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Abstract

We propose a distributed Nash equilibrium seeking algorithm in a networked game, where each player
has incomplete information on other players’ actions. Players keep estimates and communicate over a
strongly connected digraph with their neighbours according to a gossip communication protocol. Due to the
asymmetric information exchange between players, a non-doubly (row)-stochastic weight matrix is defined.
We prove almost-sure convergence of the algorithm to a Nash equilibrium under diminishing step-sizes.
We extend the algorithm to graphical games in which players’ cost functions are dependent only on their
neighbouring players in an interference digraph. Given the interference digraph, a communication digraph
is designed so that players exchange only their required information. The communication digraph is a subset
of the interference digraph and a superset of its transitive reduction. Finally, we verify the efficacy of the
algorithm via simulation on a social media behavioural case.
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1. Introduction
The problem of finding a Nash equilibrium (NE)
in a networked game has recently drawn a lot of
attention. Players aim to minimize their own cost
functions selfishly by making decision in response
to other players’ actions. Unlike a classical full-
information setup, each player in the network has only
access to local information of the neighbours. Due to
the imperfect information available to players, they
maintain an estimate of the other players’ actions and
communicate over a communication graph in order to
exchange the estimates with local neighbours. Using
this information, players update their actions and
estimates.

Application scenarios range from spectrum access
and internet access [1], networked Nash-Cournot com-
petition, [2], congestion games in wireless networks,
[3], ad-hoc networks [4] or peer-to-peer networks,
[5], to social networks, [6]. These examples are non-
cooperative in the way actions are taken (each agent
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minimizes its own individual cost function), but col-
laborative in the sense that agents agree to share some
information with neighbours to compensate for the lack
of global information on others’ decisions, as in ad-hoc
or peer-to-peer networks, [5].

In many algorithms in the context of NE seeking
problems, it is assumed that the communication
between players is symmetric in the sense that
players who are in communication can exchange their
information altogether and update their estimates at the
same time. This, in general, leads to a doubly stochastic
communication weight matrix which preserves the
global average of the estimates over time. However,
there are many real-world applications in which
symmetric communication is not of interest or may be
an undesired feature, e.g. in applications such as sensor
networks or social networks, [6], [7].

Literature review. Our work is related to the literature
on Nash games and distributed Nash equilibrium
(NE) seeking algorithms e.g. [3, 8–11]. A distributed
discrete-time algorithm is proposed in [12] to compute
a generalized NE when the communication graph
is identical to the interference graph. In [2], an
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algorithm is provided to find an NE of aggregative
games for a partial communication graph but complete
interference graph. This algorithm is extended by
[13] to a more general class of games in which
players’ cost functions do not necessarily depend
on the aggregate of players’ actions. It is further
generalized to a partial (non-complete) interference
graph in [14], over a partial, connected, undirected
communication graph. For a two-network zero-sum game
[15] considers a distributed algorithm for NE seeking.
To find distributed algorithms for games with local-
agent utility functions, a methodology is presented in
[16] based on state-based potential games.

Gossip-based communication has been widely used
in synchronous and asynchronous algorithms in
consensus and distributed optimization problems [17–
19]. In [17], a gossip algorithm is designed for a
distributed broadcast-based optimization problem. An
almost-sure convergence is provided due to the non-
doubly stochasticity of the communication matrix. In
[18], a broadcast gossip algorithm is proposed for
computing the average of the initial measurements,
which is proved to converge almost surely to a
consensus.

Contributions. We propose an asynchronous gossip-
based algorithm to find an NE of a distributed
game over a partial, directed communication graph.
We assume that players send/receive information
to/from their local out/in-neighbours over a strongly
connected digraph. Players update their own actions
and estimates based on the received information. We
prove an almost-sure convergence of the algorithm
to the NE of the game. Furthermore, we adapt the
algorithm to networked (graphical games) in which
players’ cost functions may depend on any subset of
players’ (not necessarily all) actions. The locality of
cost functions is specified by an interference digraph,
which marks the pair of players who interfere one
with another. In this case, each player maintains an
estimate of only the actions of players that interfere
with him. This can greatly reduce the communication
and computation overhead when the interference graph
is sparse, e.g. [14]. However, due to the non-uniformity
in players’ estimate sizes, the communication digraph
needs to be designed such that each player obtains
all his required information from his communication
neighbours. In this case there exists a lower bound
on the communication digraph, namely it has to be
a transitive reduction of the interference digraph.
Unlike in the undirected case [13, 14], due to asymmetric
information exchange herein, we cannot exploit the doubly-
stochastic property for the communication weight matrix.
This property was critical in the convergence proof in
[13, 14]. Not having it introduces technical challenges as
direct properties on the weight matrix cannot be invoked.

Furthermore, the non-doubly stochasticity leads to the total 
average of players’ estimates not being preserved over time.

Our techniques are also similar to those used in 
the literature on distributed optimization [17], [20]. 
However, there are technical challenges due to the 
game context. In distributed optimization, all agents 
minimize an aggregate cost function with respect to 
a common optimization variable. In a game setup, 
each player controls only his own action, which is 
an element of the full decision vector. Moreover, his 
cost function depends on the actions of a subset of 
other players. This translates into asymmetry and non-
uniformity in players’ data size and overall data exchange. 
We circumvent these issues by introducing generalized 
weight matrices and exploiting their properties to prove 
convergence to Nash equilibrium.

A short version without proofs was presented in [21]. 
The paper is organized as follows. Problem statement 

and assumptions are given in Section 2 for games 
with a complete interference digraph. The algorithm 
is described in Section 3 and its convergence is shown 
in Section 4. In Section 5 we consider networked 
games with partial-interference digraphs; we extend 
the algorithm to this case in Section 6 and show its 
convergence in Section 7. Simulation results for a social 
network example are given in Section 8 and conclusions 
in Section 9.

