
Scalable Source Code Similarity Detection in Large
Code Repositories

Firas Alomari1,∗ and Muhammed Harbi1
1Corporate Applications Department, Saudi Aramco, Dhahran, Saudi Arabia

Abstract

Source code similarity are increasingly used in application development to identify clones, isolate bugs, and
find copy-rights violations. Similar code fragments can be very problematic due to the fact that errors in the
original code must be fixed in every copy. Other maintenance changes, such as extensions or patches, must
be applied multiple times. Furthermore, the diversity of coding styles and flexibility of modern languages
makes it difficult and cost ineffective to manually inspect large code repositories. Therefore, detection is only
feasible by automatic techniques. We present an efficient and scalable approach for similar code fragment
identification based on source code control flow graphs fingerprinting. The source code is processed to
generate control flow graphs that are then hashed to create a unique fingerprint of the code capturing
semantics as well as syntax similarity. The fingerprints can then be efficiently stored and retrieved to perform
similarity search between code fragments. Experimental results from our prototype implementation supports
the validity of our approach and show its effectiveness and efficiency in comparison with other solutions.

Received on 05 April 2019; accepted on 20 May 2019; published on 04 July 2019
Keywords: clones, software similarity, Control Flow Graphs, Fingerprints
Copyright © 2019 Firas Alomari et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.13-7-2018.159353

Enterprise Resource Planning (ERP) systems are a
fundamental part in most companies IT application
portfolio. They provide a set of standardized software
applications that handles interdisciplinary business
processes across the entire value chain of an enterprise
[1, 2]. The potential of ERP systems to integrate busi-
ness functions such as supply chain, financial account-
ing, or Human Resources has led to their widespread
adoption. One such example is the SAP (Systems Appli-
cations and Products) ERP software which provides
standard packages capturing "best business practices"
[3]. However, rapid and continuous changes in busi-
ness requirements are forcing companies to continu-
ously modify and enhance the standard functionality
to meet their needs [4]. Therefore, developers often
need to modify a specific pieces of code from the
standard ERP code base to satisfy their business sce-
nario requirements. Specifically, SAP allows their cus-
tomers to develop their own enhancements by using
Advance Business Application Programming (ABAP)

∗Corresponding author. Email: firas.alomari@aramco.com

fourth-generation programming language [5]. However,
their best practices discourage against modifications to
the standard code in the system and strictly control it
through the "repairs" and enhancements concepts [6].
Consequently, driving developers to copy standard code
and modify it to meet their requirements, thus, creating
duplicate code or clones.

Duplicate code or clones can have severe impacts on
quality, re-usability and maintainability of a software
system for several reasons [7, 8]: 1) Copy and paste
operations are error prone and introduce defects, 2)
they increase the probability of bug propagation in new
code, 3) they lead to loss of design abstraction of the
system decreasing comprehension of the software, and
4) they unnecessarily increase the software size, thus
increasing the memory footprint of the software and
forcing more frequent hardware upgrades. Therefore,
source code tools that identify exact and similar code
fragments have become a common practice in software
development for similar code identification [9, 10].
However, they are constrained by the size of the code
base to be searched, their ability to find duplicate
code with minor modifications, and their ability to

1

EAI Endorsed Transactions
on Scalable Information Systems Research Article

EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e3

http://creativecommons.org/licenses/by/3.0/
mailto:<firas.alomari@aramco.com>

Alomari and Harbi

Source Code Parsing
Meta Representation

Fingerprint Generator Toknizer AST CFG

</>

Source Code

CFG RepositoryFingerprints
Repository

Fingerprint SearchProgram match

Clusters CFG Matching

Execution PathsPathm: {b0....bn}

Path0: {b0....bn}

Path1: {b0....bn}

Paths Matching

Figure 1. Similarity Detection Overview: High level steps of the
proposed approach.

present detection results in useful and usable manner
to development and quality teams.

Typically, source code similarity detection tools work
by scanning the source code to identify pieces of code
that are similar by using different string matching
algorithms. Although reasonably fast for small data,
they are quiet inaccurate and slow for large data.
Additionally, the code fragments can be textually
different but share similarity at semantic or structural
level due to modifications made to the code such as
variable renaming, statements insertions, deletions, and
replacements. Furthermore, precise (i.e., exhaustive)
search of code fragments is often infeasible, therefore,
the tools tends to over-approximate, so not to miss
any possible duplicates. Consequently, this leads to
generating a considerable number of false positives that
needs to be manually inspected and verified [11, 12].
Therefore, there is a need for source code search and
classification techniques that can handle large source
code repositories efficiently with reasonable accuracy to
be useful for development and quality teams.

In this paper, we present our approach for source
code similarity detection in context of the SAP ABAP
programming language. The presented approach is
designed to be robust and scalable for large code
base. We present our initial experimental results
and experience in implementing a prototype of the
approach. The rest of the paper is organized as follow.
Section 2 provides brief background including general
terms, definitions and some related work. The proposed
approach is introduced in Section 3. In Section 4 we
discuss experiment settings and show some results.
Lastly, we conclude the paper and present future work
in Section 5.

1. Background and Related Work

Clones can be broadly categorized into four types
based on the nature of their similarity [10, 13–
15]. Exact Clones (Type-1): are clone pairs that are
identical to each other with no modification to the
source code. Renamed clones (Type-2): are clone pairs
that are only different in literals and variable types.
Restructured or gapped clones (Type-3): are renamed
clone pairs with some structural modifications such as
additions, deletions, and rearrangement of statements.
Semantic clones (Type-4): are clone pairs that have
different syntax but perform the same functionality
(i.e., semantically equivalent). These typically are most
challenging to find and identify, yet, they are the more
relevant in the context of ERP systems [16, 17].

