
Formal Approach to Detect and Resolve Anomalies
while Clustering ABAC Policies

Maryem Ait El Hadj1,∗, Ahmed Khoumsi2, Yahya Benkaouz3, Mohammed Erradi1

1Networking and Distributed Systems Research Group, ITM Team, ENSIAS, Mohammed V University in Rabat,
Morocco
2Dept. Electrical & Comp. Eng., University of Sherbrooke, Canada
3Conception and Systems Laboratory, FSR, Mohammed V University in Rabat, Morocco

Abstract

In big data environments with big number of users and high volume of data, we need to manage the
corresponding huge number of security policies. Using Attribute-Based Access Control (ABAC) model to
ensure access control might become complex and hard to manage. Moreover, ABAC policies may be aggregated
from multiple parties. Therefore, they may contain several anomalies such as conflicts and redundancies,
resulting in safety and availability problems. Several policy analysis and design methods have been proposed.
However, most of these methods do not preserve the original policy semantics. In this paper, we present an
ABAC anomaly detection and resolution method based on the access domain concept, while preserving the
policy semantics. To make the suggested method scalable for large policies, we decompose the policy into
clusters of rules, then the method is applied to each cluster. We prove correctness of the method and evaluate
its computational complexity. Experimental results are given and discussed.

Received on 11 October 2018; accepted on 16 November 2018; published on 03 December 2018
Keywords: ABAC Policies, Clustering, Access Domain, Conflict, Redundancy, Detection and Resolution, Permissive
Resolution, Restrictive Resolution.

Copyright © 2018 Maryem Ait El Hadj et al., licensed to EAI. This is an open access article distributed under the terms of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.13-7-2018.156003

1. Introduction
In the current big data environments, a huge amount
of data can be generated from various sources,
which require new forms of processing techniques
in order to improve decision making. However, the
rules regulating access to resources managed by
such environments raise multiple security challenges.
Hence, users need authorization systems to help them
share their resources, data and applications with a
large number of users without compromising security
and privacy. Access control models represent a key
component for providing security features.

Attribute-based access control (ABAC) has been
suggested as a generic access control model [6, 17].

∗Corresponding author. Email: maryem_aitelhadj@um5.ac.ma

ABAC considers three categories of attributes: subject,
resource, and environment. An attribute is assigned to
a subject (e.g., user, application or process), resource
(e.g., data structure, web service or system component)
and environment (e.g., current time, location). These
attributes may be considered as characteristics of
anything that may be defined and to which a value may
be assigned. ABAC representation is more expressive
and fine-grained than existing access control models,
because it might consider any combination of subject,
resource and environment attributes. However, due to
the huge number of rules and the policies distributed
management, deploying and managing an ABAC model
to ensure access control might become too complex
and hard to manage. In fact, an ABAC policy in
distributed applications may be aggregated from
multiple parties and can be managed by more than
one administrator [8]. Therefore, ABAC policies may
contain several anomalies [7, 35], such as conflicts
and redundancies, which may lead to both safety and

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

http://creativecommons.org/licenses/by/3.0/
http://doc.eai.eu/publications/transactions/latex/
mailto:< maryem_aitelhadj@um5.ac.ma>

M. Ait El Hadj et al.

availability problems. Hence, detecting and resolving
automatically such anomalies in large complex policies
is crucial.

In the present paper, we suggest a method to detect
and resolve anomalies in ABAC policies. We introduce
the notion of Access Domain of a rule, which models the
set of values of the attributes considered in that rule.
Based on this concept of access domain, we develop a
method to detect and resolve rigorously anomalies in
an ABAC policy, while retaining the policy semantics.
In contrast, several existing methods resolve anomalies
by simply removing one of the conflicting rules, which
modifies the semantics of the policy. To make the
suggested method scalable with great policies (i.e.,
policies with a huge number of rules), we decompose
the policy into several clusters of rules, and then the
method is applied to each cluster. A preliminary version
of this work is given in [2] which presents succinctly a
method to detect and resolve anomalies. Compared to
[2], our contributions are as follows:

• We present with more details and explanations
our method to detect and resolve anomalies.

• We prove formally correctness of our method,
thus guaranteeing that the anomalies are detected
and removed from the original policy, while
preserving its semantics.

• We evaluate the computational complexity of the
proposed approach of detection and resolution.

• We provide experimental results with a set of
ABAC policies that demonstrate the time gained
from clustering.

The rest of the paper is organized as follows: Section 2
presents the formal definitions of security rules and the
considered anomalies. In section 3, we define formally
our problem of anomaly detection and resolution, and
then we present an outline of the method we have
developed to solve our problem. Section 4 presents
formally the method we have developed. In Section
5, we prove correctness of the method and evaluate
its computational complexity. Section 6 reports and
discusses experimental results. In Section 7, we present
related work and recall our contributions. Finally, the
conclusion and expected future work are presented in
section 8.

2. Formal Definitions of Security Rules &
Anomalies

In order to present a formal method to detect and
resolve anomalies between the rules of a policy, we first
need to define formally the rules and the anomalies.

2.1. Formal Definition of a Security Rule and its
Access Domain
A policy P is a non-empty set of rules: P = {r1, r2, ..., rn}.
Each rule ri ∈ P is specified by a condition and an access
decision. The condition of a rule is specified by one
or several assignments att ∈ Vatt , where att is a name
that identifies an attribute and Vatt is a set of possible
values of att. There is at most one assignment for each
attribute. An access decision of a rule is noted Xact ,
where X is the decision P ermit or Deny, and act is
a set of (access) actions. P ermitread and Denywrite are
two examples of action decisions. A rule ri ∈ P will be
written as follows:

ri : Xact(att1 ∈ Vatt1 , att2 ∈ Vatt2 , ..., attm ∈ Vattm) (1)

Note that the absence of assignment for an attribute
att means the implicit existence of the assignment att ∈
ALLatt , where ALLatt denotes the set of all possible
values of att. We consider the three categories of
attributes of ABAC: subjects, resources, environment.
The assignments corresponding to the same category
are separated by a comma ",", while a semicolon ";"
means the passing to the next category. An access
request is defined by attribute values (at most one value
for each attribute) and one action. We say that a value
v of an attribute att satisfies an assignment att ∈ Vatt
of a rule ri , if v is an element of Vatt . We say that an
access request R matches a rule ri (we can also say ri
matches R) if every attribute value of R satisfies the
corresponding assignment of ri .

Example 2.1. P ermitread (position ∈ {Doctor}, special-
ist ∈{Generalist}, department ∈ {Oncology}; type ∈
{PR/CAT} , formatType ∈ {AST} , degreeOfConfiden-
tiality ∈ {Secret} ; organization ∈ {EMS} , time ∈ [8:00,
12:00]).

The attributes of the Subject category are: position,
specialist, department. The attributes of the Resource
category are: type, formatType, degreeOfConfidential-
ity. The attributes of the Environment category are:
organization, time. Intuitively, this rule indicates that
every generalist doctor belonging to oncology depart-
ment is permitted to read a secret AST file from 8 am to
12 am in EMS.

Instead of formulating a rule ri as in (1), we will
use the equivalent formulation (2) which is more
convenient to define anomalies and their detection
and resolution. The idea is to specify a unique set of
values (namely Vatt1 × Vatt2 × ... × Vattm) for the n-tuple
(att1, att2, ..., attm), instead of specifying a set of values
for each atti . Such set Vatt1 × Vatt2 × ... × Vattm is called
the access domain of ri and noted ADri . Hence, a rule
is expressed in the form ri = Xact((att1, att2..., attm) ∈
ADri). We can also write ri = Xact(ADri) when the
attributes are known from the context and can hence

2 EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

Formal Approach to Detect and Resolve Anomalies while Clustering ABAC Policies

be implicit.

ri : Xact((att1, att2..., attm) ∈ Vatt1 × Vatt2 × ... × Vattm)
(2)

2.2. Formal Definitions of the Considered Anomalies
Anomalies are defined as patterns in data that do not
conform to a well-defined notion of normal behavior
[7]. More specifically, in a security policy P , an anomaly
may exist only if several rules of P match the same
access request. We have considered two types of
anomalies: Redundancies and Conflicts.