2. Problem Statement: Game with a Complete
Interference Digraph
Consider a multi-player game in a network with a set 
of players V . Each player i ∈ V has a real-valued cost
function Ji , which may be affected by the actions of any 
number of players. In this section we consider that the 
interference between players’ actions is represented by 
a complete interference digraph G(V , E), with E marking 
the pair of players that interfere one with another. Note 
that for a complete digraph every pair of distinct nodes 
is connected by a pair of unique edges (one in each 
direction).

The game is denoted by G(V ,Ωi , Ji) where

• V = {1, . . . , N }: Set of players,

• Ωi ⊂ R: Action set of player i, ∀i ∈ V with Ω =∏
i∈V Ωi ⊂ RN the action set of all players,

• Ji : Ω→ R: Cost function of player i, ∀i ∈ V .

In the following we define a few notations for players’
actions.

• x = (xi , x−i) ∈ Ω: All players actions,

• xi ∈ Ωi : Player i’s action, ∀i ∈ V and

• x−i ∈ Ω−i :=
∏
j∈V \{i}Ωj : All other players’ actions

except i.
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The game is defined as a set of N simultaneous
optimization problems as follows:minimize

yi
Ji(yi , x−i)

subject to yi ∈ Ωi

∀i ∈ V . (1)

Each problem is run by an individual player and its
solution is dependent on the solution of the other
problems. The objective is to find an NE of this game
which is defined as follows:

Definition 1. Consider an N -player game G(V ,Ωi , Ji),
each player i minimizing the cost function Ji : Ω→ R.
A vector x∗ = (x∗i , x

∗
−i) ∈ Ω is called an NE of this game

if
Ji(x

∗
i , x
∗
−i) ≤ Ji(xi , x

∗
−i) ∀xi ∈ Ωi , ∀i ∈ V . (2)

We state a few assumptions for the existence and the
uniqueness of an NE.

Assumption 1. For every i ∈ V ,

• Ωi is non-empty, compact and convex,

• Ji(xi , x−i) is C1 in xi , continuous in x and convex
in xi for every x−i .

The compactness of Ω implies that ∀i ∈ V and x ∈ Ω,

‖∇xi Ji(x)‖ ≤ C, for some C > 0. (3)

Let F : Ω→ RN , F(x) := [∇xi Ji(x)]i∈V be the pseudo-
gradient vector of the cost functions (game map).

Assumption 2. F is strictly monotone, (F(x) − F(y))T (x −
y) > 0 ∀x, y ∈ Ω, x , y.

Assumption 1 and 2 imply that Nash equilibrium
exists and is unique, cf. Theorem 2.3.3 in [22].

Assumption 3. ∇xi Ji(xi , u) is Lipschitz continuous in xi , for
every fixed u ∈ Ω−i and for every i ∈ V , i.e., there exists
σi > 0 such that

‖∇xi Ji(xi , u) − ∇xi Ji(yi , u)‖ ≤ σi‖xi − yi‖ ∀xi , yi ∈ Ωi .

Moreover,∇xi Ji(xi , u) is Lipschitz continuous in u with a
Lipschitz constant Li > 0 for every fixed xi ∈ Ωi , ∀i ∈ V .

In game (1), the only information available to each
player i is Ji and Ω. Thus, each player maintains an
estimate of the other players actions and exchanges
those estimates with the neighbours to update them.
A communication digraph GC(V , EC) is defined where
EC ⊆ V × V denotes the set of communication links
between players. (i, j) ∈ EC if and only if player i sends
his information to player j. Note that (i, j) ∈ EC does not
necessarily imply (j, i) ∈ EC . The set of in-neighbours of
player i in GC , denoted by N in

C (i), is defined as N in
C (i) :=

{j ∈ V |(j, i) ∈ EC}. The following assumption on GC is
used.

Assumption 4. GC is strongly connected.

Our objective is to find an algorithm for computing
an NE of G(V ,Ωi , Ji) using only imperfect information
over the communication digraph GC(V , EC).

3. Asynchronous Gossip-based Algorithm
We propose a projected gradient-based algorithm using
an asynchronous gossip-based method as in [13].
The algorithm is inspired by [13] except that the
communications are supposed to be directed in a sense
that the information exchange is considered over a
directed path. Our challenge here is to deal with
the asymmetric communications between players. This
makes the convergence proof dependent on a non-
doubly stochastic weight matrix, whose properties need to
be investigated and proved. The algorithm is elaborated
as follows:

1- Initialization Step: Each player i maintains an
initial temporary estimate x̃i(0) ∈ Ω for all players. Let
x̃ij (0) ∈ Ωj ⊂ R be player i’s initial temporary estimate
of player j’s action, for i, j ∈ V .

2- Gossiping Step: At iteration k, player ik becomes
active uniformly at random and selects a communi-
cation in-neighbour indexed by jk ∈ N in

C (ik) uniformly
at random. Let x̃i(k) ∈ Ω ⊂ RN be player i’s temporary
estimate at iteration k. Then player jk sends his tem-
porary estimate x̃jk (k) to player ik . After receiving the
information, player ik constructs his final estimate of all
players. Let x̂ij (k) ∈ Ωj ⊂ R be player i’s final estimate
of player j’s action, for i, j ∈ V . The final estimates are
computed as in the following:

• Players ik ’s final estimate:
x̂
ik
ik

(k) = x̃
ik
ik

(k)

x̂
ik
−ik (k) =

x̃
ik
−ik

(k)+x̃
jk
−ik

(k)

2 .
(4)

Note that x̃ii (k) = xi(k) for all i ∈ V .

