
1

An Adaptive Fault Tolerant Scheduling System for
Desktop Grid
Dr. Jyoti Bansal1,* and Dr. Geeta Rani2

1 Baba Farid College of Engg & Technology, Bathinda , Punjab Technical University, erjyoti.2009@rediffmail.com
2Department of Computer Applications, Rayat Bahra University, Mohali, mailtogeeta@gmail.com

Abstract

In Desktop Grid, managing faults is very crucial and challenging job.So a fault tolerant system is mandatory requirement in
desktop grid for fault identification and their resolution.A fault tolerant system allows applications to continue execution
despite having faults without termination.In this paper,an adaptive fault tolerant scheduling system is presented that
combines dynamic replication with rescheduling.The system initially schedules jobs depending upon the completion time
and fault rate of resources and then fault-tolerant strategies are applied depending upon availability of resources.To measure
the performance,experiments has been carried out and it has been observed that proposed scheduling system outperforms by
a factor of 4.8% w.r.t. Average task response time and 0.02% w.r.t. Average flowtime as compared to existing system.On
the other hand,there is no significant improvement is observed when BoT completion time and average execution time are
compared to existing system.

Keywords: Grid Computing, Scheduling, fault tolerant, dynamic replication.

Received on 26 February 2019, accepted on 29 April 2019, published on 06 May 2019

Copyright © 2019 Jyoti Bansal et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,
distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.13-7-2018.158528

1. Introduction

Internet proves to be a boon when it comes to
communication and sharing, along with the availability of
powerful computers and high speed communication networks
for sharing resources has led to the sharing of spatially
distributed resources and using it as an integrated computing
machine. A wide range of resources are joining together to
form a cluster to use them as a single integrated resource,
thereby known as Grid Computing [1].

Specifically Grid computing can be elaborated not only as
a coordinated sharing of resources but also as a solution to the
complexity of dynamic and multi-organization
collaborations[2]. It can be inferred that Grid computing can
be used to solve a single yet huge problem, with the cluster of
multiple resources which act as a single computational
machine.

Grid computing has a wide range of applications both in
the field of science and industry. Some of the applications

*Corresponding author. Email: erjyoti.2009@rediffmail.com

include concentrated to data, information and computation
[3]. A coordinated resource sharing is required for all the
applications to compute, as the sharing is not only the
exchange of files but rather resources are directly accessed
such as software, memory, data, information and so on. Along
these lines, sharing is highly restricted with resource
contributors and clients those are accessing these resources.
Organizations and/or foundations have to delineate sharing
regulations, known as Virtual Organization (VO) [4].

In Desktop Grid, Information-free schedulers are using
much more resources than necessary, so cannot make use of
full potential of Desktop Grid. Prior information about
resources and tasks will help in taking better scheduling
decisions. For example if the scheduler has the knowledge
about the resource reliability then it can be decided that which
resource is able to complete the execution of task efficiently.
Due to diverse nature of Desktop Grid, managing faults is
very crucial and challenging task. So a fault tolerant system
is a mandatory requirement in Desktop Grid for identification
of faults and their resolution. A fault tolerant system allows

EAI Endorsed Transactions
on Scalable Information Systems Research Article

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e4

J. Bansal and G. Rani

2

applications to continue its execution despite having faults
without termination. Also the system has to maintain a bare
minimum quality of service.

2. Related Work

Three fundamental challenges that portray Grid computing
are: diversity, scalability and element flexibility. A Grid
includes a variety of heterogeneous resources and might
traverse various organizational domains. As the size of Grid
increases, raises the issue of performance deprivation.
Finally, in a Grid with a variety of resources, the likelihood
of resource failures is normally high. In addition, the hosts
those are contributing in terms of donating their resources can
be recovered by them whenever required, and is difficult to
know ahead of time whether and when they will get to be
distinctly accessible again. The resources administrators or
applications must tailor their conduct effectively in order to
get the maximum performance from the accessible resources
and administrations.