Several approaches have been proposed in the
literature to identify similar source code ranging from
textual to semantic similarity identification. Generally,
they’re classified based on the source representations
they work with. In Text based detection, the raw source
code, with minimal transformation, is used to perform
a pairwise comparison to identify similar source code
[18]. Token based detection on the other hand, extracts
a sequence of tokens using compiler-style source code
transformation [19]. The sequence is then used to match
tokens and identify duplicates in the repository and
the corresponding original code is returned as clones.
In Tree based detection, the code is transformed to
Abstract Syntax Trees (ASTs) that are then used in tree
sub matching algorithms to identify similar sub trees
[20]. Similarly, clone detection is expressed as graph
matching problem for Program Dependence Graphs
(PDGs) in [21]. Metrics based detection extracts a
number of metrics from the source code fragments
and then compare metrics rather than code or trees to
identify similar code [22].

Generally, similar code identification techniques
work at varying level of granularity. Fine-grained
detection leverages tokens, statements and lines as
the basis for detection and comparison [23]. On the
other hand, coarse-grained detection uses functions,
methods, classes, or program files as the basic units
of detection [13]. Naturally, the finer the granularity
of the tool is, the longer time it takes to find clone
candidates. Equally, the larger the granularity of the
tool is, the faster time it takes for detection, albeit
with fewer detected clones [24]. Detection tools have
therefore to make design trade-offs between accuracy
and performance on an almost constant basis based on
the code base being examined.

Another challenge in finding duplicate code is
the performance of querying and retrieving possible
matches from a large code base. Fingerprinting and
hashing have been used to improve the search efficiency
[25]. Hashing maps variable size source code to a

2 EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e3

Scalable Source Code Similarity Detection in Large Code Repositories

fixed size fingerprint that can later be used to query
and search for clones in linear time [26]. However, a
simple match doesn’t work well for inexact matches.
Others [16, 27] use hashing techniques to group
similar source code fragments together, thus enhancing
the accuracy and performance of clone detection
techniques. However, this is less effective in detecting
Type 4 clones as hashing and fingerprints are based
on the source code and not its semantic. Machine
learning approaches have been proposed [28] to link
lexical level features with syntactic level features using
semantic encoding techniques [29] to improve Type
4 clone detection. However, in order for them to be
effective, human experts need to analyze source code
repositories to define features that are most relevant for
clone detection.

One way to capture the program semantic is the
code Control Flow Graphs (CFGs) . CFGs are one of
the intermediate code representations that describes
in graph notation, all paths that might be followed
through a piece of code during its execution [30]. In
CFGs, vertices represent basic blocks and edges (i.e.,
arcs) represent execution flow. Since CFGs capture
syntactic and semantic features of the code, they are
better at resisting changes in the code that manipulate
source code in very minor ways, while not affecting the
functionality of the program. For this reason, control
flow graphs have been used in static analysis [31],
fuzzing and test coverage tools [32], execution profiling
[33, 34], binary code analysis [35], malware analysis
[36], and anomaly analysis [37].

In this paper, we argue that clone detection is
characterized by more than just text patterns in the
source code because, there is semantic features as
well as syntactic features that must be considered
for effective similarity detection. Since CFGs deliver
both syntactic and semantic information of the code,
we argue that the Control Flow Graphs (CFG)
representation provides a sensible choice for source
code similarity detection for the following reasons.
First, CFG blocks boundaries represent an intrinsic
granularity level that is neither too fine nor too
coarse for clone identification. Second, CFG provide
a reasonable balance between syntax and semantic
representation of the code, thus, considering clones
with more than text pattern similarities.

We, therefore, present a clone detection technique
for improving the precision of detecting similar code
clones with reduced time and memory complexities
associated with large code base. The key idea is to
avoid cost associated with graph and tree pattern
matching by utilizing a staged identification approach.
Specifically, we employ normalization and abstraction
to standardize the source code. Then we derive CFG
and enumerate a list of possible execution paths.
Finally, context sensitive hashing is used to efficiently

Table 1. Normalization and Abstraction Rules.

Pattern Proposed Transformation
Local Variables L-Variables
Global Variables G-Variables

loops: For, Do, while
Iterate <start>

<condition> <+/->
Conditions: If, else, case Selection <condition>

fingerprint the code for approximate similarity search
and matching. Similarities between fingerprints can
be done in linear time to identify a subset of
the code base that is close to each other. Then a
specific matching is performed on the subset that
meets a certain similarity threshold. The presented
approach addresses practical scalability complexities
and give the flexibility to incrementally store and re-
use the processed data to enable efficient search and
matching for source code. The approach scalability is
achieved by leveraging a similarity preserving hashing
technique on a CFG execution path-level granularity
to compactly represent fingerprints and reduces the
number of comparisons. Additionally, our semantic-
aware CFG based abstraction technique renders our
approach resilient to minor modifications not affecting
the semantics of the program

2. Proposed Approach
In this section, we describe the proposed three-step
(staged) clone detection for source code as shown in
Figure 1. The first step involves extracting source
code meta-data up to the CFG for the code being
evaluated. The second step involves processing the CFG
to generate the program fingerprints. The third step
involves identifying the most related code groups in
the repository followed by similarity check among the
group members.

2.1. Normalization and Abstraction
Code normalization is the process of transforming a
piece of code to remove all the irrelevant parts of the
code for the comparison. Applying normalization and
abstraction to the code increases the clone variations
that can be detected. This includes removing comments,
white spaces, empty lines which don’t affect the
program behavior. Literal values, identifier names are
fixed with specific tokens. Abstraction structures such
as Loops, If s, and Case statements are also normalized
to increase resilience against syntactic variations.
Specifically, the lexer (i.e., tokinizer) is used to break the
stream of code to tokens. The parser then generates the
Abstract Syntax Tree (AST) from the tokens using the

3 EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e3

Alomari and Harbi

context provided by the language grammar. The code
can then be normalized according to predefined rules
such as the example ones provided in Table 1.

One should note that the purpose of the normaliza-
tion and abstraction step is to make the matching more
resistant to semantically irrelevant variation. Which
information to include or exclude is dependent on the
specific language and on which kind of clones should be
found. However, excessive normalization can introduce
ambiguities that decreases the accuracy of the match.
Therefore, it is important to carefully consider the level
of normalization based on the envisioned use cases.