Definition 2.1. Redundancy occurs in a policy P , when
P contains useless (or redundant) rules, i.e. rules
whose removal does not modify the behavior of the P .
Consider two rules ri = Xa(ADri) and rj = Yb(ADrj). ri is
redundant to rj iff:

ADri ⊆ ADrj
X = Y , and
a ⊆ b

(3)

Intuitively, every decision taken by ri on any request
is also taken by rj . Therefore, ri is useless and hence can
be removed from the policy. We consider redundancy
as an anomaly, because it may affect the performance of
a policy, since verifying if an access request respects a
policy depends on the size of the policy.

Example 2.2. Consider the following rules r1 and r2:

• r1: P ermit{read,write}((position; fileType; time) ∈
{Doctor, Nurse} × {Source, Documentation} ×
[8:00, 18:00]).

• r2: P ermit{read}((position; fileType; time) ∈ {Nurse}
× {Documentation} × [8:00, 18:00]).

r2 is redundant to r1, because ({Nurse} ×
{Documentation} × [8:00, 18:00]) ⊂ ({Doctor, Nurse}×
{Source, Documentation} × [8:00, 18:00]) and {read} ⊂
{read, write}.

We define the following notions, given two rules ri =
Xa(ADri) and rj = Yb(ADrj) :

• Common access domain of ri and rj is the
intersection of their access domains, i.e. ADri ∩
ADrj .

• Set of common actions of ri and rj is the
intersection of their sets of actions, i.e. a ∩ b.

Definition 2.2. A conflict occurs in a policy P , when P
contains two or more rules that generate contradictory
decisions on an access request. Consider two rules
ri=Xa(ADri) and rj=Yb(ADrj). ri and rj present a conflict
(or are conflicting) iff:

ADri ∩ ADrj , ∅
X , Y , and
a ∩ b , ∅

(4)

Intuitively, when an access request matches the
common access domain of ri and rj (ADri ∩ ADrj), we
have contradictory decisions (from X , Y) on common
actions (from a ∩ b , 0).

Example 2.3. Consider the following rules r1 and r2:

• r1: Deny{read}((position; fileType; time) ∈ {Doctor,
Nurse} × {Source, Documentation} × [8:00, 18:00])

• r2: P ermit{read,write}((position; fileType; time) ∈
{Nurse} × {Documentation} × [8:00, 18:00])

r1 and r2 are conflicting, because ADr1 ∩ ADr2 =
Nurse ×Documentation × [8 : 00, 18 : 00] , ∅, while the
action read is permitted by r2 and forbidden by r1. Intu-
itively r1 forbids that nurses read the documentation,
while r2 permits it.

3. Problem Definition and Outline of its Resolution
3.1. Problem Definition
Access control models are concerned with determining
the allowed activities of legitimate users, mediating
attempt by a user to access a resource in a given
system [24, 36]. In this paper, we consider Attribute-
Based Access Control (ABAC) that is widely used
as a generic access control model. Correctness of
an ABAC policy is critical for the security of
the system that uses it, because any error in
ABAC definition may result in violations of security
features (e.g., confidentiality, integrity). In large and
distributed organizations with complex ABAC policies,
deploying and managing an ABAC model to ensure
authorization management might become too complex
and hard to manage. An ABAC policy in distributed
applications may be aggregated from multiple parties
and can be managed by more than one administrator
(distributed management). Therefore, it may contain
several anomalies such as redundancies and conflicts
(see definitions 2.1 and 2.2), which may lead to safety
and availability problems. Moreover, manual inspection
for correctness can be impractical, because of the
huge number of rules and the policies distributed
management [25]. Thus, detecting and resolving
automatically such anomalies is essential to ensure
that an ABAC policy conforms to desired correctness
properties. The problem we aim to solve is formulated
as follows:

Given a policy P defined by a set of rules formulated
as shown in Expression (2) of section 2.1, the objective
is to detect and remove from P : redundancies and
conflicts, which have been formally expressed in
definitions 2.1 and 2.2.

Anomaly detection and resolution is motivated by the
fact that errors in the policy definition may compromise
the system security. Conflicts, if not handled properly,
may lead to inappropriate decisions. As a result,

3 EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

conflicts may lead to safety problems by allowing
unauthorized accesses, and availability problems by
denying authorized accesses. As for redundancies, their
detection and resolution is motivated by the fact that
they affect the performance of the policy execution,
since the response time of a policy to an access request
depends on the number of rules to be parsed in the
policy.

Let P be any security policy and Q be the policy
obtained from P by our detection and resolution
procedure. An understandable requirement is that Q
must be generated from P in a bounded time, i.e.
the procedure does not enter in an infinite loop. A
second natural requirement is that P and Q must
support the same set of access requests. A third obvious
requirement is that Q must be anomaly-free. A fourth
requirement which makes sense is that P and Q must
take the same decision for every access request for
which P is non-conflicting. The fourth requirement is
necessary to avoid the generation of Q that permits
requests that are not permitted by the original policy P .
In the same way, it is necessary to avoid the generation
of Q that denies requests that are not denied by P .
From these requirements, we define correctness of our
detection and resolution method as follows, where the
access domain of a policy P is the union of the access
domains of all the rules of P :

Definition 3.1. Our detection and resolution method (let
us call it M) is said to be correct, if for every policy P
given as input to M and the policy Q obtained by M
from P , the following five conditions are satisfied:

• C1. Q is obtained after a finite number of
iterations.

• C2. P and Q have the same access domain.
• C3. Q is anomaly-free.
• C4. For every access request rq: If P has no rule

permitting rq, then Q has no rule permitting rq.
• C5. For every access request rq: If P has no rule

denying rq, then Q has no rule denying rq.

3.2. Outline of the Method to Detect and Resolve
Anomalies
The suggested method to detect and resolve anomalies
is preceded by two steps: rules extraction, and rules
clustering:

• Rules Extraction: It consists in parsing the policy
in order to recognize and extract its rules. The
extracted rules are expressed with the formulation
2, section 2.1. Recall that we use the three
attribute categories of ABAC: Subject, Resource
and Environment.

• Rule Clustering: To make the detection and
resolution method scalable for policies with a
huge number of rules, we suggest to apply a

clustering method to group similar rules in the
same cluster, based on an adequate similarity
score such that non-similar rules are unlikely
to be redundant or conflicting. The similarity
measure we adopt is presented in our previous
work [1]. We recall that the similarity measure is
a function that assigns a similarity score to any
two given rules ri and rj . Such a score reflects
the degree of similarity between ri and rj , with
respect to their subject, resource and environment
attributes values. We say that two rules ri and
rj are similar if their similarity score is greater
than a given threshold. Its worth noting that the
resulted clusters satisfy two properties: (1) each
cluster contains at least one rule and (2) every rule
is contained in one or more clusters.

After the extraction and clustering of rules, we arrive
at the actual phase of detection and resolution of
anomalies, which is executed within each cluster. The
method is presented in detail in section 4, and its
correctness is formally proved in section 5.

4. Anomalies Detection and Resolution
After constructing clusters of rules, the proposed
anomaly detection and resolution method attempts to
detect and remove anomalies within each cluster. In this
section, we first show how redundancies and conflicts
are detected and resolved between two rules, then
within a set (cluster) of rules.