• For all other players i , ik , the temporary estimate
is maintained, i.e.,

x̂i(k) = x̃i(k), ∀i , ik . (5)

We use communication weight matrix W (k) :=
[wij (k)]i,j∈V to obtain a compact form of the gossip
protocol. W (k) is a non-doubly (row) stochastic weight
matrix defined as

W (k) = IN −
eik (eik − ejk )

T

2
, (6)

where ei ∈ RN is a unit vector. Note that W (k) is
different from the doubly stochastic one used in [13].
The non-doubly (row) stochasticity of W (k) means that

W (k)1N = 1N , 1
T
NW (k) , 1TN . (7)

Let x̄(k) = [x̄1(k), . . . , x̄N (k)]T ∈ ΩN be an intermediary
variable such that

x̄(k) = (W (k) ⊗ IN )x̃(k), (8)
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where x̃(k) = [x̃1(k), . . . , x̃N (k)]T ∈ ΩN is the overall
temporary estimate at k. Using (6) one can combine
(4) and (5) in a compact form of x̂ik−ik (k) = x̄

ik
−ik (k) and

x̂i(k) = x̄i(k) for ∀i , ik .
3- Local Step
At this moment all players update their actions

according to a projected gradient-based method.
Let x̄i = (x̄ii , x̄

i
−i) ∈ Ω, ∀i ∈ V with x̄ii ∈ Ωi be the

intermediary variable associated to player i. Because
of imperfect information available to player i, he uses
x̄i−i(k) and updates his action as follows: if i = ik ,

xi(k + 1) = TΩi
[xi(k) − αk,i∇xi Ji(xi(k), x̄i−i(k))], (9)

otherwise, xi(k + 1) = xi(k). In (9), TΩi
: R→ Ωi is an

Euclidean projection and αk,i are diminishing step sizes
such that

∑∞
k=1 α

2
k,i < ∞,

∑∞
k=1 αk,i = ∞ ∀i ∈ V . Each

player uses his updated actions to update his temporary
estimates as follows:

x̃i(k + 1) = x̄i(k) + (xi(k + 1) − x̄ii (k))ei , ∀i ∈ V . (10)

At this point, players are ready to begin a new iteration
from step 2.

Algorithm 1

1: initialization x̃i(0) ∈ Ω ∀i ∈ V
2: for k = 1, 2, . . . do
3: ik ∈ V and jk ∈ N in

C (ik) communicate.

4: W (k) = IN −
eik (eik−ejk )T

2 .
5: x̄(k) = (W (k) ⊗ IN )x̃(k).
6: xik (k+1)=TΩik

[xik (k)−αk,ik∇xi Jik (xik (k),x̄ik−ik (k))],
xi(k + 1) = xi(k), if i , ik .

7: x̃i(k + 1) = x̄i(k) + (xi(k + 1) − x̄ii (k))ei , ∀i ∈ V .
8: end for

We elaborate on the non-doubly stochasticity ofW (k)
from two perspectives.

1. Design: By the row (non-doubly) stochastic
property of W (k), the temporary estimates remain at
consensus subspace once they reach there. This can be
verified by (8) when x̃(k) = 1N ⊗ ~α for an N × 1 vector
~α, since,

x̄(k) = (W (k) ⊗ IN )(1N ⊗ ~α) = 1N ⊗ ~α. (11)

Equation (11), (9) and (10) imply that the consensus
is maintained. On the other hand W (k) is not column-
stochastic which is a critical property used in [13]. This
implies that the average of temporary estimates is not
equal to the average of x̄. Indeed by (8),

1
N

(1TN ⊗ IN )x̄(k) =
1
N

(1TN ⊗ IN )(W (k) ⊗ IN )x̃(k)

,
1
N

(1TN ⊗ IN )x̃(k). (12)

Equation (12), (9) and (10) imply that the average of
temporary estimates is not preserved for the next iteration.
Thus, it is infeasible to obtain an exact convergence to
the average consensus [18]. Instead, we show an almost-
sure (a.s.) convergence of the temporary estimates to an
average consensus1.

2. Convergence Proof: λmax(W (k)TW (k)) is a key
parameter in the proof (as in [13, 17]). Unlike [13], the
non-doubly stochastic property of W (k)TW (k) ends up
in having λmax(W (k)TW (k)) > 1. We resolve this issue in
Lemma 2.

4. Convergence For Diminishing Step Sizes
In this section we prove convergence of the algorithm
for diminishing step sizes. Consider a memory in which
the history of the decision making is recorded. Let
Mk denote the sigma-field generated by the history
up to time k − 1 with M0 = {x̃i(0), i ∈ V }. Mk =M0 ∪{
(il , jl); 1 ≤ l ≤ k − 1

}
, ∀k ≥ 2.

Mk =M0 ∪
{
(il , jl); 1 ≤ l ≤ k − 1

}
, ∀k ≥ 2. (13)

In the proof we use a well-known result on super
martingale convergence, (Lemma 11, Chapter 2.2, [23]).

Lemma 1. Let Vk , uk , βk and ζk be non-negative random
variables adapted to σ -algebra Mk . If

∑∞
k=0 uk < ∞,∑∞

k=0 βk < ∞, and E[Vk+1|Mk] ≤ (1 + uk)Vk − ζk + βk for
all k ≥ 0, then Vk converges a.s. and

∑∞
k=0 ζk < ∞.

As explained in the design challenge in Section 3, we
consider a.s. convergence. Convergence is shown in two
parts. First, we prove a.s. convergence of the temporary
estimate vectors x̃i , to an average consensus, proved to
be the vectors’ average. Then we prove a.s. convergence
of players’ actions toward an NE.

Let x̃(k) be the overall temporary estimate vector. The
average of all temporary estimates at T (k) is defined as:

Z(k) =
1
N

(1TN ⊗ IN )x̃(k). (14)

As mentioned in Section 3, the major difference between
the proposed algorithm and the one in [13] is in using
a non-doubly stochastic weight matrix W (k), which
prevents us from directly using its properties. The
following lemma is used to overcome this challenge.

Lemma 2. Let Q(k) = (W (k) − 1
N 1N1TNW (k)) ⊗ IN and

W (k) be a non-doubly (row) stochastic weight matrix
defined in (6) which satisfies (7). Let also γ =
λmax

(
E[Q(k)TQ(k)]

)
. Then γ < 1.