Despite these issues, Grid computing must offer a simple
way to use or access unlimited computing and heterogeneous
resources, so it must have the ability to find, allot, supervise,
control and deal with the utilization of system available
abilities so as to accomplish different worldwide Quality of
Service (QoS) also called resource administration [5]. In
conventional computing systems, resource administration is
an all-around considered issue. Resource administrators are
composed and work under the suspicion that they have
complete control of a resource and in this manner can
implement or use the approaches required for efficient
utilization of that resource in isolation. Tragically, this
presumption does not have any significant bearing to Grids in
view of the fundamental issues already portrayed. This
circumstance is complex by the general absence of
information available about the present framework and the
contending needs of clients.

Therefore, great parts of the previous work in Grid
resource administration concentrated on prevail over the
essential problem of diversity, for instance through the
various resource administration protocols [6] and
communicating resource and task prerequisite mechanisms
[7].

The underlying difficulties of Grid computing relating to
how to execute a task, how to exchange substantial files, how
to deal with various client accounts on various frameworks
have been resolved primarily, so clients and scientists can
now deal with the issues that will permit more efficient
resource utilization. Significant challenges remain, in any
case, in seeing how these systems can be effectively
consolidated to make consistent virtual perspectives of
hidden resources and administrations. The enormous
reputation of internet has produced huge prospects for Grid
computing i.e., many desktop personal computers, whose idle
cycles can be changed to run Grid applications, are joined
with wide-zone systems both in the business enterprises and
in the home. These new stages for high throughput
applications are called Desktop Grids [8].

A Desktop Grid consists of aggregation of spatially
distributed resources across diverse associations with varying
security constraints and attributes into a single system. In
such environment, volunteers allows sharing of resources for
solving extensive problems in weather forecasting, high
energy physics, etc[9]. The distributed management,
heterogeneity and inconsistency of desktop grid resources
often results unavailability of resources as compared to
traditional distributed system [10]. In Grid systems, a task is
said to be failed if an allocated resource is not able to
complete that task within the given time period [11]. Due to
these failures, application performance degrades in terms of
execution time. Moreover providing fault tolerance despite
maintaining system performance in terms of application
execution time is a challenging job [12].

Anousha et al. [13] presented a scheduling system that
depends upon estimating the completion time of the tasks on
each of resources. The proposed system will generate the
scheduling decisions as per the value of estimated completion
time. The results show that the proposed scheduling system
improves total completion time in comparison to Min-Min
strategy. S.K Panda et al. [14] presented a scheduling system
that depends upon utilizing the Round Trip Time (RTT) to
discover failures and after identification of failures
checkpointing strategy is being used to recover from failures.
Results show that the proposed scheduling system improves
total completion time and lessen the makespan in comparison
to Min-Min and Max-Min strategies. In N.M. Reda et al. [15],
the proposed strategy is based on finding appropriate
resources by getting the average value via sorting list of
completion time of each task. Finally, the task having the
maximum average is allocated to the machine that has the
minimum completion time. Results show that the proposed
strategy outperforms almost other strategies in terms of
resources utilization and makespan. K. Kousalya et al. [16]
proposed a QoS based Task Rescheduling algorithm (QTR)
in which scheduled tasks are collected and then rescheduled
using Minimum Completion Time(MCT) value. The results
of the computations show that the QTR algorithm reduces
makespan in comparison to existing strategies. J.Y Maipan et
al. [17] proposed an algorithm MinExt which calculates the
average completion time of all tasks. Then tasks having more
than average completion time value are scheduled first
followed by the set of tasks less than or equal to average
completion time value. The results indicate that the proposed
strategy minimizes total completion time value and utilizes
the idle resources effectively in comparison to existing
strategies.

Fault tolerant systems can be proactive or post-active
based upon whether they handled prior to scheduling of tasks
on desktop grid resources [18] or otherwise. Nazir et al. [18]
proposed a fault tolerant scheduling system that works on
retaining the value of fault index to handle job failures. In this
paper grid scheduler generates the scheduling decisions on
the basis of value of fault index.

Nandagopal et al. [12] proposed another scheduler that
adds response time in addition to use fault index to make
scheduling decisions. In [19] Mohammed Amoon et al.
presented a fault tolerant scheduler that is based on using a

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e4

An Adaptive Fault Tolerant Scheduling System for Desktop Grid

3

scheduling indicator to select resources. This scheduling
indicator consists of response time and fault rate of Grid
resources. During scheduling the proposed scheduler will use
this scheduling indicator to generate scheduling decisions. A
most recent scheduling system presented by R.M.R Kovvur
et al. [20] incorporated rescheduling on account of resource
failures during execution of tasks.