4.1. Redundancy Detection and resolution between
two rules
The response time of a policy to an access request
depends on the number of rules to be parsed in the
policy [26]. So redundancy (i.e. existence of useless
rules) may affect the performance of a policy, and
hence is treated as an anomaly. Thus, removing
redundancies is considered as one of the effective
solutions for optimizing ABAC policies and improving
the performance in policy decision time.

Given two rules ri=Xa(ADri) and rj=Yb(ADrj), ri is
detected to be redundant to rj if the three conditions
(3) in definition 2.1 are satisfied. The resolution of that
anomaly consists in removing ri .

Example 4.1. Consider the previous example 2.2, where
we have shown that r2 is redundant to r1:

• r1: P ermit{read,write}((position; fileType; time) ∈
{Doctor, Nurse} × {Source, Documentation} ×
[8:00, 18:00])

• r2: P ermit{read}((position; fileType; time) ∈ {Nurse}
× {Documentation} × [8:00, 18:00])

As already explained, redundancy of r2 w.r.t. r1
means that the effect of r2 is included in the effect of

4

M. Ait El Hadj et al.

EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

Formal Approach to Detect and Resolve Anomalies while Clustering ABAC Policies

r1, which implies that r2 is useless in the presence of
r1. That is why, this redundancy is resolved by simply
removing r2 (and keeping r1).

4.2. Conflict Detection and resolution between two
rules
Given two rules ri=Xa(ADri) and rj=Yb(ADrj), ri and rj
are detected to be conflicting if the three conditions
(4) in definition 2.2 are satisfied. Since X , Y , let us
take X=P ermit and Y=Deny. Recall that the intuition
of a conflict between two rules is the existence of access
requests for which the two rules do not agree whether
to permit or deny them. We consider the following two
resolution strategies:

• Permissive resolution: to permit the access
requests for which the two rules disagree. This is
realized by not modifying ri and replacing rj by
the following two rules:

– r ′j = Denyb(ADrj \ ADri)
– r ′′j = Denyb\a(ADri ∩ ADrj)

Intuitively, the unique modification that has been
done is not denying the common actions of ri and rj for
requests matching both ri and rj . It is easy to check that
ri , r ′j and r ′′j are conflict-free with each other.

• Restrictive resolution: to deny the access requests
for which the two rules disagree. This is realized
by not modifying rj and replacing ri by the
following two rules:

– r ′i = P ermita(ADri \ ADrj)
– r ′′i = P ermita\b(ADri ∩ ADrj)

Intuitively, the unique modification that has been
done is not permitting the common actions of ri and
rj for requests matching both ri and rj . As in the
permissive resolution, it is easy to check that r ′i , r

′′
i and

rj are conflict-free with each other.

Example 4.2. Consider the following two rules r1 and r2:

• r1: P ermit{read,write}((position; fileType; time)∈
{Doctor, Nurse} × {Documentation} × [8:00,
18:00])

• r2: Deny{read,create}((position; fileType; time)∈
{Nurse} × {Documentation} × [8:00, 18:00])

The access domains of r1 and r2 are respectively,
ADr1 = {Doctor, Nurse} × {Documentation} × [8:00,
18:00], ADr2 = {Nurse} × {Documentation} × [8:00,
18:00]. Therefore, the common access domains is
ADr1 ∩ ADr2=ADr2 , and the set of common actions
is {read, write} ∩ {read, create} = {read}. r1 and r2 are
conflicting because the three conditions (4) given in

definition 2.2 hold, i.e.: their common access domain
and set of common actions are not empty, while their
decisions are opposite.

The resolution of such conflict is as follows: if we
consider the permissive resolution, r1 is not modified
(because the decision of r1 is P ermit) and r2 is replaced
by the following two rules:

• r ′2=Deny{read,create}((position; fileType; time)∈ ∅),
so this rule is not considered since its access
domain is empty.

• r ′′2 =Deny{create}((position; fileType; time)∈ {Nurse}
× {Documentation} × [8:00, 18:00])

If we consider the restrictive resolution, r2 is not
modified (because the decision of r2 is Deny) and r1 is
replaced by the following two rules:

• r ′1 =P ermit{read,write}((position;fileType;time)∈
{Doctor} × {Documentation} × [8:00, 18:00])

• r ′′1 =P ermit{write}((position;fileType;time)∈ {Nurse}
× {Documentation} × [8:00, 18:00])

4.3. Anomaly detection and resolution in a cluster of
rules
Anomaly detection and resolution in a cluster is an
iterative process that consists in verifying the existence
of anomalies and, if any, in modifying the rules of
the cluster until the set of rules is anomaly-free. The
approach consists in first constructing a graph (N, L),
where N is a set of nodes, and L is a set of edges, where
each edge is defined by a pair of nodes, i.e. L ⊆ N ×N .
Each node represents a rule ri , and each edge (ri , rj)
means that we have to verify if there is an anomaly
between ri and rj , and resolve it, if any. Initially, all
nodes are connected, i.e. L consists of all pairs (ri , rj) ∈
N ×N such that i , j. This is the input of Algorithm
1 which will verify and modify iteratively the graph
until we obtain a graph without edges, which means
that we have obtained an anomaly-free set of rules. At
each iteration of Algorithm 1, the anomaly detection
and resolution is applied to every edge (ri , rj) of L as
explained below:

• If we detect that one of the two rules is redundant
to the other one, then the resolution consists in
removing the redundant rule from N (lines 4-9).

• If a conflict between ri and rj is detected (line 10),
we have seen in subsection 4.2 that there are two
strategies.

• In the permissive resolution (lines 15-22), ri is
not modified and rj is replaced by r ′j and r ′′j .
Therefore, the graph is updated as follows:

1. In the node rj , replace the AD and act of rj
by the AD and act of r ′j .

5 EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

Algorithm 1 Anomaly Detection and Resolution
Require: Graph (N, L): N is a set of nodes (corresponding to rules), L is a set of

edges ⊆ N ×N
Ensure: Set of nodes N (i.e. graph without edge)

1: procedure AnomalyResolution(N, L)
2: while L is not empty do
3: Consider an edge (n1 , n2) of L
4: if n1 and n2 have the same decision (P ermit or Deny) then
5: if all actions of n1 are also actions of n2 then
6: Remove n1 from N
7: else if all actions of n2 are also actions of n1 then
8: Remove n2 from N
9: end if

10: else if n1 and n2 have different decisions and common actions then
11: Let np be the node among n1 and n2 whose decision is P ermit,

and let Ap be its set of actions
12: Let nd be the node among n1 and n2 whose decision is Deny,

and let Ad be its set of actions
13: Let CD be the common access domain of np and nd
14: Let CA be the set of common actions of np and nd
15: if the resolution strategy is permissive then
16: Subtracts CD from the access domain of nd
17: for every node n of N other than np and nd do
18: if L does not contain the edge (nd, n) then
19: Insert the edge (nd, n) in L
20: end if
21: end for
22: Insert in N a new deny node nn whose access domain is CD

and set of actions is Ad \ CA
23: else if the resolution strategy is restrictive then
24: Subtracts CD from the access domain of np
25: for every node n of N other than np and nd do
26: if L does not contain the edge (np, n) then
27: Insert the edge (np, n) in L
28: end if
29: end for
30: Insert in N a new permit node nn whose access domain is

CD and set of actions is Ad \ CA
31: end if
32: for every node n ∈ {np, nd, nn} do
33: if the access domain of n or its set of actions is empty then
34: Remove n from N
35: end if
36: end for
37: if nn has not been removed from N then
38: for every node n of N other than nn do
39: Insert the edge (n, nn) in L
40: end for
41: else if np and nd have not been removed from N then
42: Remove the edge (np, nd) from L
43: end if
44: end if
45: end while
46: return N
47: end procedure

2. Insert a new node in N that contains the AD
and act of r ′′j .

3. Update L by linking r ′j and r ′′j to all the nodes
of the graph, except ri (no link is created
between r ′j and r ′′j).