2.2. Control Flow Graphs (CFGs)
CFGs describe the order in which code statements are
executed as well as conditions that need to be met for a
specific path of execution to be taken [38]. They capture
the structure of a program by a directional graph
(i.e., digraph) in which nodes (i.e., vertexes) define the
program basic blocks and edges define the possible
control transfers between these blocks. Specifically, a
basic block is a continuous sequence of statements
that executes in the same order as they appear in
the block without control changes (i.e., branches and
jumps). Directed edges on the other hand, represent
jumps and branches between CFG basic blocks. The
CFG construction is carried out based on the abstract
syntax tree (AST) representation to which control flow
information are introduced [21, 22].

Preliminaries. We define a program $ with K state-
ments S = (s0 . . . sk . . . sK) as a set of basic blocks
B = (b0 . . . bn . . . bN). The basic-block bi = (si . . . sj) is
sequence of statements without branch or control state-
ments. The CFG is a directed graphCFG = (B, E), where
B specifies the basic blocks (i.e., nodes). E ⊆ B × B is the
set of directed edges (i.e., control transfers), where ei,j =
(bi , bj) ∈ E iff there is a control transfer (i.e., branch
or a jump) from bi to bj . Given b0, bN ∈ B, a path
from b0 to bN is a sequence of blocks (i.e., graph
nodes) pr = (b0 . . . bm . . . bN) ∈ B, such that there is an
edge (bm, bm+1) ∈ E. The set of all possible execution
paths in a CFG can then be expressed as P (CF G) =
(p0 . . . pr . . . pR).

Control Flow Extraction. The steps to extract the CFG
can be explained with the help of the pseudo
code show in algorithm 2.1. CFG extraction starts
with the normalized source code obtained from the
corresponding AST. A syntax tree represents the
design with a tree structure by abstracting the details
concerning the syntax of the language. This is then
used to get the program normalized statements. These
statements are then analyzed to identify labels to the
code blocks called leaders. We identify labels for the
code blocks (i.e., nodes) as follows: 1) the first statement

REPORT z_simple_prg.
DATA a.
a = 2.
IF a > 0.
 a = a - 1.
 a = a * 5.
ELSEIF a < 0.
 a = a + 1.
 a = a * 4.
ENDIF.
WRITE: a.

Source Code

REPORT (PRG_NAME)
DATA (L_VARIABLE)
(L_VARIABLE) = 2
IF L_VARIABLE > 0

L_VARIABLE = L_VARIABLE-1
 L_VARIABLE = L_VARIABLE*5
ELSEIF L_VARIABLE < 0

L_VARIABLE = L_VARIABLE + 1
L_VARIABLE = L_VARIABLE * 4
ENDIF.

WRITE: L_VARIABLE

b4

b3

b2

b1

b2 b3

b1

b4

CFG

Start b0

End b0

Figure 2. Control Flow Extraction Example.

of a program is a leader, 2) the targets of control
statements (i.e., loops and conditions) are leaders,
and 3) the statements immediately following control
statements are leaders. The sequence of statements
between these leaders constitutes the basic blocks bi ∈
B. An edge ei,j ∈ E describes the transfer of control
between two blocks of code bi and bj . The CFG is
constructed by adding edges between basic blocks,
where execution control-flow exist.

Figure 2 illustrate how a CFG is extracted from a
piece of example source code. It should be noted that
the CFG extraction here is a simplified approach and
doesn’t consider recursive calls, function calls, or try
catch statements at this stage. If more precise CFGs
are deemed necessary one can use more advanced
techniques, however, at the expense of the CFGs
extraction time.

2.3. Execution Paths
Execution paths model different possible execution
order of program statements, which contain many
loops, exceptions, and calls; that is to say, features that
reflect the semantics of the program. More precisely,
the execution paths consider the nodes and the inter-
dependencies (i.e., edges) between different nodes in
the CFG of a program. Therefore, they can reproduce
some of the semantic effects of a particular CFG.

Given the CFG obtained in section 2.2 one can define
all possible execution paths of a program such that
every two adjacent nodes in a path are connected by an
edge in E, where b0 is the start block and the end node is
bN . For any given program run only one path, among all
the possible paths, can be followed. Therefore, specific
program behavior can be viewed as collection of these
paths. Pseudo code in algorithm 2.2 enumerate all
potential paths using a depth-first traversal of the CFG
starting at b0. Each path is a stack of basic blocks
and each block bn is a sequence of statements sk . A

4 EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e3

Scalable Source Code Similarity Detection in Large Code Repositories

Algorithm 2.1: CFG Extraction Algorithm
Input: Normalized Source Code
Data: Statements S = (s1, ..., sk , ..., sK)
Result: CFG =< B, E >

22 Get Leaders:
3 Leaders = ∅ ;
4 Leaders ← s0 ;
5 foreach sk;k=(1,..,K) ∈ S do
6 if sk ∈ (isControl ∧ ¬isLast) then
7 leaders= leaders.Add(sk+1) ;
8 leaders = leaders.Add(target(sk));
9 end

10 leaders= leaders.Add(sk) ;
11 end
1313 Get Blocks:
14 BasicBlocks ;
15 foreach l in leaders do
16 i = l;
17 while (i < K) ∧ ¬isLeader do
18 i = i + 1;
19 end
20 i = i − 1;
21 bk=BasicBlocks.create(leader, i);
22 end
2424 Build CFG:
25 foreach bn ∈ B do
26 leaders← leaders − bb ;
27 foreach sk ∈ bn do
28 if sk ∈ isControl then
29 bi = statementT arget(sk);
30 edges.Add(bn, bi);
31 end
32 end
33 end
34 return CFG(p) ;

program CFG can then be expressed as the set of
possible execution paths P (CF G) for the program CFG.