So it has been seen that due to diverse nature of Desktop
Grid, a single strategy does not work well in all situations.

3. Proposed Methodology

The main contribution of the proposed system is to present
an adaptive fault tolerant scheduling system that combines
dynamic replication with rescheduling. Initially the
scheduling is being performed on the basis of completion
time and fault rate of resources. Furthermore an appropriate
fault tolerant strategy is used depending on the availability of
resources. If the number of available resources are more than
the number of tasks requesting for allocation then dynamic
replication is preferred and if the number of resources are less
as compared to number of tasks then rescheduling is
preferred. The proposed system is then compared with the
system presented in [15]. The improvement in terms of terms
of average task response time and average flowtime value is
clearly presented.

At the first stage the proposed system schedules the
resources to tasks on the basis of scheduling criteria. Then in
the second stage, the system checks the number of resources
available. In case of more number of available resources in

comparison to tasks then the system computes a dynamic
threshold value for each task and replicates the task on
multiple resources and if the number of available resources
are less in comparison to tasks requesting for allocation then
the proposed system perform rescheduling on account of
resources failures during execution. The main components of
proposed system and their interconnections are shown in
figure 1.

3.1. User Interface/Desktop Grid Portal

Through this interface user submits the jobs to the resource
broker for execution along with information like number of
jobs, type of job and size of jobs etc.

3.2. Resource Broker

The Resource Broker performs the following functions:
a) Send request to Grid Information Server (GIS) for

the number of available resources.
b) Select the best list of resources in terms of

scheduling criteria (Sc).
c) Sort the list of resources as per the value scheduling

criteria (Sc).
d) Communicates with Desktop Grid Scheduler and

send the sorted list of resources along with the list of tasks to
be executed.

Figure 1. Adaptive Fault Tolerant Scheduling System

3.3. Desktop Grid Scheduler
The Desktop Grid Scheduler performs the following

functions:

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e4

J. Bansal and G. Rani

4

a) Allocates tasks to the first available resource
according to the list received from resource broker. If it
fails then will go to the next available resource and will
continue to do until it find a suitable resource for execution
of task.

b) Maintains a list of faulty resources
c) Will check the number of available resources. If

number of available resources is more in comparison to
number of tasks then the scheduler will do dynamic
replication for each task. And in case of less number of
resources in comparison to number of tasks then the
scheduler will do rescheduling on account of resource
failures.

d) Communicates with availability manager and
send the list of faulty resources along with fault rate value.

3.4. Fault Tolerant Manager

The fault tolerant manager performs the following
functions:

a) Keep updating the resource history as per the
value of fault rate received from desktop grid scheduler.

b) Keep updating Grid information server with
updated resource information along with the number of
available resources.

3.5. Grid Information Server (GIS)

The Grid Information Server performs the following
functions:

a) Will send the available resource list to the
resource broker as per the information received from
availability manager.

3.6. Outcome Manager

The Grid Information Server performs the following
functions:

a) Will send the available resource list to the
resource broker as per the information received from
availability manager.

4. Adaptive Fault Tolerant Scheduler’s
Process

Desktop Grid Scheduler receives tasks for execution
from user interface along with information about tasks i.e.
number of tasks, type of task and size of task and so on.
Then it allocates task to the most efficient resource for
execution. Efficient resource selection is based upon value
of fault rate and completion time value stored in the history
of Grid Information server. The fault rate and completion
time is defined as follows:-

Fault Rate (Fr): It is the ratio of the number of tasks
failed to execute to the total number of tasks. Fault rate is

maintained and updated dynamically in resource history
table. Thus fault Rate (Fr) of jth resource is:

Frj= Tf*100/N . (1)

Here Tf is number of tasks failed to execute (Tf)
N is the total number of tasks

Completion time (Cij): It can be computed by adding
the Expected Execution Time (Eij) of Job Ji on Resources
Rj & ready time of resource Rj.