4. Remove the edge (ri , rj) from L, because
there is no anomaly between them (after the
modification of rj in Point 1).

• In the restrictive resolution (lines 23-30), rj is not
modified and ri is replaced by r ′i and r ′′j . Therefore,
the graph is updated as follows:

1. In the node of ri , replace the AD and act of ri
by the AD and act of r ′i .

2. Create a new node that contains the AD and
act of r ′′i .

3. Update L by linking r ′i and r ′′i to all the nodes
of the graph, except rj (no link is created
between r ′i and r ′′i).

4. Remove the link between the nodes of ri and
rj , because there is no anomaly between them
(after the modification of ri in Point 1).

• If no anomaly is detected between a pair of linked
nodes ri and rj , the resolution algorithm simply
removes the link between ri and rj (lines 41-43).
Also, remove any node whose rule has an empty
access domain or empty set of actions (lines 32-
36).

Example 4.3. Consider a cluster consisting of the
following four rules:

• r1 = P ermit{read,write} ((position; fileType; time)
∈ {Doctor, Nurse} × {Documentation} × [8:00,
18:00])

• r2 = P ermit{read} ((position; fileType; time) ∈
{Nurse} × {Documentation} × [8:00, 18:00])

• r3 = Deny{read,delete} ((position; fileType; time)
∈ {Nurse} × {Source, Documentation} × [8:00,
18:00])

• r4 = Deny{write,create} ((position; fileType; time)
∈ {Nurse} × {Source, Documentation} × [8:00,
18:00])

Since we consider a cluster of four rules, we get the 4-
node and 6-edge as shown in Graph 1 of figure 1. Where
each node represents a rule, and each edge represents
the possibility of the existence of an anomaly.

• First iteration: Let us consider the pair (r1, r2) of
Graph 1. Since ADr2 ⊆ ADr1 and {read} ⊆ {read,
write} thus, r2 is redundant to r1. The resolution
procedure will remove r2 and its edges from
Graph 1. We obtain Graph 2 of figure 1.

• Second iteration: Let us consider the pair (r1,
r3) of Graph 2. Since ADr1 ∩ ADr3= {Nurse}
× {Documentation}× [8:00, 18:00], ∅, a conflict
is detected between r1 and r3. If we use the
permissive resolution, we keep r1 and r3 is
replaced by the following two rules, we then
obtain Graph 3 of figure 1:

Figure 1. Constructed graphs from the cluster presented in
example 4.3

6

M. Ait El Hadj et al.

EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

Formal Approach to Detect and Resolve Anomalies while Clustering ABAC Policies

– r ′3=Deny{read,delete}((position; fileType;
time)∈{Nurse}×{Source}× [8:00, 18:00])

– r ′′3 = Deny{delete}((position; fileType; time) ∈
{Nurse} × {Documentation} × [8:00, 18:00])

• Third iteration: Let us consider the pair (r1,
r4) of Graph 3. Since ADr1 ∩ ADr4 = {Nurse} ×
{Documentation}× [8:00, 18:00]) , ∅, a conflict
is detected between r1 and r4. If we use the
permissive resolution, we keep r1 and r4 is
replaced by the following two rules, we then
obtain Graph 4 of figure 1:

– r ′4 =Deny{write,create}((position; fileType;
time)∈{Nurse}× {Source}× [8:00, 18:00])

– r4′′ = Deny{create}((position; fileType;
time)∈{Nurse} × {Documentation} × [8:00,
18:00])

• Iterations 4 to 7:The connected pairs of Graph 4
are (r ′3, r ′′4), (r ′′3 , r ′4), (r ′3, r ′4) and (r ′′3 , r ′′4). For each
of these pairs, the intersection of access domains
or the intersection of sets of actions is empty.
Therefore, their four links are removed through
the four iterations 4 to 7. We obtain Graph 5 of
figure 1, that has no link. Therefore, the algorithm
terminates.

5. Correctness and Complexity
5.1. Local Correctness
Our detection and resolution procedure generates a
policy Q from P . In step 2 (rule clustering, section
3.2), P is decomposed into several clusters P1, P2, · · · , Pk ,
where for each Pi we apply algorithm 1 to obtain Qi .
Then, all Qi are aggregated to obtain Q. In this section,
we prove correctness of the detection and resolution
method, which is stated by the following theorem.

Theorem 1. Given a policy P = P1, P2, · · · , for each cluster
Pi (i = 1, 2, · · ·), algorithm 1 is correct w.r.t Pi and Qi ,
that is the following conditions C1-C5 are satisfied w.r.t.
each pair (Pi , Qi). More precisely:

• C1. Qi is obtained after a finite number of
iterations.

• C2. Pi and Qi have the same access domain.
• C3. Qi is anomaly-free.
• C4. For every access request rq: If Pi has no rule

permitting rq, then Qi has no rule permitting rq.
• C5. For every access request rq: If Pi has no rule

denying rq, then Qi has no rule denying rq.

In the following, we prove theorem 1.

For each cluster i (i=1, 2, ...), Algorithm 1 proceeds
iteratively, where at each iteration k + 1 (k ≥ 0), a

graph Gi(k + 1) is computed from a graph Gi(k), where
each graph Gi(k) represents a policy noted Pi(k). In
particular, the original graph Gi(0) corresponds to the
original policy Pi , and the final graph Gi(q) corresponds
to the resulting policy Qi obtained after a finite number
q of iterations (finiteness of q comes from C1 which is
proved in section 5.1). Each iteration of Algorithm 1
consists in processing a pair of rules (r1, r2) in one of
the following three cases:

• Case a: there is no anomaly between r1 and r2.

• Case b: there is a redundancy between r1 and r2.

• Case c: there is a conflict between r1 and r2.

We will consider cases a, b and c in the following
proofs.

Proof of condition C1. In an iteration of the algorithm:

• In case a: the link between the two rules is
removed.

• In case b: the redundant rule is removed.

• In case c: one of the two rules (let AD denote
its access domain) is split into two rules (let AD1
and AD2 denote their respective access domains)
such that: AD = AD1 ∪ AD2, AD1 ∩ AD2 = ∅, and
AD1 , ∅ or AD2 , ∅.

We have the following:

1. Case a (resp. b) decreases the number of links
(resp. nodes) of the graph.

2. Case c increments by 1 the number of nodes of the
graph.

3. From 1 and 2 and the fact that the size of Gi(0) is
finite, the size of every Gi(k) is finite.

4. From 1 and 3, we cannot have an infinite number
of consecutive iterations executing cases a and b.

5. The size of the access domain of Pi is finite,
because the domain of each attribute is finite.

6. Case c splits an access domain AD in two disjoint
access domains AD1 and AD2, such that at least
one of the two access domains is nonempty.

7. From 1, 5 and 6, the total number of iterations
executing case c is finite.

8. From 4 and 7, the algorithm executes a sequence
of iterations containing a finite number of cases
c, such that two cases c are separated by a finite
number (possibly 0) of cases a and b. Hence, the
sequence is finite.

In the following, q denotes the finite number of
iterations, i.e. Gi(q) is the graph of the resulting policy
Qi .

7 EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

Proof of condition C2. In iteration k + 1 (for 0 ≤ k < q) of
the algorithm:

• In case a: the algorithm removes a link, without
modifying any rule of the policy. Therefore, Pi(k +
1) and Pi(k) have the same access domain.