1The same objective is followed by [17] to find a broadcast gossip
algorithm (with non-doubly stochastic weight matrix) in the area
of distributed optimization. However, in the proof of Lemma 2
([17] page 1348) which is mainly dedicated to this discussion, the
doubly stochasticity of W (k) is used right after equation (22) which
violates the main assumption on W (k).
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Proof. Consider the variational characterization of γ .
Since E[Q(k)TQ(k)] is anN2 ×N2 symmetric matrix, we
can write,

γ = sup
x∈RN2 ,‖x‖=1

xTE[Q(k)TQ(k)]x ≥ 0. (15)

Due to space limitation we drop the constraints of
sup(·). By the definition of Q(k), we obtain,

γ=sup
x
xTE

[(
W (k)TW (k)− 1

N
W (k)T1N1

T
NW (k)

)
⊗IN

]
x.

Using (6), we expand γ as follows:

γ = sup
x
xTE

[{(
IN −

1
4N

(eik − ejk )(eik − ejk )
T︸                               ︷︷                               ︸

Term 1

)

−
( 1
N

1N1
T
N +

1
2

(eik−
1
N

1N )(eik−ejk )
T +

1
2

(eik−ejk )(eik−
1
N

1N )T︸                                                                      ︷︷                                                                      ︸
Term 2

−1
4

(eik−ejk )(eik−ejk )
T︸                     ︷︷                     ︸

Term 2

)}
⊗ IN

]
x. (16)

Note that E[(Term 1 − Term 2) ⊗ IN ] is a symmetric
matrix.
Claim 1: For all x ∈ RN2

, ‖x‖ = 1, we have,

xTE
[
Term 1 ⊗ IN

]
x ≤ 1. The equality only holds

for x = 1N ⊗ y where y ∈ RN and ‖y‖ = 1√
N

.

Proof of Claim 1: Multiplying xT and x into the
argument of the expected value in (16) and using
‖x‖ = 1, we obtain,

xTE
[
Term 1⊗IN

]
x=1− 1

4N
E
[∥∥∥∥((eik−ejk )T ⊗IN )

x
∥∥∥∥2]
≤1.

Equality holds only when,

E
[∥∥∥∥((eik−ejk )T ⊗IN )

x
∥∥∥∥2]

=0⇔
∥∥∥∥((eik−ejk )T ⊗IN )

x
∥∥∥∥2

=0

⇔ (eTik ⊗ IN )x = (eTjk ⊗ IN )x.

This holds for all k ≥ 0, ik ∈ V and jk ∈ N in
C (ik). By

the strong connectivity of GC (Assumption 4), the
foregoing becomes (eTi ⊗ IN )x = (eTj ⊗ IN )x, ∀i, j ∈ V
which implies that x = 1N ⊗ y where y ∈ RN . Moreover,
‖x‖ = 1 yields,

‖1N ⊗ y‖2 = 1⇔ (1TN ⊗ y
T )(1N ⊗ y) = 1⇔ ‖y‖ =

1
√
N
.

Claim 2: For x = (1N ⊗ y) ∈ RN2
where y ∈ RN and

‖y‖ = 1√
N

we have xTE
[
Term 2 ⊗ IN

]
x > 0.

Proof of Claim 2: For x = 1N ⊗ y and ‖y‖ = 1√
N

we

obtain by the mixed product property of Kronecker
that,

xTE
[
Term 2⊗IN

]
x=E

[
(1TN⊗y

T )(Term 2 ⊗ IN )(1N ⊗ y)
]

= E
[(
1TN (Term 2)1N

)
⊗ yT y

]
. (17)

It is straightforward to verify that 1TN (Term 2)1N = N
because all the summands in Term 2 except the first one
vanish by multiplying 1TN and 1N . Having that yT y = 1

N ,

(17) implies xTE
[
Term 2 ⊗ IN

]
x = 1 > 0. By Claims 1, 2

and using the fact that Terms 1, 2 are symmetric and
γ ≥ 0, (16) implies that γ < 1.

�
We use Lemma 1 and Lemma 2 to show that x̃(k)

converges a.s. to Z(k).

Theorem 1. Let x̃(k) be the stack vector with all
players’ temporary estimates and Z(k) be its average
as in (14). Let also αk,max =maxi∈Vαk,i . Then under
Assumptions 1,4, the following hold.

i)
∑∞
k=0 αk,max‖x̃(k) − (1N ⊗ IN )Z(k)‖ < ∞ a.s.,

ii)
∑∞
k=0 ‖x̃(k) − (1N ⊗ IN )Z(k)‖2 < ∞ a.s.

Proof. The idea of the proof is to repeatedly use
Lemma 1 to show that a term is absolutely summable.
While the proof follows as the proof of Theorem 1 in
[13], here a critical step is in using Lemma 2.

The first step is to derive an upper bound for E
[
‖x̃(k +

1) − (1N ⊗ IN )Z(k + 1)‖
∣∣∣∣Mk

]
and apply Lemma 1 to the

resulting expression.
From (10), (8), (14) and the row stochastic property of

W (k) it follows that:

E
[
‖x̃(k + 1) − (1N ⊗ IN )Z(k + 1)‖

∣∣∣∣Mk

]
(18)

≤ E
[
‖Q(k)(x̃(k)−(1N⊗IN )Z(k))‖

∣∣∣∣Mk

]
︸                                        ︷︷                                        ︸

Term 1

+E
[
‖Rµ(k + 1)‖

∣∣∣∣Mk

]
︸                  ︷︷                  ︸

Term 2

,

where µ(k + 1) = [(xi(k + 1) − x̄ii (k))ei]i∈V , Q(k) =
(W (k) − 1

N 1N1TNW (k)) ⊗ IN (as defined in Lemma 2)
and R = (IN − 1

N 1N1TN ) ⊗ IN .