One should note that the paths enumeration
technique presented here is not precise. However, we
argue that exact paths are not important in themselves.
Rather, what is important is that these paths are used to
provide additional execution context to the CFGs. We
can therefore, use paths with lower accuracy, yet still
acceptable for the purposes of our approach.

Once the all potential paths are enumerated, the
fingerprints can be created for each path as described
in the next section.

2.4. Fingerprint Generation
CFGs fingerprinting involves extracting various fea-
tures from the CFGs. The features are used to generate
a unique and compact representation of the CFGs in
such a way that similar paths are assigned similar
fingerprints. Typically, the extracted features can be
either semantic or syntactic features, which are then

hashed to produce the compact representation of the
CFGs. However, on the one hand, using syntactic only
features will result in a fingerprint that is sensitive to
minor code modifications. On the other hand, using
semantic only features will result in a fingerprint that is
sensitive to CFG structural information, ignoring block
statements syntactic features. Therefore, our objective is
to generate a fingerprint that capture not only syntactic
information of a CFG, but also semantic features of a
CFG as well.

We make use of the extracted execution paths in
section 2.3 to represent the CFGs in a light-weight
fingerprint. The fingerprint, in addition to compactly
capturing textual and structural information of the
programs, should represent each path in the program,
such that similar paths have a higher probability of
collisions or will only differ slightly in their digest.
Specifically, very similar paths should map to very
similar, or even the same, digest, and difference between
digests should be some measure of the difference
between paths.

To this end, we employ a similarity preserving hash-
ing techniques [39–41] to fingerprint the CFGs. Our
choice is motivated by the following reasons: 1) fin-
gerprints shorter size lend themselves well to efficient
search and clustering algorithms, thus speeding search
time; and 2) similarity preserving fingerprints incorpo-
rates approximation, thus capturing more clones than a
strict text or graph isomorphism-based approaches.

With these observations in mind, we extend the
SimHash technique presented in [42] to generate a
fingerprint that is both efficient and also considers the
program execution semantics as captured by the control
flow graph. Concretely, all sequence of blocks along
a certain execution path are stacked as one unit. The

Algorithm 2.2: Path Enumeration
Input: CFG =< B, E > , b0, bN
Result: P (CF G) = (p0, . . . , pL)

1 Paths(bsource, bdestination, path, V isited);
2 Visited(bsource)=true;
3 if bsource = bdestination then
4 P (CF G)← P (CF G) ∪ {path};
5 Visited(bsource)=false;
6 return
7 end
8 foreach successor ∈ bsource.successors() do
9 if ¬ Visited(bsuccessor) then

10 path.Add(successor);
11 Paths(bsuccessor , bdestination, path, V isited);
12 path.Remove(successor);
13 end
14 end
15 Visited(bsource)=false;
16 return

5 EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e3

Alomari and Harbi

b0

b1

b5

b2

b3b4

Paths

b0.b1.b2.b4.b5

b0.b1.b2.b5

b0.b1.b2.b3.b5

b0...........b5

Figure 3. An Example Control Flow.

sequence of statements in these ordered blocks are then
hashed as shown in in algorithm 2.3. Therefore, an
execution path will have a specific hash value and a
program CFG will have multiple hash values.

Consider the CFG example shown in Figure 3. The
possible paths for the program $ are the set of paths in
P (CF G) = (p0 =< b0, b1, b2, b4, b5 >, p1 =< b0, b1, b2, b5 >
, p2 =< b0, b1, b2, b3, b5 >). Accordingly, program $
fingerprint

H(CF G) = (h(p1), .., h(pm).., h(pM)),

is a set of CFG paths hash values, where h(pm) is
computed as shown in algorithm 2.3. Specifically,
basic blocks statements are hashed by a traditional
hash function. We use Murmur64 hash in our
implementation, however, any other hash can be used.
A vector ~v = (v1, . . . , vR) is initialized to zeros. R is
selected based on the desired hash size in bits. The
algorithm scans all statements in the block, v(r) is
incremented by a weight w = 1 if the rth bit of the
statement is one, otherwise, v(r) is then decremented
by one. Then, h(pm)r bits are set to one if v(r) is not
zero. Finally, h(pm)r is added to the program fingerprint
H(CF G).

Observant reader may argue that it would be redun-
dant and space consuming to consider information
captured from repeated blocks that are common in
the multiple paths of the same CFG. However, our
fingerprint is compact and computed efficiently thus
making repetition impact negligible. Moreover, further
refinement and fine-tuning are also possible to exclude
irrelevant paths and blocks from the fingerprint.

2.5. CFGs Matching
Once the fingerprint for the CFGs is generated,
the actual matching is performed. For CFGs to be
considered similar they not only have to be isomorphic,
but also the basic blocks of CFGs has to match.
Specifically, graph matching is performed by checking
node similarity, edge similarity, and the relationships
between them. One can make use of graph matching
techniques such as bipartite matching and maximum
common subgraph isomorphism (MCS) [43]. However,

Algorithm 2.3: Control Flow Graph Fingerprinting
Input: P (CF G), ~v = (v1, .., vr)
Result: H(CFG)

1 initialization;
2 foreach pm ∈ P (CF G) do
3 ~v ← 0;
4 foreach bn ∈ B do
5 foreach sk ∈ bn do
6 hs(sk) = MurmurHash64(sk);
7 for i = 0→ R do
8 if ith bit of hs(sk) == 1 then
9 v[i] = v[i] + w;

10 else
11 v[i] = v[i] − w;
12 end
13 end
14 end
15 end
16 h(cf g)← 0;
17 for i = 0→ R do
18 if v[i] > 1 then
19 h(pr)i = 1;
20 end
21 end
22 H(CFG) = H(CFG) ∪ {h(pr)};
23 end

most of graph matching problems are NP-complete and
suffers from a high computational complexity.

One can also use the CFG fingerprints to compare
pairs of CFGs. However, pairwise exact matching is nei-
ther efficient for large repositories, nor robust enough
to match programs with small variations. Therefore, we
use inexact matching of the fingerprints. Specifically, in
our case, once we get all the fingerprints, the problem of
detecting code clones becomes essentially a fingerprints
categorization and clustering problem, such that, in a
cluster, the pair-wise a similarity metric remains below
a pre-defined threshold value, α , while restricting
the cluster size to be no less than another pre-defined
value. This is accomplished with the help of a similarity
function which is described next.