• In case b: the algorithm removes a rule whose
access domain is included in another rule of the
policy. Hence, Pi(k + 1) and Pi(k) have the same
access domain.

• In case c: The algorithm replaces a rule whose
access domain is AD by two rules whose access
domains AD1 and AD2 are such that AD = AD1 ∪
AD2. Hence, Pi(k + 1) and Pi(k) have the same
access domain.

Hence, in each iteration k + 1 (k ≥ 0), Pi(k + 1) and
Pi(k) have the same access domain. By applying this
result to all the iterations 1 to q, we obtain that Qi and
Pi have the same access domain.

Proof of condition C3. Consider the following condition
A:
A: For every pair of unlinked rules r1 and r2, there is no

anomaly between r1 and r2.

In iteration k + 1 (for 0 ≤ k < q) of the algorithm:

• In case a: the algorithm removes a link.

• In case b: the redundant rule is removed.

• In case c: let us consider the two resolution
strategies.

– Permissive resolution strategy: r2 is replaced
by r ′2 and r ′′2 which are then linked to all rules
in the graph, except that no link is added
between r1, r ′2 and r ′′2 because there is no
anomaly between them.

– Restrictive resolution strategy: r1 is replaced
by r ′1 and r ′′1 which are then linked to all rules
in the graph, except that no link is added
between r ′1, r ′′1 and r2 because there is no
anomaly between them.

We have the following:

1. In all cases a, b and c, we have not created any pair
of unlinked anomalous rules.

2. From 1, we deduce that if Gi(k) satisfies A, then
Gi(k + 1) satisfies A.

3. Gi(0) satisfies condition A, because all its rules are
linked.

4. From 2 and 3, we deduce that the graph Gi(q) of
Qi satisfies A.

5. From 4 and the fact that Gi(q) has no link, we
deduce that Qi is anomaly-free.

Proof of condition C4. Let us first prove that for any
access request rq : If Gi(k) has no rule permitting rq,
then Gi(k + 1) has no rule permitting rq. Consider an
access request rq and assume that Gi(k) has no rule
permitting rq. In iteration k + 1, for 0 ≤ k < q:

• In case a: Since the resolution consists in removing
a link, no new rule permitting rq is created.

• In case b: Since the resolution consists in removing
a rule, no new rule permitting rq is created in
another rule of the policy. Hence, Pi(k + 1) and
Pi(k) have the same access domain.

• In case c:

– Permissive resolution strategy: Since the res-
olution consists in replacing a deny-rule by
two deny-rules, no new rule permitting rq is
created.

– Restrictive resolution strategy: in iteration
k + 1: A rule r = P ermita(AD) is replaced
by two rules ru = P ermita(AD1) and rv =
P ermitc(AD2), such that AD = AD1 ∪ AD2,
AD1 ∩ AD2 = ∅, and c ⊆ a. It is easy to see
that: r permits rq, if and only if ru or rv
permits rq, hence no new rule permitting rq
is created.

From the fact that Gi(k) has no rule permitting rq
and the fact that no new rule permitting rq is created
in iteration k + 1, we deduce that Gi(k + 1) has no
rule permitting rq. By applying this result to all the
iterations 1 to q, we obtain that if Pi has no rule
permitting rq, then Qi has no rule permitting rq.

Proof of condition C5. The proof of C5 is obtained from
the proof of C4, by just replacing a few words as follows:

• Permit(ting) is replaced by Deny(ing), and vice
versa.

• Permissive is replaced by Restrictive, and vice
versa.

5.2. Correctness
We have proved in section 5.1 that for each i = 1 · · · k:
algorithm 1 satisfies C1-C5 w.r.t Pi and Qi . In this
section, we prove that C1, C2, C4 and C5 are satisfied
w.r.t. (P , Q). Regarding C3, we will prove that it is
satisfied with a high probability. Indeed, C3 is not
satisfied in rare cases due to clustering. The latter is
motivated by the fact that it improves the performance
(as shown by experiment results in section 6).

• Proof of C1 and C2

1. P = {P1, P2, · · · , Pk}, where the access domain
of P is the union of the access domains of all
Pi (i = 1 · · · k).

8

M. Ait El Hadj et al.

EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

Formal Approach to Detect and Resolve Anomalies while Clustering ABAC Policies

2. Q = {Q1, Q2, · · · , Qk}, where the access
domain of Q is the union of the access
domains of all Qi (i = 1 · · · k).

3. For each i = 1 · · · k: Qi satisfies C1 and C2
(section 5.1).

4. From 1,2 and 3, Q is executed in a finite
number of iterations, and have the same
access domain as P . Hence, Q satisfies C1 and
C2.

• Proof that C3 is satisfied in most cases, i.e. Q is
anomaly-free with high probability

1. For each i = 1 · · · k: Qi is anomaly-free
(proved in section 5.1)

2. Given the similarity measures used in the
clustering process [1], the probabilities of
existence of inter-clusters anomalies (i.e.
anomalies between rules of different clus-
ters) are much lower than the probabilities
of existence of intra-cluster anomalies (i.e.
anomalies between rules in the same cluster).
In other words, the probability of not detect-
ing anomalies due to clustering is very small.

3. Consider the case of a rule R of P that is
element of two clusters Pi and Pj . If R is not
modified or removed in the computations of
Qi and Qj , R will be element of Qi and Qj .
However, the grouping process of all the Qi
to obtain Q inserts R only once in Q, and
hence avoids to create a new redundancy in
Q.

4. From 1, 2 and 3, Q satisfies C3 with high
probability.

• Proof of C4

We have proved that for any request rq: if Pi has no
rule permitting rq, then Qi has no rule permitting
rq. Consider an access request rq, and assume that
P has no rule permitting rq.

1. P = {P1, P2, · · · , Pk}, from the fact that P has
no rule permitting rq, we deduce that for
each i = 1 · · · k: Pi has no rule permitting rq.

2. For each i = 1 · · · k: if Pi has no rule
permitting rq, then Qi has no rule permitting
rq.

3. From 1 and 2, we deduce that for each i =
1 · · · k: Qi has no rule permitting rq.

From the fact that Q = {Q1, Q2, · · · , Qk} and the
fact that for each i = 1 · · · k: Qi has no rule
permitting rq, we deduce that Q has no rule
permitting rq.

• Proof of C5

The proof of C5 is obtained from the proof of
C4, by just replacing the word "permitting" by
"denying".

5.3. Complexity of Algorithm 1
We use the following notation:

• n is the size of the policy P , i.e. its number of rules,
• m is the number of attributes used to define the

rules of P ,
• d is the size of the access domain of P ; it is the

product of the domain sizes of all attributes, i.e.
d =

∏m
i=1 |Vatti |.

We have seen in section 5.1 that in each of its
iterations, the algorithm is in one case among three:
case a, case b, or case c. The best situation in terms of
execution time occurs when we first have successively
uniquely case b (redundancy), because it removes one
node and one or more edges, while case a removes
one edge and no node. The worst situation in terms of
execution time occurs when we first have successively
uniquely case c, because it increases the number of
nodes and edges. Hence, the worst case scenario that
leads to a graph without edges should be to have two
phases: phase 1 consists of successive iterations of case
c, and phase 2 consists of successive iterations of case a.

Complexity of phase 1 (successive iterations of case
c):

1. Splitting a set of x elements x − 1 times results in
x singletons.

2. The maximum size of the access domain of any
rule of P is d.

3. From 1 and 2, the number of times where a given
rule of P is split due to case c, is upper-bounded
by d − 1.

4. From 3, if we consider the n rules of P , we obtain
that the number of iterations of case c is upper
bounded by n × (d − 1).

5. From 4 and the fact that case c increments the
number of rules by at most 1, after a series of n ×
(d − 1) cases c, we obtain a policy whose number
of rules is upper-bounded by n × d.