Let γ = λmax

(
E[Q(k)TQ(k)]

)
be as in Lemma 2. We

obtain the following upper bound for Term 1 in (18).

Term 1 ≤
√
E
[
‖Q(k)(x̃(k) − (1N ⊗ IN )Z(k))‖2

∣∣∣∣Mk

]
≤ √γ‖x̃(k) − (1N ⊗ IN )Z(k)‖. (19)

Note that by Lemma 2, γ < 1.
To bound Term 2, we use (9), the non-expansive

property of projection, ‖R‖ = 1, Assumption 1 (equation
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(3)) and xi(k + 1) = xi(k) = x̄ii (k) for i , ik . Then,

Term 2 ≤ E
[
‖µ(k+1)‖

∣∣∣∣Mk

]
=E

√∑
i∈V
‖xi(k+1)−x̄ii (k)‖2

∣∣∣∣Mk


=E

[
‖xik (k+1)−x̄ikik (k)‖

∣∣∣∣Mk

]
≤E

[
‖xik (k)−x̄ikik (k)‖

∣∣∣∣Mk

]
+αk,maxC

=
1
2
‖x̃ikik (k)−x̃jkik (k)‖+αk,maxC. (20)

The last equality obtained by using x̄ikik =
x̃
ik
ik

+x̃
jk
ik

2 which
comes from (8). Using (9), (10), (8), projection’s non-
expansive property and (3) yields

‖x̃ikik (k+1)−x̃jkik (k+1)‖≤‖x̃ikik (k)−x̃jkik (k)‖+αk,ikC. (21)

Take expected value of (21) and multiply its LHS and
RHS by αk+1,ik and αk,ik , respectively, to yield,

αk+1,ikE
[
‖x̃ikik (k + 1) − x̃jkik (k + 1)‖

∣∣∣∣Mk

]
≤ αk,ik ‖x̃

ik
ik

(k) − x̃jkik (k)‖ + α2
k,iC, (22)

since αk+1,ik < αk,ik . Applying Lemma 1 for Vk =

αk,ik ‖x̃
ik
ik

(k) − x̃jkik (k)‖ and using diminishing-size steps

and (3), it follows that
∑∞
k=0 αk,ik ‖x̃

ik
ik

(k) − x̃jkik (k)‖ < ∞.
From (18), (19) and (20) it follows that

E
[
‖x̃(k + 1)−(1N⊗IN )Z(k+1)‖

∣∣∣∣Mk

]
(23)

≤ √γ‖x̃(k)−(1N⊗IN )Z(k)‖+ 1
2
‖x̃ikik (k)−x̃jkik (k)‖+αk,maxC.

Multiplying the LHS and RHS of (23) by αk+1,max
and αk,max, respectively and using γ < 1 (Lemma 2)
and diminishing-size steps, Part i) follows by applying
Lemma 1.

The Proof of Part ii) is similar to that of Part i) and it
is omitted due to space limitations. �

Corollary 1. Under Assumptions 4-1, the following hold
a.s. for players’ actions x(k) and for x̄(k):

i)
∑∞
k=0 αk,max‖x(k) − Z(k)‖ < ∞ a.s.,

ii)
∑∞
k=0 ‖x(k) − Z(k)‖2 < ∞ a.s.,

iii)
∑∞
k=0 E

[
‖x̄(k) − (1N ⊗ IN )Z(k)‖2

∣∣∣∣Mk

]
< ∞ a.s.

Proof. The proof follows directly from Theorem 1
noting that x(k) = [x̃ii (k)]i∈V and x̄(k) = (W (k) ⊗ IN )x̃(k)
(8).

Theorem 2. Let x(k) and x∗ be all players’ actions and
the NE of G, respectively. Under Assumptions 4-3, the
sequence {x(k)} generated by the algorithm converges to
x∗, almost surely.

Proof. The proof follows based on Theorem 1 and
Corollary 1, and is similar to the proof of Theorem 2
in [13].

Theorem 2 verifies that the actions of all players
converge a.s. toward the NE using the fact that the
actions converge to a consensus subspace (Corollary 1).

5. Game With a Partial Interference Digraph
We extend the game defined in Section 2 to the case
with partially coupled cost functions, such that the cost
functions may be interfered by the actions of any subset
of players. The game is denoted by G(V ,GI ,Ωi , Ji) where
GI (V , EI ) is an interference digraph with EI marking
players whose actions interfere with the other players’
cost functions. We denote by N in

I (i) := {j ∈ V |(j, i) ∈ EI },
the set of in-neighbours of player i in GI whose actions
affect Ji and Ñ in

I (i) := N in
I (i) ∪ {i}.

The following assumption is considered for GI .

Assumption 5. GI is strongly connected.

The cost function of player i, Ji , ∀i ∈ V , is defined
over Ωi → R where Ωi =

∏
j∈Ñ in

I (i) Ωj ⊂ R|Ñ
in
I (i)| is the

action set of players interfering with the cost function of
player i. A few notations for players’ actions are given:

• xi = (xi , x
i
−i) ∈ Ω

i : All players’ actions which
interfere with Ji ,

• xi−i ∈ Ω
i
−i :=

∏
j∈N in

I (i) Ωj : Other players’ actions
which interfere with Ji .

Given xi−i , each player i aims to minimize his own cost
function selfishly,minimize

yi
Ji(yi , x

i
−i)

subject to yi ∈ Ωi

∀i ∈ V . (24)

Known parameters to player i are as follows: 1) Cost
function of player i, Ji and 2) Action set Ωi . Note that
this game setup is similar to the one in [14] except
for a directed GC used for asymmetric communication.
We assume that each player maintains an estimate
of only his interfering players’ actions according to
GI , and that players exchange information over a
communication digraph GC(V , EC), which is a subset
of the interference digraph GI . As no unnecessary
data needs exchanged, this can greatly reduce the
communication and computation cost when GI is
sparse, see [14].