Cij= Eij + Rj (2)

The value of fault rate (Fr) and completion time (Cab) is
used by the desktop grid scheduler during taking
scheduling decisions. The resource having the minimum
value of fault rate (Fr) and completion time (Cab) is called
as most efficient resource.

To achieve its objective, the scheduler will calculate the
value of Scheduling criteria (Sc) as per the following
formula

Scj =Cij* (1+Frj) (3)

During generating scheduling decision the value of
scheduling criteria (Scj) is utilized. The most efficient
resource selection will be done with minimum value of
scheduling criteria (Scj).

The flow of work of the proposed system is shown by
the following steps.

1. Resource broker collects tasks for execution from
user Interface along with information like number of jobs,
type of job and size of jobs etc.

2. Resource Broker will send request to Grid
Information Server (GIS) for the number of available
resources.

3. Grid Information Server (GIS) will send the
available resource list to the resource broker as per the
information received from availability manager.

4. After getting the resource list from GIS, the
resource broker will performs the following functions:

a) Select the best list of resources in terms
of scheduling criteria (Sc).
b) Sort the list of resources as per the value
of scheduling criteria (Sc).
c) Communicates with Desktop Grid
Scheduler and send the sorted list of resources
along with the list of tasks to be executed.

5. After getting the resource list along with tasks for
execution the Desktop Grid scheduler will do the
following tasks:-

a) Allocates tasks to the first available
resource according to the list received from
resource broker. If it fails then will go to the next
available resource and will continue to do until it
find a suitable resource for execution of task.
b) Maintains a list of faulty resources
c) Will check the number of available
resources. If number of available resources is

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e4

5

more in comparison to number of tasks then the
scheduler will do dynamic replication for each
task. And in case of less number of resources in
comparison to number of tasks then the scheduler
will do rescheduling on account of resource
failures.
d) Communicates with fault tolerant
manager and send the list of faulty resources along
with fault rate value.

6. Fault tolerant manager will keep updating the
resource history as per the value of fault rate received from
desktop grid scheduler and also updates Grid information
server(GIS) with updated resource information along with
the number of available resources.

7. Outcome manager will send gathered outcomes of
tasks to the desktop grid scheduler those have successfully
completed their execution.

8. Finally the desktop grid scheduler will send the
result back to the resource broker and the resource will send
the collected result to the user interface.

5. Results and Discussion

The proposed scheduler, an adaptive fault tolerant
scheduling system is compared with existing scheduling
system for performance analysis by using Java based
simulation environment known as GridSim Toolkit. The
performance analysis is based upon average task response
time, BoT completion time (makespan), average execution
time and average flowtime.

In order to verify proposed scheduling system in
comparison with the existing scheduling system [7],
number of experiments has been performed. The factors
used for simulation are shown in Table 1.

Table 1. Factors for Simulation

Factors Scenario
1 2 3 4

Number of tasks 10 20 80 160
Number of resources 40 40 40 40
Processor speed (MIPS) 100-300
Task size(MI) 18850-113100

For exhaustive analysis of the proposed strategy, four
scenarios are taken in which the number of resources are
kept constant i.e. 40 in all cases. In first two scenarios, there
is less number of tasks in comparison to number of
available resources and in last two scenarios, the number
of task are more in comparison to number of resources. For
comparison purpose 25% and 50% of tasks in comparison
to 40 numbers of resources are taken in first two scenarios
and 200% and 400% of tasks in comparison to 40 numbers
of resources are taken in last two scenarios. In each
scenario, 30-35% resource failures are induced for

analysis. Random failures are induced with the assumption
that resources may fail anytime. The complete comparison
analysis w.r.t. average task response time, BoT completion
time also called makespan, average execution time and
average flowtime with various scenarios is illustrated in
figures 2, 3, 4 and 5 respectively.