Similarity Function. The idea of our similarity function
is to have a measure of structural similarity of two CFGs
which not only looks at the CFG structure, but also on
the meta-data of the these nodes. For example, a pair
of CFGs may be isomorphic (i.e., identical), however,
the nodes (i.e., blocks syntax) are different. Another
pair of CFGs may not be isomorphic but have similar
paths. Therefore, CFG comparison should consider the
path basic blocks similarities as well as the actual paths
common between two CFGs.

We estimate the similarity between a pair of paths
(pi , pj) as the number of bits which differ between the
two fingerprints. More formally, given two fingerprints

6 EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e3

Scalable Source Code Similarity Detection in Large Code Repositories

h(pi) and h(pj), expressed as a binary vector of length
R, we define the distance pi and pj , D(pi , pj), to be
the number of bits where h(pi) and h(pj) differ. The
lower the value of the distance, the more similar the
paths are. For example, a distance value of 0 means
that the paths are identical, while a distance value of
R means that the two paths are dissimilar. The Spaths =
(Dpath(pi , pj) : ∀(pi , pj) ∈ CFG × CFG) denotes the set of
pairwise comparison values (i.e., hamming distance)
between paths in two distinct CFGs.

Earlier work [44] shows that one can efficiently
identify whether fingerprint pairs differ in at most α
bits. This value can be seen as a threshold for similarity
between two fingerprints. Specifically, the lower the
value of α the higher the similarity between the path
blocks. Furthermore, different values of α represent
different degrees of similarity. For example, 0 < α < 4
represent identical or near identical clones, while 4 <
α < 8 represent similar but not near identical clones.
In our approach we use α < 8 empirically based on
our experimental findings, however, other values can be
used for different environment settings.

The term SCFG ∈ [0, 1] computes the pairwise similar-
ity between two CFG fingerprints. A similarity value of
1 means that the programs are similar, while a value of
0 means that the two programs CFG share no similar
paths in common. Specifically, we use a variant of the
Jacard index to estimate the overall similarity between
the pair (CFG,CFG) is then defined as:

SCFG(CFG,CFG) =
|{s ∈ Spaths : s ≤ α}|

min(|P (CFG)|, |P (CFG)|)
. (1)

The numerator is the number of common paths with
at most α different bits and the denominator is the
total number of paths in the smaller program CFG.
Consequently, the overall similarity between the two
programs can be seen as the degree of overall similarity
between similar paths between two the programs.

One should note that the term SCFG(CFG,CFG)
computes when one CFG is contained inside of another.
In other words, it considers the case where one
program consists of repeated copies of another smaller
program. If we want to measure the total amount of
resemblance, that is proportional similarity, between
two programs CFGs one can change the numerator
to be the total number of common paths. However,
with either measures one can use α to only consider
candidates where the similarity or containment score
meets a pre-determined threshold.

3. Evaluation And Discussion
In this section we present the initial results of our
proof of concept along with some insights gained
during our evaluation. First, we present the details of

10

20

30

40

Bl
oc

ks

0

20

40

60

Pa
ths

0

200

400

600

800

Lo
C

20 40
Blocks

0

100

200

300

400

Tim
e (

ms
)

0 25 50
Paths

0 500
LoC

0 200 400
Time (ms)

Figure 4. Pairwise plot for the experiment data set

the experimental setup and the data selected for the
evaluation. Then, we present the results and discuss
different observations made during the experiment.

3.1. Experiment

To evaluate the effectiveness of our approach in
detecting similarities in source code, we ran the
evaluation on a synthetic data set. We assessed the
performance of the proposed approach against two
criteria. First, execution time efficiency, and second,
detection precision. The detector is implemented using
Java. Specifically, the detector reads the source code files
and performs normalization and generates the control
flow graphs. The control flow graphs are represented
using the DOT format where nodes contain the
normalized source code of a block and edges connecting
the blocks. All the experiments were conducted on a
Windows 10 computer with an Intel Core i7 (4 cores
at 3.60GHz) processor, 16GB of RAM and 1TB of HDD
storage capacity.

Experimental Data. Due to the lack of a standard
benchmarks for ABAP clone detection, 664 ABAP
programs were collected from online repositories1 to
serve as our code base. Typically, Verifying clones
is a subjective decision that depends on the analyst
experience and the context of the code. Furthermore,
manual verification of all code clones candidates
is impractical. Therefore, We selected a 50 random
programs for manual examination to evaluate the
existence of false positives.

7 EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e3

Alomari and Harbi

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 5 10 15 20 25 30 35 40 45 50

False Positive Rate for α = 3
α = 5
α = 8

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

False Positive Rate

(a)

 30

 45

 60

 75 Clone Candidates

 10

 20

 30

 40

 0 2 4 6 8 10 12 14 16

False Positives

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 5 10 15 20

CFG
SAP Clone Finder

(c)

 0

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000

'FinalDist5.txt' every 10 matrix

 0

 5

 10

 15

 20

 25

 30

 35

 40

(d)

Figure 5. Detection Results: (a) False positives as a function of the number of LoC (Top), False positives as a function of the number
of blocks (Bottom); (b) Clone candidates identified for α (Top), False positives for α (Bottom); (c) Time it takes to query for clones
in our approach; and (d) Similarity Matrix Heat Map.

3.2. Results
Figure 4 shows the scatter plot of the source code set
used in our experiments. The pairwise plots show the
relationships between the number of blocks, paths, line
of code, and the CFG extraction time for the programs
in the data set. One can see that most of the programs in
the data set contains between 5-20 blocks, that results
in less than 25 paths for most of the programs in the
data set. The number of blocks and paths are closely
correlated, however, the number of lines in the program
is less correlated to the number of path. Furthermore,
the execution time grows as a function of the paths,
blocks and to a lesser extent line of codes. On average
the execution time was 0.17 seconds and all cases the
execution time didn’t exceed 0.45 seconds.