6. From 5, after a series of n × d cases c, we obtain a
policy whose number of edges is upper-bounded
by (n×d)×(n×d−1)

2 which is in O(n2 × d2).
7. The treatment of each iteration of case c consists

mainly in:

• Computing the intersection of the access
domains of two rules, which is in O(d2) from
2.

9 EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

• Adding edges to other nodes, which is in
O(n × d) from 5.

8. From 4 and 7, the complexity of phase 1 (i.e.
the treatment for all iterations of case c) is
in O(n × d(d2 + n × d)) = O(n × d3) + O(n2 × d2) =
O(n × d2(d + n)) = O(n × d2max(d, n)).

Example 5.1. Consider a policy P with 3 rules. Each
rule has two attributes att1 and att2, such that att1 ∈
{v1, v2, v3} and att2 ∈ {v4, v5, v6, v7}. The access domain
size of P is d =

∏2
i=1 |Vatti | = 3 × 4 = 12. The maximum

number of rules that can be obtained after a series of
case c is n × d = 3 × 12 = 36 rules (rules with singleton
access domains).

Complexity of phase 2 (successive iterations of case
a):

1. We have seen that after a series of case c of length
n × (d − 1), we have a graph whose number of
edges is in O(n2 × d2).

2. The effect of case a is to remove an edge.

3. From 1 and 2, the number of iterations of case a is
in O(n2 × d2).

4. The treatment of each iteration consists mainly in
computing the intersection of the access domains
of two rules, which is in O(1), because after the
series of case c in phase 1, the ADs of the rules are
singletons.

5. From 3 and 4, the complexity of phase 2 (i.e.
the treatment for all iterations of case a) is in
O(n2 × d2).

Total complexity (phase 1 + phase 2):
Since the complexity of phase 1 is greater than the

complexity of phase 2, the former is the order of the
total complexity : O(n × d2(max(d, n)). We assume that
attributes are not constant parameters, i.e. |Vatti | ≥ 2, for
every i = 1 · · ·m, which implies d ≥ 2m. Therefore, the
number of attributes has an exponential effect on the
complexity.

6. Experimental Results
To evaluate the suggested approach, we have imple-
mented our method of anomaly detection and resolu-
tion in Algorithm 1 with Java programming language in
the experimental environment indicated in Table 1. We

Table 1. Experimental Environment

OS bits Memory CPU
macOS 64 8G Intel(R)

High Sierra Core(TM) i5-5257U
version 10.13.3 CPU @ 2.70GHz

Figure 2. The number of anomalies in the generated policies

have applied our method to several examples of impor-
tant sizes. We construct a set of ABAC policies (syn-
thetic datasets), composed of the combination of eight
subject attributes, four resource attributes and two
environment attributes. An evaluation on real dataset
would be preferable, however no benchmark has been
published in this area, and real medical data are hard
to obtain because of confidentiality constraints. We have
generated ABAC policies of up to 15000 rules.

Figure 2 illustrates how the numbers of redundancies
and conflicts in the generated policies increase
proportionally with the policy size.

To analyze our results, we have considered the
criterion of total execution time. More precisely, we
have analyzed how the running time is influenced by
the following parameters:

• n: the size of the considered ABAC policy
• The threshold value (see Rule clustering in section

3.2)
• d: the size of access domain

As indicated in section 3.2, our method consists of
three steps: 1) rule extraction, 2) rule clustering, and
3) anomalies detection and resolution. The latter step
consists in executing algorithm 1 in each cluster. Figure
3 shows the sum of running times of algorithm 1 for
all the clusters (for d = 16). Figure 4 shows the total
running time, i.e. the time of figure 3 plus the times
of steps 1 and 2 (for threshold = 0.8 and d = 16). The
curves explicitly show that the running time increases
with the number of policy rules. As depicted in figures
3 and 4, the running time of algorithm 1 represents less
than 7% of the total running time. This percentage is
due to the fact that the time required for the first two
steps (i.e., extraction and clustering) represents more
than 90% of the total running time (higher than the
time required of the last step). The time complexity of
rule extraction is in O(n × d). The time complexity of
rule clustering is in O(n2 × d2), n2 is due to the fact that
in a set of n rules, we have to verify n×(n−1)

2 pairs of
rules. d2 is due to the fact that when verifying a pair

10

M. Ait El Hadj et al.

EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

Formal Approach to Detect and Resolve Anomalies while Clustering ABAC Policies

Figure 3. Running time of Algorithm 1 Figure 4. Total running time

Figure 5. Running time vs. Access Domain Figure 6. Running time vs. threshold

of rules ri and rj in order to classify them, we compute
their similarity score, this latter is mainly based on
comparing access domain of ri and rj . Therefore, the
time complexity of steps 1 and 2 is in O(n2 × d2).
Anomalies detection and resolution is executed in each
cluster, where the number of rules in each cluster is
less than n (the time complexity of step 3 is given in
subsection 5.3). Moreover, a cluster may contain only
one rule, thus the time required for anomalies detection
and resolution in that cluster is 0. Therefore, the time
required for step 3 is less than the time required for
steps 1 and 2.

Figure 5 shows the total running time as a function
of the size of access domain d =

∏m
i=1 |Vatti | (for n =

3000 and threshold = 0.8). Each rule is composed of
eight attributes (i.e., m = 8), and for each attribute we
considered |Vatti |= 1, 2, 3, 4 and 5. The obtained curve
demonstrates the impact of the access domain sizes (i.e.,
1, 28, 38, 48 and 58) on the performance (running time).
The obtained results are justified in subsection 5.3 by
an evaluation of the time complexity.

The threshold used in the clustering algorithm
influences the result of clustering [21, 22] (i.e. the
number of clusters) which in turn influences the
results of the execution time of algorithm 1 (in all
the clusters). Figure 6 shows the total running time
based on different thresholds for the same policy (for

n = 1000 and d = 16). The obtained curve demonstrates
the impact of the threshold values (i.e., 0, 0.5, 0.6,
0.7, 0.8 and 0.9.) on the performance (running time).
The obtained results can be explained by the fact
that when the threshold decreases, the sizes of the
obtained clusters increase, and hence the running time
also increases. In the extreme case where threshold =
0 (i.e., similar to applying our method on the whole
set of rules without clustering), we obtain the worst
running time. These results demonstrate the time
gained from using clustering. The threshold impact
becomes negligible from the value 0.7. On the average,
the best running time is obtained from the threshold
0.8. Thus, the default value of the selected threshold for
our experiments is set to 0.8.

7. Related Work and Contributions
Attribute-based access control (ABAC) policies support
fine-grained access control. Therefore, they are more
flexible in governing the access to information and
resources in a variety of applications including web
services [20, 33], Cloud Computing [10, 28, 31]
collaborative environment [23, 32], Internet Of Things
[39–41] and so on. Attribute-based policies regulate
users requests based on set of conditions related to
the requestors and the demanded resources. However,
ABAC policies are often complex and conflict prone.

11 EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

In an ABAC policy, multiple rules may overlap,
which means one access request may match several
rules with the same effect. Moreover, multiple rules,
with conflicting access decisions, may match the
same request. These kinds of anomalies may lead
to both: safety problems (allowing unauthorized
accesses) and availability problems (denying an access
in emergencies). Therefore, detecting and resolving
anomalies is an important aspect of dealing with ABAC
policies.