Figure 2. Comparison of existing & proposed
system w.r.t Average Task Response Time

Figure 3. Comparison of existing & proposed
system w.r.t BoT Completion Time (Makespan)

Scen
ario

1

Scen
ario

2

Scen
ario

3

Scen
ario

4
Existing 98.94 98.90 76.43 35.21
Proposed 88.94 93.90 76.43 35.21

0.00
20.00
40.00
60.00
80.00

100.00
120.00

A
ve

ra
ge

 ta
sk

 R
es

po
ns

e
T

im
e

Sce
nari
o 1

Sce
nari
o 2

Sce
nari
o 3

Sce
nari
o 4

Existing 951.80 974.14 1948.72 35.21
Proposed 951.80 974.14 1948.72 35.21

0.00
500.00

1000.00
1500.00
2000.00
2500.00

B
O

T
 C

om
pl

et
io

n
Ti

m
e

(M
ak

es
pa

n)

Sce
nari
o 1

Sce
nari
o 2

Sce
nari
o 3

Sce
nari
o 4

Existing 190.20 192.47 197.16 197.07
Proposed 190.11 192.43 197.16 197.07

186.00
188.00
190.00
192.00
194.00
196.00
198.00

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

An Adaptive Fault Tolerant Scheduling System for Desktop Grid

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e4

J. Bansal and G. Rani

6

Figure 4. Comparison of existing & proposed
system w.r.t Average Execution Time

Figure 5. Comparison of existing & proposed
system w.r.t Average Flowtime

As per the analysis, it has been observed that the
proposed scheduling system outperforms existing
scheduling system by a factor of 4.8% w.r.t. Average task
response time. Furthermore when Average flowtime is
taken into account then the proposed system shows a
performance improvement of 0.02% as compared to
existing scheduling system. Additionally, when BoT
completion time and average execution time are taken in to
account, then the performance of the proposed scheduling
system remains same with the existing scheduling system.
So it has concluded that the proposed system outperforms
in every case as compared to the existing scheduling
system. Furthermore the proposed system must be
preferred for the applications where high response time is
desired.

6. Conclusion and Future Scope

In this paper an adaptive fault tolerant scheduling system is
presented that combines dynamic replication with
rescheduling. The system initially schedules jobs
depending upon the completion time and fault rate of
resources. Furthermore, if the number of available
resources are more than the number of tasks requesting for
allocation then dynamic replication is preferred and if the
number of resources are less as compared to number of
tasks then rescheduling is preferred. The proposed adaptive
scheduling system is evaluated under different scenarios
with latest fault tolerant scheduling system that depend
upon using the rescheduling on account of resource failures
during execution of tasks. The parameters used for
evaluation are average task response time, BoT completion
time (makespan), average execution time and average
flowtime.

As per the analysis, it has been observed that the
proposed scheduling system outperforms existing
scheduling system by a factor of 4.8% w.r.t. Average task
response time. Furthermore when Average flowtime is
taken into account then the proposed system shows a
performance improvement of 0.02% as compared to
existing scheduling system. Additionally, when BoT
completion time and average execution time are taken in to
account, then the performance of the proposed scheduling
system remains same with the existing scheduling system.
So it has concluded that the proposed system outperforms
in every case as compared to the existing scheduling
system. Furthermore the proposed system must be
preferred for the applications where high response time is
desired.

In future, scheduling can be done for dependent tasks
also. Further improvements can also be done by specifying
the time zones on which scheduling can be done because
especially in night time zones resources are almost free to
use. Replication and Checkpointing policies can be
improved further. Furthermore, more than one BoTs
concurrently can be considered for execution.

References
[1] Baker, M., Buyya, R. and Laforenza, D. (2000) The Grid:

International efforts in global computing. In Proceedings of
International Conference on Advances in Infrastructure for
Electronic Business, Science, and Education on the Internet,
IAquila, Rome, Italy, July 31-August 6, 2000.

[2] Nabrzyski, J., Schopf, J.M. and Weglarz, J. eds. (2012) Grid
resource management: state of the art and future trends.
Springer Science and Business Media 64.

[3] Foster, I. and Kesselman, C. eds. (2004) The Grid2:
Blueprint for a New Computing Infrastructure, 2nd edn.
(Boston: Morgan Kaufmann Publishers Inc., Elsevier).

[4] 4. Foster, I., Kesselman, C. and Tuecke, S. (2001) The
anatomy of the grid: Enabling scalable virtual organizations.
International journal of high performance compx`uting
applications 15(3): 200-222.