The distribution of the blocks count in programs
show that a considerable number of programs with
10 or less blocks and paths with less than 3 blocks.
Intuitively, programs and path with lower number of
blocks are less diverse and will generate a less precise
fingerprint. This can be illustrated with the help of
figure 5a. The figure shows that the precision increases
as the number of basic blocks increases. Furthermore,
examining paths that have only 1 block revealed that
most of these blocks contain generic code related
to language specific style requirements such as error
handling, calls, and GUI related. This code is not
necessarily useful for the purposes of clone detection.
Therefore, we exclude all paths that contain less than 3
blocks from our fingerprints repository.

Similarly, the precision increases as the number
of lines of code in the block increases as shown
figure 5a. Additionally, smaller threshold α is slightly
more accurate for smaller programs, however, this
improvement becomes less pronounced as the block
size increases. Another observation is the the value of
α is sensitive to the size of the program. For example,

1https://github.com/trending/abap

larger program can tolerate higher values of α with a
reasonable false positives, while smaller programs will
provide a more accurate results with lower values of α.

The impact of the threshold α on the number of
clones candidates identified and false positives is shown
in Figure 5b. The detector is able to identify clones
with no false positives when α <= 4. The false positives
are still reasonable for α <= 7 , however, they become
more pronounced at higher thresholds. This can be
explained by the fact that at higher α means there
are more bit differences between the signatures. We
chose α = 5 as reasonable threshold for our experiment.
The detector is able to identify most of the relevant
clones with a reasonable false positives. larger α will
identify more clones candidates, however, most of the
newly identified one were false positive. Smaller α
only detected near-identical clones and missed many
programs.

Figure 5c illustrates the performance improvements
compared to the standard clone detector in SAP
systems. One can notice that our detector executes in
linear time and grows with the number of programs
under review. Nevertheless, our detector provides
statistically significant performance improvements as
shown in the figure. Moreover, SAP clone finder grows
at faster rate with the number of programs being
converted. The number of clones being detected is
also significantly higher in our approach. This can
be explained by the flexibility in our fingerprint
representation and the value of α.

Figure 5d shows the distance heat map (i.e., the
values for the similarity matrix) for our code. The paths
that are identical will have a lower distance, thus,
darker colors. For example, There are quit few paths
that are identical and therefore, shown in black. The
structure shows that our method is able to discriminate
between identical (or near identical) paths and similar
paths. Furthermore, it validates our choice for α in the
experiment.

8 EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e3

Scalable Source Code Similarity Detection in Large Code Repositories

3.3. Discussion
While we have demonstrated the effectiveness of
our approach for source code similarity search,
there are still several practical issues one have to
carefully consider for large scale adoption. Mainly, in
performance and accuracy.

First, in very large code repository search and
detection time may not be acceptable even with the
improvements provided by our approach. However, one
of the salient features of our CFGs fingerprint it’s ability
to represent group similarities. For example, one can
use the fingerprints computed for each program CFG to
classify the source code repository into several groups
according to the similarity of the fingerprints. To find
an initial match, we identify categories that are close to
the fingerprint. Categories that are the farthest can then
be excluded to reduce the the number of comparisons
required to find an initial match. This can be done as an
initial step to identify possible initial matches.

Another performance improvement is leveraging bit
parallelism and bit vector arithmetic for the distance
and similarity computations. For example, in [45] the
Jaccard index is approximated using bit vector counting
optimization. Same concept can be applied to our
Similarity measure. Similarly, [44] showed how one
can find fingerprints with a certain threshold α (i.e.,
hamming distance) efficiently.

One should also note that the accuracy and precision
of our approach relies on the CFGs extraction
and path enumeration techniques. Naive techniques
may result in more false positives. However, more
robust techniques may be computationally expensive.
Therefore, they need to be considered carefully. One
can leverage different optimization techniques and use
self tuning methods [46, 47] to strike a balance between
these conflicting requirements. Operationally, our tool
may offer several static analysis techniques out of the
box that may be selected and fine-tuned for the specific
environment requirements.

Another challenge is the fact that inserting jumps
that are never taken in the CFGs distorts the CFGs by
generating paths that will never be executed. While
matching based on CFGs semantics is not possible in
the general case, static profiling techniques such as the
ones presented here [33, 34] can be used to check for
branching and path probabilities. This can improve the
semantic matching accuracy of our approach.

Furthermore, the size of the CFGs is a critical factor
as shown in our experiment. We excluded the smaller
CFGs blocks from our signatures. We believe this
is a reasonable assumption since smaller code have
significantly lower chances to be copied. However, the
threshold should be investigated further.

Using fine grained semantic at the block level to
reveal more features is another area that is worth

exploring. While some of this can be handled by
fine-tuning the normalization and abstraction step in
our approach, it might be helpful to explore some
graph theoretic and machine learning ideas [48, 49] to
further improve accuracy. This however may increase
performance requirements and should be considered as
an additional refining step.

4. Conclusion and Future Work
This paper demonstrated the need to efficiently
identify and measure source code syntax and semantic
similarities in large code base of ERP systems and
presented an approach to address this need. We
designed a detection approach that searches for
duplicate and near duplicate code in an efficient way. By
leveraging similarity hashing to concisely represent the
control flow graphs of the code, the fingerprints capture
the programs intrinsic characteristics. The detector
uses the control flow graphs to enumerates possible
execution paths and fingerprint these paths efficiently.
The experiment showed the viability of our approach
and illustrated how the detector can achieve reasonable
accuracies efficiently compared to current tools.