Khoumsi et al. [11] categorize the anomalies into
two categories: a conflicting anomaly and an non-
conflicting anomaly. The first category occurs when
a request matches several rules that have different
actions (conflicts). Whereas, the second occurs when
the same request matches several rules that have the
same action (redundancies). On the other hand, Moffett
et al. [13] have defined conflict by three synonyms:
difference, disagreement and opposition. Where they have
categorized a conflict into: conflict of modality, conflict
between imperative and authority policy, conflict of
duties and conflict of priorities.

eXtensible Access Control Markup Language
(XACML) [3] is the most convenient way to express
ABAC policies. XACML defines an XML schema that
supports the ABAC model. In fact, an XACML policy
in distributed applications may be aggregated from
multiple parties and can be managed by more than
one administrator [8] which may arise anomalies
between rules. Various research efforts have been
devoted to anomaly detection of XACML policies
using verification techniques [8, 15, 16, 18, 29, 34].
The most important policy analysis techniques and
formal approaches are presented by [37]. For instance,
Mourad et al. [15] use the Unified Modelling Language
(UML) to detect conflicting and redundant rules
prior to their enforcement in the system. Ramli et al.
[16] uses Answer Set Programming (ASP) to detect
incompleteness, conflicting and unreachability XACML
Policies. Although, this approach has some limitation
in modeling XACML dealing with types of attributes
which do not belong to Ansprolog, such as strings.
Martin et al. [18] encode the policy rules in Coq [5]
with two fields, The first field is the rule effect and the
second field combines the four elements of XACML:
"subject-resource-action-condition" referred as srac.
If two rules have identical srac with different effects,
a conflict is detected. Otherwise, if the effects are
similar, then a redundancy in detected. On the other
hand, [8, 37] consider representing XACML policies
as decision trees to detect and resolve conflicts and
redundancies. Another representation of XACML
policies was proposed by [19]. it represents the
XACML using Prolog which uses constraint logic
programming techniques (CLP), which are well-
adapted to hierarchical XACML policy logic and avoid

pair-wise comparisons altogether by taking advantage
of Prolog’s built-in powerful indexing system. In
addition, the authors in [34] consider SAT modulo
theories (SMT) [27] as the underlying reasoning
method for the analysis of XACML policies.

The resolution of anomalies was already handled
by XACML itself. in fact, XACML offers a set of
Rule Combining Algorithms (RCA) to overcome the
issue of conflicting rules: Deny-Overrides, Permit-
Overrides, First Applicable and Only-One-Applicable.
For instance, deny-overrides returns deny if one of
the conflicting policies evaluates to deny. Otherwise,
the result is permit [30]. However, The RCAs need
to be defined manually and at a priory stages by
the policy administration. Moreover, only one RCA
can be applied to all kinds of detected anomalies.
Therefore, this technique remains static and can
not be applied to distributed and dynamic systems.
Therefore, several research efforts [9, 12, 14] have been
addressed for dynamic anomaly resolution strategies.
For instance, Kagal et al. [9] have considered the low
priority technique to resolve the conflict, i.e. negative
authorizations are allowed. When Matteucci et al. [12]
have proposed a strategy for policy conflict resolution
based on multi-criteria decision. Where the decision is
taken based on some calculations of multiple criteria
retrieved from the policies’ attributes and represented
in a matrix. In addition, Bauer et al. [4] adopted a data-
mining technique to remove inconsistencies occurring
between access control policies and user’s intentions.
In contrast, our proposed method detects and resolves
anomalies within ABAC policies caused by overlapping
relations (i.e., the intersection of access domains).

With respect to the solutions proposed in the papers
mentioned above, our approach aims at defining a
generic strategy for anomaly detection and resolution.
First of all, our approach to detect and resolve
anomalies within ABAC policies takes into account
a large set of rules and attributes. To make the
suggested method scalable with the huge number of
rules, it proposes decomposing the policy into clusters
of rules. Where the anomaly detection and resolution
method is performed in each cluster of rules, instead
of the whole policy set, which implies less processing
time. The proposed approach is mainly based on the
concept of rule access domain. The main advantage
of the suggested approach is guaranteeing that the
semantics of the original policy is preserved (the proof
is presented in section 5). This is done by decomposing a
given rule into access domains, based on this technique,
we identify accurately the domain of conflict. Therefore,
apply the resolution only to that domain by rewriting
the conflicting rules. Furthermore, we consider two
types of resolution strategies: restrictive resolution,
where we permit less actions and deny more actions;

12

M. Ait El Hadj et al.

EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

Formal Approach to Detect and Resolve Anomalies while Clustering ABAC Policies

and permissive resolution, where we permit more
actions and deny less actions.

8. Conclusion

We have presented a formal method that detects and
resolves anomalies in ABAC policies. The suggested
method uses a concept called access domain, which is
used to accurately identify and resolve effectively policy
anomalies. To make the suggested method flexible with
scalable policies, the proposed approach is preceded
by rules extraction and rules clustering. Where the
policy is decomposed into several clusters of rules, and
then the method is applied to each cluster. Besides, we
consider two types of resolutions, permissive resolution
and restrictive resolution. An important advantage
of the suggested approach is guaranteeing that the
semantics of the original policy is preserved. We have
proved the correctness of the method and evaluate
its computational complexity. Furthermore, we have
proposed the method while providing an algorithm that
was implemented and experimented.

As future work, we already started implementing
a parallel version of the proposed approach using
MapReduce technique, in order to improve the running
time. We also aim to conduct a real case study and
automate the procedure through lessons learned.

References
[1] M. Ait El Hadj, M. Ayache, Y. Benkaouz, A. Khoumsi, and

M. Erradi (ICETE 2017) Clustering-based Approach for
Anomaly Detection in XACML Policies. the 14th Interna-
tional Joint Conference on e-Business and Telecommuni-
cation. Volume 4: SECRYPT. pp.548-553.

[2] El Hadj, M.A., Benkaouz, Y., Khoumsi, A. and Erradi,
M., 2017, December. Access Domain-Based Approach for
Anomaly Detection and Resolution in XACML Policies. In
International Conference on Innovations in Bio-Inspired
Computing and Applications (pp. 298-308). Springer,
Cham.

[3] Anderson, A., Nadalin, A., Parducci, B., Engovatov, D.,
Lockhart, H., Kudo, M., Humenn, P., Godik, S., Anderson,
S., Crocker, S. and Moses, T., 2003. Extensible Access
Control Markup Language (XACML) version 1.0. OASIS.

[4] Bauer, L., Garriss, S. and Reiter, M.K., 2011. Detecting
and resolving policy misconfigurations in access-control
systems. ACM Transactions on Information and System
Security (TISSEC), 14(1), p.2.

[5] Blanqui, F., 2013. Introduction to the coq proof assistant.
Lecture notes available on https://who. rocq. inria.
fr/Frederic. Blanqui.

[6] Bonatti, P.A. and Samarati, P., 2002. A uniform framework
for regulating service access and information release on
the web. Journal of Computer Security, 10(3), pp.241-271.

[7] Chandola, V., Banerjee, A. and Kumar, V., 2009. Anomaly
detection: A survey. ACM computing surveys (CSUR),
41(3), p.15.

[8] Hu, H., Ahn, G.J. and Kulkarni, K., 2013. Discovery and
resolution of anomalies in web access control policies.
IEEE transactions on dependable and secure computing,
p.1.

[9] Kagal, L., Finin, T. and Joshi, A., 2003, October. A policy
based approach to security for the semantic web. In
International semantic web conference (pp. 402-418).
Springer, Berlin, Heidelberg.

[10] Khan, A.R., 2012. Access control in cloud computing
environment. ARPN Journal of Engineering and Applied
Sciences, 7(5), pp.613-615.

[11] Khoumsi, A., Erradi, M. and Krombi, W., 2016. A formal
basis for the design and analysis of firewall security
policies. Journal of King Saud University-Computer and
Information Sciences.