Our first objective is to design an assumption on
GC such that all required information is communicated
by players after sufficiently many iterations. In other
words, we want to ensure that player i, ∀i ∈ V receives
information on all players whose actions interfere with
his cost function.
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Definition 2. Transitive reduction: A digraph H is a
transitive reduction of G if it is obtained as follows: for
all three vertices i, j, l in G such that edges (i, j), (j, l) are
in G, (i, l) is removed from G.

Assumption 6. The following holds for the communica-
tion graphGC :GTR ⊆ GC ⊆ GI , whereGTR is a transitive
reduction of GI .

The lower bound is required because each player
does not maintain estimates of all other players as in
Section 3, or as in distributed optimization, [17], but
only of those interfering with him. It can be shown
via a counter example that if players communicate
via a path of length greater than 2, they may lose
some information. Note that a transitive reduction is
different from a maximal triangle-free spanning subgraph
which is used in Assumption 2 in [14]. In simple
terms, a transitive reduction of a digraph is a digraph
without the parallel paths between the vertices. Based
on Assumption 6 we show next that each player i ∈ V
can obtain his necessary information about players in
N in
I (i) from his neighbours in N in

C (i).

Lemma 3. Let GI and GC satisfying Assumptions 5 and
Assumption 6, respectively. Then,∀i ∈ V ,⋃

j∈N in
C (i)

(
N in
I (i) ∩ Ñ in

I (j)
)

= N in
I (i). (25)

Proof. The proof is similar to the proof of Lemma 2
in [14], but modified to adapt for the directed graph.
We need to show N in

I (i) ⊆
⋃
j∈N in

C (i) Ñ
in
I (j) ∀i ∈ V from

which it is straightforward to deduce (25).
For the case when GC = GI , we obtain,⋃
j∈N in

C (i)

Ñ in
I (j)=

⋃
j∈N in

I (i)

Ñ in
I (j)⊇

⋃
j∈N in

I (i)

{j}=N in
I (i). (26)

In (26), we used {j} ⊆ Ñ in
I (j) by the definition of Ñ in

I (j).
Now assume that GTR ⊆ GC ⊂ GI . To prove (25), it is

sufficient to show that N in
I (i) ⊆

⋃
j∈N in

TR(i) Ñ
in
TR(j), where

N in
TR(i) is the set of in-neighbours of player i in GTR

and Ñ in
TR(i) in addition to N in

TR(i) contains {i}. In other
words we need to show that any in-neighbour of player
i (any vertex with an incoming edge to i) in GI is either
an in-neighbour or “in-neighbour of an in-neighbour”
of player i (a vertex with an incoming path of at most
length 2 to i) in GTR. If an incoming edge to i exists
both in GI and GTR, the corresponding in-neighbour of
i inGI is an in-neighbour of i inGTR. Otherwise, if there
exists an incoming edge to i inGI that is missing inGTR,
according to Definition 2, there exists a directed path
of length 2 parallel to the missing edge in GTR. So the
corresponding in-neighbour of player i in GI is an in-
neighbour of an in-neighbour of player i in GTR.

�

The assumptions for existence and uniqueness of
an NE are Assumptions 1-3 with the cost functions
adapted to GI .

Our second objective is to find an algorithm for
computing an NE of G(V ,GI ,Ωi , Ji) overGC(V , EC) with
partially coupled cost functions as described by the
directed graph GI (V , EI ).

6. Asynchronous Gossip-based Algorithm adapted
to GI
The structure of the algorithm is similar to the one in
Section 3. The steps are elaborated in the following:

1- Initialization Step:

• x̃i(0) ∈ Ωi : Player i’s initial temporary estimate.

2- Gossiping Step:

• x̃ij (k) ∈ Ωj ⊂ R: Player i’s temporary estimate of
player j’s action at k.

• x̂ij (k) ∈ Ωj ⊂ R: Player i’s final estimate of player

j’s action at k, for i ∈ V , j ∈ Ñ in
I (i).

• Final estimate construction:

x̂
ik
l (k) =


x̃
ik
l (k)+x̃

jk
l (k)

2 , l ∈ (N in
I (ik) ∩ Ñ in

I (jk))

x̃
ik
l (k), l ∈ Ñ in

I (ik)\(N in
I (ik) ∩ Ñ in

I (jk)).
(27)

For i , ik , j ∈ Ñ in
I (i),

x̂ij (k) = x̃ij (k) (28)

We suggest a compact form for gossip protocol by using
W I (k) defined as,

W I (k) := Im −
∑

l∈(Ñ in
I (ik )∩Ñ in

I (jk ))

esik l
(esik l − esjk l )

T

2
, (29)

where ei ∈ Rm is a unit vector and sij is an index of
the estimate vector element associated with player i’s
estimate of player j’s action. Note that W I (k) (29) is
different from the doubly stochastic one used in [14].

• x̃(k) :=
[
x̃1T , . . . , x̃N

T ]T
: Stack vector of all tempo-

rary estimates,

• x̄(k) := W I (k)x̃(k): Intermediary variable.

Using the intermediary variable, one can construct the
final estimates as follows:

x̂i−i(k) = [x̄sij (k)]j∈N in
I (i). (30)

3- Local Step: Player i updates his action as follows:
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If i = ik ,

xi(k + 1)=TΩi

[
xi(k)−αk,i∇xi Ji

(
xi(k),[x̄sij (k)]j∈N in

I (i)

)]
,

(31)
otherwise, xi(k + 1) = xi(k).

Then he updates his temporary estimates as:

x̃ij (k + 1) =

x̄sij (k), if j , i

xi(k + 1), if j = i.
(32)

At this point, players are ready to begin a new iteration
from step 2.