[5] Foster, I., Kesselman, C. (2004) The Grid in a Nutshell. In
Nabrzyski, J., Schopf, J.M. (eds.) Grid Resource
Management: State of the Art and Future Trends (Boston:
Kluwer Academic Publisher)

[6] 6. Chandra, P., Fisher, A., Kosak, C., Ng, T.E., Steenkiste,
P., Takahashi, E. and Zhang, H. (1998) Customizable
resource management for value added network services. In
Proceedings of Sixth International Conference, Darwin,
October 1998 (Darwin: IEEE), 177-188.

[7] Raman, R., Livny, M. and Solomon, M. (1999)
Matchmaking: An extensible framework for distributed
resource management. Cluster Computing 2(2): 129-138.

[8] Kondo, D., Chien, A.A. and Casanova, H. (2004) Resource
management for rapid application turnaround on enterprise
desktop grids. In Proceedings of ACM/IEEE conference on
Supercomputing, Pittsburgh, 2004 (IEEE Computer
Society), 17-30.

[9] Khan, F.G., Qureshi, K. and Nazir, B. (2010) Performance
evaluation of fault tolerance techniques in grid computing
system. Computers & Electrical Engineering 36(6): 1110-
1122.

Scen
ario

1

Scen
ario

2

Scen
ario

3

Scen
ario

4
Existing 709.13 698.87 576.72 386.66
Proposed 684.05 686.33 576.72 386.65

0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00

A
ve

ra
ge

 F
lo

w
tim

e

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e4

7

[10] Zheng, Q., Veeravalli, B. and Tham, C.K. (2009) On the
design of fault-tolerant scheduling strategies using primary-
backup approach for computational grids with low
replication costs. IEEE Transactions on Computers 58(3):
380-393.

[11] Nandagopal, M. and Uthariaraj, V.R. (2010) Fault tolerant
scheduling strategy for computational grid environment.
International Journal of Engineering Science and
Technology 2(9): 4361-4372.

[12] Lee, H., Chung, K., Chin, S., Lee, J., Lee, D., Park, S. and
Yu, H. (2005) A resource management and fault tolerance
services in grid computing. Journal of Parallel and
Distributed Computing 65(11): 1305-1317.

[13] Anousha, S. and Ahmadi, M. (2013) An improved Min-Min
task scheduling algorithm in grid computing. In
Proceedings of International Conference on Grid and
Pervasive Computing, (Berlin Heidelberg: Springer LNCS),
103–113.

[14] Panda, S.K., Khilar, P.M. and Mohapatra, D.P. (2014)
FTM2: Fault tolerant batch mode heuristics in
computational grid. In Proceedings of International
Conference on Distributed Computing and Internet
Technology, Feb 2014 (Cham: Springer LNCS), 98–104.

[15] Reda, N.M., Tawfik, A., Marzok, M.A. and Khamis, S.M.
(2015) Sort-Mid tasks scheduling algorithm in grid
computing. Journal of advanced research 6(6): 987-993.

[16] Kousalya, K. and Kumar, P.K. (2016) QoS based Task
Rescheduling in Computational Grid Environment. Asian
Journal of Research in Social Sciences and Humanities
6(6): 1975-1991.

[17] Maipan-uku, J.Y., Konjaang, J.K. and Baba, A.I. (2016)
New Batch Mode Scheduling Strategy for Grid Computing
System. International Journal of Engineering and
Technology 8(2): 1314-1323.

[18] 18. Nazir, B., Qureshi, K. and Manuel, P. (2009) Adaptive
checkpointing strategy to tolerate faults in economy based
grid. The Journal of Supercomputing 50(1): 1-18.

[19] 19. Amoon, M. (2012) A fault-tolerant scheduling system
for computational grids. Computers & Electrical
Engineering 38(2): 399-412.

[20] Kovvur, R.M.R. and Ramachandram, S. (2016) A Hybrid
Fault Tolerant Scheduler for Computational Grid
Environment. In Proceedings of International Congress on
Information and Communication Technology, Jun 2016
(Singapore: Springer), 505–512.

An Adaptive Fault Tolerant Scheduling System for Desktop Grid

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e4