[12] Matteucci, I., Mori, P. and Petrocchi, M., 2013.
Prioritized execution of privacy policies. In Data Privacy
Management and Autonomous Spontaneous Security (pp.
133-145). Springer, Berlin, Heidelberg.

[13] Moffett, J.D. and Sloman, M.S., 1994. Policy conflict
analysis in distributed system management. Journal of
Organizational Computing and Electronic Commerce,
4(1), pp.1-22.

[14] Mohan, A. and Blough, D.M., 2010, April. An attribute-
based authorization policy framework with dynamic
conflict resolution. In Proceedings of the 9th Symposium
on Identity and Trust on the Internet (pp. 37-50). ACM.

[15] Mourad, A., Tout, H., Talhi, C., Otrok, H. and Yahyaoui,
H., 2016. From model-driven specification to design-
level set-based analysis of XACML policies. Computers &
Electrical Engineering, 52, pp.65-79.

[16] Ramli, C.D.P.K., 2015. Detecting incompleteness, con-
flicting and unreachability xacml policies using answer
set programming. arXiv preprint arXiv:1503.02732.

[17] Shu, C.C., Yang, E.Y. and Arenas, A.E., 2009, July.
Detecting conflicts in ABAC policies with rule-reduction
and binary-search techniques. In IEEE International
Symposium on Policies for Distributed Systems and
Networks (pp. 182-185). IEEE.

[18] St-Martin, M. and Felty, A.P., 2016, January. A verified
algorithm for detecting conflicts in XACML access
control rules. In Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs (pp. 166-
175). ACM.

[19] Stepien, B. and Felty, A., 2016, August. Using Expert
Systems to Statically Detect" Dynamic" Conflicts in
XACML. In 2016 11th International Conference on
Availability, Reliability and Security (ARES) (pp. 127-
136). IEEE.

[20] Yuan, E. and Tong, J., 2005, July. Attributed based
access control (ABAC) for web services. In Web Services,
2005. ICWS 2005. Proceedings. 2005 IEEE International
Conference on. IEEE.

[21] Lin, D., Rao, P., Ferrini, R., Bertino, E. and Lobo, J., 2013.
A similarity measure for comparing XACML policies.
IEEE Transactions on Knowledge and Data Engineering,
25(9), pp.1946-1959.

[22] Guo, S., 2014. Analysis and evaluation of similarity
metrics in collaborative filtering recommender system.

[23] Jha, S., Sural, S., Atluri, V. and Vaidya, J., 2016,
November. An administrative model for collaborative

13 EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

management of abac systems and its security analysis. In
Collaboration and Internet Computing (CIC), 2016 IEEE
2nd International Conference on (pp. 64-73). IEEE.

[24] Samarati, P. and de Vimercati, S.C., 2000, September.
Access control: Policies, models, and mechanisms. In
International School on Foundations of Security Analysis
and Design (pp. 137-196). Springer, Berlin, Heidelberg.

[25] Yang, P., Gofman, M.I., Stoller, S.D. and Yang, Z.,
2015. Policy analysis for administrative role based
access control without separate administration. Journal of
Computer Security, 23(1), pp.1-29.

[26] Hu, H., Ahn, G.J. and Kulkarni, K., 2011, June. Anomaly
discovery and resolution in web access control policies.
In Proceedings of the 16th ACM symposium on Access
control models and technologies (pp. 165-174). ACM.

[27] Barrett, C. and Tinelli, C., 2018. Satisfiability modulo
theories. In Handbook of Model Checking (pp. 305-343).
Springer, Cham.

[28] Younis, Y.A., Kifayat, K. and Merabti, M., 2014. An
access control model for cloud computing. Journal of
Information Security and Applications, 19(1), pp.45-60.

[29] Zhang, A., Ji, C., Bao, Y. and Li, X., 2017. Conflict
analysis and detection based on model checking for
spatial access control policy. Tsinghua Science and
Technology, 22(5), pp.478-488.

[30] Moses, T., 2005. Extensible access control markup
language (xacml) version 2.0. Oasis Standard.

[31] Riad, K., Yan, Z., Hu, H. and Ahn, G.J., 2015,
October. AR-ABAC: a new attribute based access control
model supporting attribute-rules for cloud computing.
In 2015 IEEE Conference on Collaboration and Internet
Computing (CIC) (pp. 28-35). IEEE.

[32] John, J.C., Sural, S. and Gupta, A., 2016, July.
Authorization Management in Multi-cloud Collaboration
Using Attribute-Based Access Control. In Parallel and
Distributed Computing (ISPDC), 2016 15th International
Symposium on (pp. 190-195). IEEE.

[33] Hemdi, M. and Deters, R., 2016, October. Using REST
based protocol to enable ABAC within IoT systems.

In Information Technology, Electronics and Mobile
Communication Conference (IEMCON), 2016 IEEE 7th
Annual (pp. 1-7). IEEE.

[34] Turkmen, F., den Hartog, J., Ranise, S. and Zannone, N.,
2015, April. Analysis of XACML policies with SMT. In
International Conference on Principles of Security and
Trust (pp. 115-134). Springer, Berlin, Heidelberg.

[35] Chandola, V., Banerjee, A. and Kumar, V., 2012.
Anomaly detection for discrete sequences: A survey. IEEE
Transactions on Knowledge and Data Engineering, 24(5),
pp.823-839.

[36] Karp, A.H., Haury, H. and Davis, M.H., 2009. From
ABAC to ZBAC: the evolution of access control models.
Hewlett-Packard Development Company, LP, 21.

[37] Shaikh, R.A., Adi, K. and Logrippo, L., 2017. A data
classification method for inconsistency and incomplete-
ness detection in access control policy sets. International
Journal of Information Security, 16(1), pp.91-113.

[38] Karafili, E., Pipes, S. and Lupu, E.C., 2017, August.
Verification techniques for policy based systems. In 2017
IEEE SmartWorld, Ubiquitous Intelligence & Comput-
ing, Advanced & Trusted Computed, Scalable Comput-
ing & Communications, Cloud & Big Data Computing,
Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1-
6). IEEE.

[39] Qiu, J., Du, C., Su, S., Zuo, Q. and Tian, Z., 2018. A
Survey on Access Control in the Age of IoT.

[40] Neto, A.L.M., Pereira, Y.L., Souza, A.L., Cunha, I. and
Oliveira, L.B., 2018, April. Attributed-based authenti-
cation and access control for IoT home devices: demo
abstract. In Proceedings of the 17th ACM/IEEE Interna-
tional Conference on Information Processing in Sensor
Networks (pp. 112-113). IEEE Press.

[41] Bezawada, B., Haefner, K. and Ray, I., 2018, March.
Securing Home IoT Environments with Attribute-Based
Access Control. In Proceedings of the Third ACM
Workshop on Attribute-Based Access Control (pp. 43-53).
ACM.

14

M. Ait El Hadj et al.

EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e3

	1 Introduction
	2 Formal Definitions of Security Rules & Anomalies
	2.1 Formal Definition of a Security Rule and its Access Domain
	2.2 Formal Definitions of the Considered Anomalies

	3 Problem Definition and Outline of its Resolution
	3.1 Problem Definition
	3.2 Outline of the Method to Detect and Resolve Anomalies

	4 Anomalies Detection and Resolution
	4.1 Redundancy Detection and resolution between two rules
	4.2 Conflict Detection and resolution between two rules
	4.3 Anomaly detection and resolution in a cluster of rules

	5 Correctness and Complexity
	5.1 Local Correctness
	Proof of condition C1
	Proof of condition C2
	Proof of condition C3
	Proof of condition C4
	Proof of condition C5

	5.2 Correctness
	5.3 Complexity of Algorithm 1

	6 Experimental Results
	7 Related Work and Contributions
	8 Conclusion