Algorithm 2

1: initialization x̃i(0) ∈ Ωi ∀i ∈ V
2: for k = 1, 2, . . . do
3: ik ∈ V and jk ∈ N in

C (ik) communicate.

4: W I(k) := Im−
∑
l∈(Ñ in

I (ik )∩Ñ in
I (jk ))

esik l
(esik l
−esjk l

)T

2 .

5: x̄(k) = W I (k)x̃(k).
6: xi(k+1)=TΩi

[xi(k)−αk,i∇xi Ji(xi(k),[x̄sij (k)]j∈N in
I (i))] if

i = ik , otherwise, xi(k + 1) = xi(k).
7: x̃i(k + 1) = x̄i(k) + (xi(k + 1) − x̄ii (k))ei , ∀i ∈ V .
8: end for

7. Convergence of the algorithm adapted to GI
Similar to Section 4, the convergence proof is split into
two steps:

1. First, we prove a.s. convergence of x̃(k) ⊂ Rm to an
average consensus which is shown to be the augmented
average of all temporary estimate vectors. Let

• mout
i := degout

GI
(i) + 1, where degout

GI
(i) is the out-

degree of vertex i in GI ,

• 1./mout := [ 1
mout

1
, . . . , 1

mout
N

]T ,

• H := [
∑
i:1∈N in

I (i) esi1 , . . . ,
∑
i:N∈N in

I (i) esiN ] ∈ Rm×N ,(33)

where i : j ∈ N in
I (i) is all i’s such that j ∈ N in

I (i). The
augmented average of all temporary estimates is denoted
by ZI (k) ∈ Rm and defined as follows:

ZI (k) := Hdiag(1./mout)HT x̃(k) ∈ Rm (34)

2. Secondly, we prove almost-sure convergence of
players’ actions to an NE.

The proof depends on some key properties ofW I and
H given in Lemma 4 and Lemma 5.

Lemma 4. Let W I (k) and H be defined in (29) and (33).
Then, W I (k)H = H .

Proof. The proof is similar to the proof
of Lemma 3 in [14] but adapted for the
different W I here. Using the definitions of H
and W I (k) (33), (29), we expand W I (k)H as

W I (k)H = H − 1
2
∑
l∈(Ñ in

I (ik )∩Ñ in
I (jk )) esik l

.

[∑
i:1∈N in

I (i)(esik l −

esjk l
)T esi1 ,. . .,

∑
i:N∈N in

I (i)(esik l −esjk l )
T esiN

]
. Note that∑

i:j∈N in
I (i)(esik l − esjk l )

T esij = 0 for all j ∈ V because

eTsik l
esij = 1 for i = ik , j = l and eTsik l

esij = 0, otherwise.

Similarly, eTsjk l
esij = 1 for i = jk , j = l and eTsik l

esij = 0,
otherwise. This completes the proof. �

Lemma 4 can be interpreted as a generalized row-
stochastic property of W I (k). Note that the generalized
non-doubly stochasticity of W I (k) is translated into
HTW I (k) , HT .

Lemma 5. Let QI (k) :=W I (k) −Hdiag(1./mout)HTW I (k),
where W I (k) and H are defined in (29) and (33), and
γ I = λmax

(
E[QI (k)TQI (k)]

)
. Then γ I < 1.

Proof . As suggested in (15), we employ
the variational characterization of γ ,
γ I = supx∈Rm,‖x‖=1 x

TE[QI (k)TQI (k)]x =

supx∈Rm,‖x‖=1 x
TE

[(
W I (k)T −W I (k)THdiag(1./moutHT )

)
.
(
W I (k) −Hdiag(1./mout)HTW I (k)

)]
=

supx∈Rm,‖x‖=1x
TE

[
W I (k)T (I−Hdiag(1./mout)HT )W I (k)

]
.

For the last equality, we used HTH = diag(mout)
which is straightforward to verify. We expand γ I and
split the terms as follows (Let l ∈ Ñ in

I (ik) ∩ Ñ in
I (jk)):

γ I =sup
x
xTE

[(
Im−

1
4

∑
l

(esik l −esjk l )e
T
sik l
Hdiag(1./mout)

︸                                             ︷︷                                             ︸
Term 1

.HT
∑
l

esik l
(esik l − esjk l )

T

︸                          ︷︷                          ︸
Term 1

)
−
(
Hdiag(1./mout)HT︸                  ︷︷                  ︸

Term 2

−1
4

∑
l

(esik l − esjk l )e
T
sik l

∑
l

esik l
(esik l − esjk l )

T

︸                                                  ︷︷                                                  ︸
Term 2

+
1
2

(Im −Hdiag(1./mout)HT )
∑
l

esik l
(esik l − esjk l )

T

︸                                                            ︷︷                                                            ︸
Term 2

+
1
2

(
∑
l

(esik l − esjk l )e
T
sik l

)(Im −Hdiag(1./mout)HT )

︸                                                           ︷︷                                                           ︸
Term 2

)]
x.
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We aim to prove that xTE[Term 1]x ≤ 1. Multiplying by
xT and x into Term 1, we arrive at,

xTE[Term 1]x

=1− 1
4
E
[∥∥∥∥diag(1./

√
mout)HT

∑
l

esik l
(esik l −esjk l )

T x
∥∥∥∥2]
≤1.

Equality holds for all x’s that satisfy HT ∑
l esik l

(esik l −
esjk l

)T x = 0. After a few manipulations, by the strong

connectivity of GC for i ∈ V , j ∈ N in
C (i) and l ∈

(Ñ in
I (ik) ∩ Ñ in

I (jk)) we obtain,

xsil = xsjl . (35)

To complete the proof we need to show
xTE[Term 2]x > 0 for all x’s satisfy (35) and ‖x‖ = 1.
After some manipulations we obtain, xTE[Term 2]x =
xTHdiag(1./mout)HT x = ‖diag(1./

√
mout)HT x‖2 ≥ 0.

