) 50

Max host memory (in KB) 100

Min host CPU speed (in kHz) 1.1

Max host CPU speed (in kHz) 4.1

Level of dependency 3

Min component frequency (in events/s) 0

Max component frequency (in events/s) 10

Min host reliability 0

Max host reliability 1

Min component event size (in KB) 1

Max component event size (in KB) 10

Min host bandwidth (in KB/S) 30

Max host bandwidth (in KB/S) 1000

5.2.1. Class A (Low)

In computer systems, CPU speed varies which results in a

different level of performance. In this class, CPU speed is

ranging between 1.1 and 2.1 kHz.

Fahd N. Al-Wesabi, Huda G. Iskandar and Mokhtar M. Ghilan

EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e74

Figures 1 and 2 show the performance rates of our proposed

approach against all configuration parameters in terms of

delay time and number of processes.

Figure 1. Delay Time of Proposed Approach in
Class A

From Figure 1, we can see that our proposed approach

gives the average of delay time with value of 7.88

millisecond (ms).

Figure 2. Number of Processes in Class A

As shown by figure 2 above, the maximum number of

processes produced by our approach is 32.

5.2.2. Class B (Mid)

Performance was examined with 20 tests with CPU speed

ranging between 2.1 and 3.5 kHz. Figures 3 and 4 show

the performance rates of our proposed approach in terms of

delay time and number of processes.

From Figure 3, we can see that our proposed approach

gives the average of delay time with value of 6.72

millisecond (ms).

Figure 4. Number of Processes in Class B

As shown by figure 4 above, our approach’s maximum

number of processes is 57.

5.2.3. Class C (High)

In this class performance was examined with 20 tests of

CPU speed between 3.5 to 4.1 KHz. Figures 5 and 6 show
the performance rates of our proposed approach against
all possible CPU values.

Figure 3. Delay Time of Proposed Approach in

Class B

Improving Performance in Component Based Distributed Systems

EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e75

Figure 5. Delay Time of Proposed Approach in

Class C

From Figure 5, we can see that the proposed approach gives

the average of delay time with value of 6.72 millisecond

(ms).

Figure 6. Number of Processes in Class C

As shown by figure 6 above, the maximum number of

processes given by our approach is 60.

5.3. Comparative Results

In this subsection, we present an evaluation of the CPU

effects of all classes on system performance against our

approach and previous approach for different configuration

parameters.

 Figures 7 and 8 shows the maximum of maximum values

of delay time and number of processes for our approach

and previous approach against the effects of sixty tests

categorized as [low-speed CPU, medium speed CPU, and

high-speed CPU].

Figure 7. Delay Time Enhancement of Our
Approach With E-Avala

 Figure 8. Number of Processes Enhancement of

Our Approach With E-Avala

Inviting comparisons with CPU speed effect in terms of the

best performance as figures 7 and 8 shows, our approach

has given the lowest delay time and the highest number of

processes value under all classes of CPU speed, and under

various configuration parameters. As can be seen from the

figures above and its values, the proposed approach is more

applicable in all three classes. It shows improvement in

terms of delay time in classes A, B, and C with

improvement values of 79%, 81%, and 84% respectively.

In terms of number of processes, the proposed approach

provides higher number with improvement level of 9%,

19%, and 25% in classes A, B, and C respectively. This

improvement is due to considering the processing

capabilities in addition to reliability and memory size of

hosts when ranking them as best hosts to redeploy or

replicate software components to them. The equations of

ranking hosts examine the processing capabilities of each

host in which they are ranked to provide the best host it

terms of memory size and processing power. The systems

deployed using the proposed approach provide less delay

time so that number of processes executed are more. As can

be seen, the improvement level is increasing and has the

highest values in class C which is axiomatic due to

02
46
810121416182022242628

Low Mid High

Ti
m

e
in

 M
ili

se
co

n
d

s

Classes of CPU

E-Avala Proposed App

Fahd N. Al-Wesabi, Huda G. Iskandar and Mokhtar M. Ghilan

EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e76

increasing the processing capabilities in this class. The

proposed approach is predicted to provide better

performance with more complex systems with a greater

number of hosts and components.

6. Conclusions

Aval and E-Avala approaches have been proposed to

enhance availability in component-based distributed

systems. However, they have ignored the performance

factor. In this paper, we have presented our approach as an

extension of E-Avala to enhance host ranking by adding a

new factor (CPU speed) in an attempt to improve system

performance. The experiments showed that the proposed

approach had better performance in terms of delay time and

number of processes.

References

[1] Duncan S. Component software: Beyond object-

oriented programming. Software Quality

Professional. 2003 Sep 1; 5(4):42.
[2] Heineman GT, Councill WT. Component-based software

engineering. Putting the pieces together, addison-westley.

2001 May:5.

[3] Sommerville I. Software engineering 9th Edition.

ISBN-10. 2011;137035152.

[4] Malek S, Medvidovic N, Mikic-Rakic M. An

extensible framework for improving a distributed

software system's deployment architecture. IEEE

Transactions on Software Engineering. 2011 Jan 6;

38(1):73-100.

[5] Chen X. Dependence management for dynamic

reconfiguration of component-based distributed

systems. In Proceedings 17th IEEE International

Conference on Automated Software Engineering,

2002 (pp. 279-284). IEEE.

[6] Mikic-Rakic M, Malek S, Medvidovic N. Improving

availability in large, distributed component-based

systems via redeployment. In International Working

Conference on Component Deployment 2005 Nov 28

(pp. 83-98). Springer, Berlin, Heidelberg.

[7] Al-Areqi S, Hudaib A, Obeid N. Improving

Availability in Distributed Component-Based

Systems via Replication. In New Challenges for

Intelligent Information and Database Systems 2011

(pp. 43-52). Springer, Berlin, Heidelberg.

[8] Obeid N, Al-Areqi S. Using Agents for Dynamic

Components Redeployment and Replication in

Distributed Systems. In Contemporary Challenges

and Solutions in Applied Artificial Intelligence 2013

(pp. 19-25). Springer, Heidelberg.

[9] Barazandeh I, Mortazavi SS, Rahmani AM. Two new

biasing load balancing algorithms in distributed

systems. In2009 First Asian Himalayas International

Conference on Internet 2009 Nov 3 (pp. 1-5). IEEE.

[10] Rajani S, Garg N. A clustered approach for load

balancing in distributed systems. SSRG International

Journal of Mobile Computing & Application (SSRG-

IJMCA). 2015; 2(1).

[11] Jadhav R, Kamlapur S, Priyadarshini I. Performance

evaluation in distributed system using dynamic load

balancing. Performance Evaluation. 2012 Feb; 2(7).

[12] Roy N, Dubey A, Gokhale A, Dowdy L. A capacity

planning process for performance assurance of

component-based distributed systems. ACM

SIGSOFT Software Engineering Notes. 2011 Sep 30;

36(5):41-.

[13] Kaur U, Sharma S. Performance Evaluation using

Various Models in Distributed Component based

Systems. International Journal of Computer

Applications. 2014 Jan 1; 98(1).

[14] Brosig F, Huber N, Kounev S. Automated extraction

of architecture-level performance models of

distributed component-based systems. In Proceedings

of the 2011 26th IEEE/ACM International Conference

on Automated Software Engineering 2011 Nov 6 (pp.

183-192). IEEE Computer Society.

[15] Kaur N, Singh A. Component complexity metrics: A

survey. International Journal of Advanced Research in

Computer Science and Software Engineering. 2013

Jun; 3(6).

Improving Performance in Component Based Distributed Systems

EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e77