While the results of presented in the evaluation look
promising, they present an initial results of our ongoing
research in clone detection for large systems and there is
considerable work to be done. For example, in addition
to continuing our empirical validation for larger and
more challenging code base, we plan to continue
our work in several important directions. First, the
CFG extraction can be enhanced to capture exception
handling, and function calls in the representation. Since
SAP systems are highly integrated systems, in which
data-centric programming is carried out in ABAP,
one may also consider evaluating other intermediate
representation such as call graphs, data flow graphs and
system dependency graphs to consider the data-flow
dependencies as well as control flow dependencies.

Secondly, our naive path enumeration can be
improved to consider dominance relationship, loops
and back edges to provide more precise paths for
the CFG. It might also be worthwhile exploring
the possibility of using path and execution static
profiling techniques and path execution frequencies
in the fingerprints to improve expressiveness of our
representation.

The similarity hashing used can be also improved by
exploring more intricate weightsw for the most relevant
parts instead of the equal weights used in the current
implementation. Other similarity hashing techniques
can be explored and studied. Finally, we plan to apply
our approach on industrial case studies to evaluate
different practical considerations, which would provide
more insight into scalability and usability questions for
different situations.

9 EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e3

Alomari and Harbi

5. Acknowledgement

The authors would like to thank the management of
Saudi Aramco for their support in publishing this
article.

References

[1] Kremers M, Van Dissel H. Enterprise resource planning:
ERP system migrations. Communications of the ACM.
2000;43(4):53–56.

[2] Lee J, Siau K, Hong S. Enterprise Integration with ERP
and EAI. Comm of the ACM. 2003;46(2):54–60.

[3] Themistocleous M, Irani Z, O’Keefe RM, Paul R.
ERP problems and application integration issues: An
empirical survey. In: Proceedings of the 34th Annual
Hawaii International Conference on System Sciences.
IEEE; 2001. p. 10–pp.

[4] Brehm L, Heinzl A, Markus ML. Tailoring ERP systems:
a spectrum of choices and their implications. In:
Proceedings of the 34th annual Hawaii international
conference on system sciences. IEEE; 2001. p. 9–pp.

[5] Keller H, Thümmel WH. Official ABAP Programming
Guidelines. Galileo Press; 2010.

[6] Keller H, Krüger S. ABAP objects. Sap Press; 2003.
[7] Juergens E, Deissenboeck F, Hummel B, Wagner S. Do

code clones matter? In: Software Engineering, 2009.
ICSE 2009. IEEE 31st International Conference on. IEEE;
2009. p. 485–495.

[8] Gupta A, Suri B. A survey on code clone, its behavior and
applications. In: Networking Communication and Data
Knowledge Engineering. Springer; 2018. p. 27–39.

[9] Roy CK, Cordy JR. Benchmarks for software clone
detection: A ten-year retrospective. In: 2018 IEEE
25th Int. Conf. on Software Analysis, Evolution and
Reengineering (SANER). IEEE; 2018. p. 26–37.

[10] Rattan D, Bhatia R, Singh M. Software clone detection:
A systematic review. Information and Software
Technology. 2013;55(7):1165–1199.

[11] Tiarks R, Koschke R, Falke R. An assessment of type-
3 clones as detected by state-of-the-art tools. In: Source
Code Analysis and Manipulation, 2009. SCAM’09. Ninth
IEEE Inter. Working Conf. on. IEEE; 2009. p. 67–76.

[12] Juergens E, Göde N. Achieving accurate clone detection
results. In: Proceedings of the 4th Inter. Workshop on
Software Clones. ACM; 2010. p. 1–8.

[13] Roy CK, Cordy JR, Koschke R. Comparison and
evaluation of code clone detection techniques and
tools: A qualitative approach. Science of computer
programming. 2009;74(7):470–495.

[14] Svajlenko J, Roy CK. Evaluating modern clone detection
tools. In: Software Maintenance and Evolution (ICSME),
2014 IEEE Int Conf on. IEEE; 2014. p. 321–330.

[15] Bellon S, Koschke R, Antoniol G, Krinke J, Merlo E.
Comparison and evaluation of clone detection tools.
IEEE Trans on software eng. 2007;33(9).

[16] Thomsen MJ, Henglein F. Clone detection using rolling
hashing, suffix trees and dagification: A case study. In:
Software Clones (IWSC), 2012 6th Intern. Workshop on.
IEEE; 2012. p. 22–28.

[17] Guo J, Zou Y. Detecting clones in business applications.
In: Reverse Engineering, 2008. WCRE’08. 15th Working
Conference on. IEEE; 2008. p. 91–100.

[18] Ducasse S, Rieger M, Demeyer S. A language
independent approach for detecting duplicated code.
In: Software Maintenance, 1999.(ICSM’99) Proceedings.
IEEE Inter Conf on. IEEE; 1999. p. 109–118.

[19] Baker BS. On finding duplication and near-duplication
in large software systems. In: Reverse Engineering,
1995., Proceedings of 2nd Working Conference on. IEEE;
1995. p. 86–95.

[20] Baxter ID, Yahin A, Moura L, Sant’Anna M, Bier L.
Clone detection using abstract syntax trees. In: Software
Maintenance, 1998. Proceedings., Int. Conf. on. IEEE;
1998. p. 368–377.

[21] Krinke J. Identifying similar code with program
dependence graphs. In: Reverse Engineering, 2001.
Proceedings. Eighth Working Conference on. IEEE; 2001.
p. 301–309.

[22] Mayrand J, Leblanc C, Merlo E. Experiment on the
Automatic Detection of Function Clones in a Software
System Using Metrics. In: icsm. vol. 96; 1996. p. 244.

[23] Kamiya T, Kusumoto S, Inoue K. CCFinder: a
multilinguistic token-based code clone detection system
for large scale source code. IEEE Trans on Software
Engineering. 2002;28(7):654–670.

[24] Sheneamer A, Kalita J. Code clone detection using
coarse and fine-grained hybrid approaches. In: 2015
IEEE seventh international conference on intelligent
computing and information systems (ICICIS). IEEE;
2015. p. 472–480.

[25] Hummel B, Juergens E, Heinemann L, Conradt M. Index-
based code clone detection: incremental, distributed,
scalable. In: 2010 IEEE International Conference on
Software Maintenance. IEEE; 2010. p. 1–9.