The rest of the proof is straightforward by verifying
that for all x’s which satisfy (35) and ‖x‖ = 1, HT x , 0.

�

Theorem 3. Let x̃(k) be the stack vector with all
players’ temporary estimates and ZI (k) be its average
as in (34). Let also αk,max = maxi∈V αk,i . Then under
Assumptions 5, 6, 1′ , the following hold.

i)
∑∞
k=0 αk,max‖x̃(k) − ZI (k)‖ < ∞ a.s.

ii)
∑∞
k=0 ‖x̃(k) − ZI (k)‖2 < ∞ a.s.

Proof. A similar argument as in the proof of Theorem
1 is used, this time based on using Lemma 4 and
Lemma 5. The proof is similar to the proof Theorem 1
in [14] and is omitted due to space constraints.

Corollary 2. Let zI (k) := diag(1./mout)HT x̃(k) ∈ RN be the
average of all players’ temporary estimates. Under
Assumptions 5, 6, 1′ , the following hold for players’
actions x(k) and x̄(k):

i)
∑∞
k=0 αk,max‖x(k) − zI (k)‖ < ∞ a.s.

ii)
∑∞
k=0 ‖x(k) − zI (k)‖2 < ∞ a.s.,

iii)
∑∞
k=0 E

[
‖x̄(k) − ZI (k)‖2

∣∣∣∣Mk

]
< ∞ a.s.

Proof . The proof follows by taking into account x(k) =
[x̃ii (k)]i∈V , ZI (k) = HzI (k), x̄(k) = W I (k)x̃(k) and using
Theorem 3.

Theorem 4. Let x(k) and x∗ be all players’ actions and the
NE of G, respectively. Under Assumptions 1′-3′ , 5, 6, the
sequence {x(k)} generated by the algorithm converges to
x∗, almost surely.

Proof. The proof usesTheorem 3 and is similar to the
proof of Theorem 2 in [14].

8. Simulation Results
8.1. Social Media behaviour
In this example we aim to investigate a social
networking media example and users’ behaviour. In

such media like Facebook, Twitter and Instagram
users are allowed to follow (or be friend with) other
users and post status updates, photos and videos
or share links and events, [6], [7]. Depending on
the type of social media, the way of communication
is defined. For instance, in Instagram, friendship is
defined unidirectional in the sense that either side
could be only a follower and/or being followed.
Recently, researchers at Microsoft have been studying
the behavioural attitude of the users of Facebook as a
giant and global network [24]. This study can be useful
in many areas e.g. business (posting advertisements)
and politics (posting for the purpose of presidential
election campaign).

Generating new status usually comes with a payoff
(utility) for users, while also incurring some cost;
if there is no benefit in posting status, the users
don’t bother to generate new ones. In any social
media drawing others’ attention is one of the most
important motivation/stimulation to post status [25].
Our objective is to find the optimal rate of posting status
for each user to draw more attention in his network.
In the following, we use an information/attention
model of a generic social media [25] and define a
communication between users (GC) and an interference
graph between them (GI ).

Consider a social media network of N users. Each
user i produces xi unit of information that the followers
can see in their news feeds. The users’ communication
network is defined by a strongly connected digraph GC
in which iO→ jOmeans j is a follower of i or j receives xi
in his news feed. We also assume a strongly connected
interference digraph GI to show the influence of users
on the others. We assume that each user i’s utility/cost
function is not only affected by the users he follows, but
also by the users that his followers follow.

The cost function of user i is denoted by Ji
and consists of three parts: 1) Ci(xi) := hixi , hi > 0
which is a cost that user i incurs to produce xi
unit of information. 2) f 1

i (x) := Li
√∑

j∈N in
C (i) qjixj , Li >

0 which is a differentiable, increasing and concave
utility function of user i obtained from receiving
information from his news feed, where f 1

i (0) = 0 and qji
represents follower i’s interest in user j’s information
and Li is a user-specific parameter. 3) f 2

i (x) :=∑
l:i∈N in

C (l)Ll

(√∑
j∈N in

C (l) qjlxj −
√∑

j∈N in
C (l)\{i} qjlxj

)
which

is an incremental utility function that each user
obtains from receiving attention in his network with
f 2
i (x)|xi=0 = 0. Specifically, this function targets the

amount of attention that each follower pays to the
information of other users in his news feed. The total
cost function for user i is then Ji(x) = Ci(xi) − f 1

i (x) −
f 2
i (x).
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Figure 1. (a) GC and (b) GI
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Figure 2. Convergence to a NE for the unit of information that
each user produces over GC .

For this example, we consider 5 users in the social
media whose network of followers GC is given in Fig.
1. (a). From GC and taking Ji into account, one can
construct GI (Fig. 1. (b)) in a way that the interferences
among users are specified.

Note that this is a reverse process of the one discussed
in Section 5 because GC is given as the network of
followers and GI is constructed from GC . For the
particular networks in Fig. 1. (a,b), Assumptions 5, 6
hold. We then employ the algorithm in Section 6 to find
an NE of this game for hi = 2 and Li = 1.5 ∀i ∈ V , and
q41 = q45 = 1.75, q32 = q43 = 2 and the rest of qij = 1.
The result is shown in Fig. 2. To analyze the NE x∗ =
[0, 0, 0.42, 2.24, 0.14]T , note that one can realize from
GC that user 4 has 3 followers (users 1, 3 and 5), user 3
has 2 followers (users 2 and 5) while the rest have only 1
follower. Thus, it is straightforward to predict that users
4 and 3 could draw more attention and produce more
information.

9. Conclusions
We proposed an asynchronous gossip-based algorithm
to find an NE of a networked game with a complete
interference digraph, over a partial, connected commu-
nication digraph. We extended our algorithm to the case
of graphical games. We specified the locality of cost
functions using a (partial) interference digraph and we
showed almost-sure convergence to the NE of the game
under an assumption on the communication digraph
and diminishing step-sizes.
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