[26] Toomey W. Ctcompare: Code clone detection using
hashed token sequences. In: 2012 6th Inter Workshop
on Software Clones (IWSC). IEEE; 2012. p. 92–93.

[27] Uddin MS, Roy CK, Schneider KA, Hindle A. On the
effectiveness of simhash for detecting near-miss clones in
large scale software systems. In: Reverse Eng. (WCRE),
2011 18th Working Conf on. IEEE; 2011. p. 13–22.

[28] White M, Tufano M, Vendome C, Poshyvanyk D. Deep
learning code fragments for code clone detection. In:
Proceedings of the 31st IEEE/ACM Inter Conf on
Automated Software Engineering. ACM; 2016. p. 87–98.

[29] Peng M, Xie Q, Wang H, Zhang Y, Tian G. Bayesian
sparse topical coding. IEEE Transactions on Knowledge
and Data Engineering. 2018;.

[30] Grove D, Chambers C. A framework for call graph
construction algorithms. ACM Trans on Programming
Languages and Systems (TOPLAS). 2001;23(6):685–746.

[31] Mikhailov A, Hmelnov A, Cherkashin E, Bychkov I.
Control flow graph visualization in compiled software
engineering. In: Information and Communication
Technology, Electronics and Microelectronics (MIPRO),
2016 39th International Convention on. IEEE; 2016. p.
1313–1317.

[32] Sparks S, Embleton S, Cunningham R, Zou C. Auto-
mated vulnerability analysis: Leveraging control flow for
evolutionary input crafting. In: Twenty-Third Annual

10 EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e3

Scalable Source Code Similarity Detection in Large Code Repositories

Computer Security Applications Conference (ACSAC
2007). IEEE; 2007. p. 477–486.

[33] Ball T, Larus JR. Efficient path profiling. In: Proc.
of the 29th annual ACM/IEEE inter symposium on
Microarchitecture. IEEE Computer Society; 1996. p. 46–
57.

[34] Wu Y, Larus JR. Static branch frequency and program
profile analysis. In: Proceedings of the 27th annual
international symposium on Microarchitecture. ACM;
1994. p. 1–11.

[35] Lim HI. Comparing Control Flow Graphs of Binary
Programs through Match Propagation. In: 2014 IEEE
38th Annual Computer Software and Applications
Conference. IEEE; 2014. p. 598–599.

[36] Bruschi D, Martignoni L, Monga M. Detecting self-
mutating malware using control-flow graph matching.
In: International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer;
2006. p. 129–143.

[37] Nandi A, Mandal A, Atreja S, Dasgupta GB, Bhat-
tacharya S. Anomaly detection using program control
flow graph mining from execution logs. In: Proceedings
of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM; 2016. p.
215–224.

[38] Allen FE. Control flow analysis. In: ACM Sigplan
Notices. vol. 5. ACM; 1970. p. 1–19.

[39] Wang J, Shen HT, Song J, Ji J. Hashing for similarity
search: A survey. arXiv preprint arXiv:14082927. 2014;.

[40] Wang J, Zhang T, Sebe N, Shen HT, et al. A survey on
learning to hash. IEEE Trans on Pattern Analysis and
Machine Intelligence. 2018;40(4):769–790.

[41] Datar M, Immorlica N, Indyk P, Mirrokni VS. Locality-
sensitive hashing scheme based on p-stable distribu-
tions. In: Proc. of the twentieth annual symposium on
Computational geometry. ACM; 2004. p. 253–262.

[42] Charikar MS. Similarity estimation techniques from
rounding algorithms. In: Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing. ACM;
2002. p. 380–388.

[43] Raymond JW, Willett P. Maximum common subgraph
isomorphism algorithms for the matching of chemical
structures. Journal of computer-aided molecular design.
2002;16(7):521–533.

[44] Manku GS, Jain A, Das Sarma A. Detecting near-
duplicates for web crawling. In: Proceedings of the 16th
international conference on World Wide Web. ACM;
2007. p. 141–150.

[45] Jang J, Brumley D, Venkataraman S. Bitshred: feature
hashing malware for scalable triage and semantic
analysis. In: Proceedings of the 18th ACM conference
on Computer and communications security. ACM; 2011.
p. 309–320.

[46] Alomari FB, Menascé DA. Self-protecting and self-
optimizing database systems: Implementation and
experimental evaluation. In: Proceedings of the 2013
ACM Cloud and Autonomic Computing Conference.
ACM; 2013. p. 18.

[47] Alomari F, Menasce DA. An autonomic framework for
integrating security and quality of service support in
databases. In: 2012 IEEE Sixth Inter. Conf. on Software
Security and Reliability. IEEE; 2012. p. 51–60.

[48] Peng M, Zhu J, Wang H, Li X, Zhang Y, Zhang X,
et al. Mining event-oriented topics in microblog stream
with unsupervised multi-view hierarchical embedding.
ACM Transactions on Knowledge Discovery from Data
(TKDD). 2018;12(3):38.

[49] Peng M, Shi H, Xie Q, Zhang Y, Wang H, Li Z, et al.
Block Bayesian Sparse Topical Coding. In: 2018 IEEE
22nd International Conference on Computer Supported
Cooperative Work in Design ((CSCWD)). IEEE; 2018. p.
271–276.

11 EAI Endorsed Transactions on
Scalable Information Systems

06 2019 - 07 2019 | Volume 6 | Issue 22 | e3

	1 Background and Related Work
	2 Proposed Approach
	2.1 Normalization and Abstraction
	2.2 Control Flow Graphs (CFGs)
	Preliminaries
	Control Flow Extraction

	2.3 Execution Paths
	2.4 Fingerprint Generation
	2.5 CFGs Matching
	Similarity Function

	3 Evaluation And Discussion
	3.1 Experiment
	Experimental Data

	3.2 Results
	3.3 Discussion

	4 Conclusion and Future Work
	5 Acknowledgement

