
Using CNN for Encoder Optimization in H.265/HEVC

1Ying Xie, 1Ming Yang, 2Jian Yu, 1Wenchan Jiang, 3Luguo Hao

1College of Computing and Software Engineering, Kennesaw State University, Marietta, GA 30060, USA
{yxie2, mingyang, wjiang6}@kennesaw.edu

2School of Computer Science and Technology, Tianjin University, Tianjin 300072, China
yujian@tju.edu.cn

3College of Information Engineering, Guangdong University of Technology, Guangzhou, China
haoluguo@gmail.com

Abstract

In this work-in-progress paper, we proposed using
deep learning techniques, especially the deep
Convolutional Neural Network (CNN) to perform critical
tasks of video ending within the framework of
H.265/HEVC. Deep CNNs have achieved break-through
improvements on image recognition tasks such as image
classifications, object identifications, and image
annotations. However, very few work has been done in
applying deep CNN to video encoding. In order to take
advantage of the significant capabilities of deep CNN on
image content detection, we proposed using deep CNN as
the primary technique to perform critical tasks in video
encoding that are relevant to the contents of one or multiple
video frames. More specifically, we designed deep CNNs
for the following tasks in H.265/HEVC encoder:
partitioning CTU to CUs; partitioning CU to PUs;
performing intra prediction; and performing inter
predictions.

Keywords
Deep Learning, Deep CNN, H.265, HEVC, Video
Encoding.

1. Introduction

Video coding techniques have been there for decades
to enable storage and transmission of digital video contents
with limited storage space and transmission bandwidth. The
past video coding standards, such as H.263, MPEG-2,
H.264, have adopted the hybrid coding architecture which
utilized block coding, intra prediction, motion estimation,

transformation, and entropy coding to achieve high level of
compression efficiency. The latest video coding standard,
H.265/HEVC, has inherited such type of hybrid coding
architecture. It had made improvements in each of the
coding modules and overall it has achieved 50%
compression performance gain, compared to H.264-AVC.

H.265/HEVC has adopted a more flexible blocking
strategy, a more sophisticated data structure, more choices
on intra-prediction modes, and other advanced techniques
to achieve the above performance goal. The tradeoff is
more intensive computation, which hinders its penetration
to real-time streaming/transmission applications scenarios
at current stage. Many coding decisions have to be made
real-time during coding process, such as blocking (CTU-
CU, CU-PU, CU-TU), prediction mode decision (intra-
mode vs. inter mode), prediction direction decision in intra-
prediction.

All these decisions are dependent on the contents of
the video frames and making such decisions often times
require exhaustive search if Rate-Distortion Optimization
(RDO) is needed. In real-time streaming, exhaustive search
is impossible and these decisions need to be made as fast as
possible. In recent years, Convolutional Neural Network
(CNN) has made great advances in the analysis and
recognition of image/video contents. Thus, it is natural to
apply trained CNNs to perform the above mentioned
coding decision making process to largely speed up the
coding process of H.265/HEVC and make it feasible for
real-time coding and streaming applications. In the
following sections, the proposed ideas will be discussed in
greater details.

2. Literature Review
A novel fast Coding Tree Unit partitioning for

HEVC/H.265 encoder was proposed in [1]. This method
does not require any pre-training and provides a high
adaptivity to the dynamic changes in video contents relied
on run-time trained neural networks for fast Coding Units
splitting decisions.

Paper [2] proposed a machine learning based approach
for fast CU partition decision using features that describe
CU statistics and sub-CU homogeneity. The proposed
scheme was implemented as a "preprocessing" module on
top of the Screen Content Coding reference software.

In [3], a fast convolutional-neural-network based
quantization strategy for HEVC was proposed. Local
artifact visibility is predicted via a network trained on data
derived from an improved contrast gain control model.
Further-more, a structural facilitation model was proposed
to capture effects of recognizable structures on distortion
visibility via the contrast gain control model.

Liu et al. ([4] [5]) devised a convolution neural
network based fast algorithm to decrease no less than two
CU partition modes in each CTU for full rate-distortion
optimization (RDO) processing, thereby reducing the
encoder’s hardware complexity. As their algorithm does
not depend on the correlations among CU depths or
spatially nearby CUs, it was friendly to the parallel
processing and did not deteriorate the rhythm of RDO
pipelining.

In another study, Chen et al. [6] proposed a fast coding
unit (CU) depth decision algorithm for intra coding of
HEVC using an artificial neural network (ANN) and a
support vector machine (SVM). Machine learning provided
a systematic approach for developing a fast algorithm for
early CU splitting or termination to reduce intra coding
computational complexity.

Compared with existing efforts that applied machine
learning in video encoding, our proposal has the following
two unique features: 1) trying to take advantages of
superiority of the-state-of-the-art deep CNN technology on
image content detection to enhance content-based video
encoding; 2) trying to use deep CNN as the primary
technique for multiple content-relevant tasks in video
encoding within the framework of H.265/HEVC.

3. Using CNN to Divide CTU into CUs

Coding Tree Unit (CTU) is the basic logic unit of the
H. 265/HEVC standard and replaces macroblocks that were
used in the previous standards. CTUs can be 16x16,
32x32, or 64x64 pixels in size. Larger size of CTU
typically increase video encoding efficiency [7][8],
especially for higher-resolution pictures. Each CTU can be
partitioned recursively into coding unit (CU). The smallest
CU can be 8X8. A CTU can be one CU or partitioned into
4 equal-size CU. Each CU that is larger than 8x8 can be
remaining as one or further partitioned into 4 equal size
CU. A quadtree structure can be used to represent the
partition of a CTU into CUs, as shown in figure 1. Given a
CTU with size of 64x64, instead of recursively determine
the partition by following the quadtree, we propose
designing a CNN to quickly determine the final partition
for the CTU.

Figure 1. A Quadtree Structure Representing the
Partition of A CTU into CUs [7]

3.1 The Architecture of the Deep NN for Partitioning
CTUs

The abstract architecture of deep NN for partitioning a
CTU can be illustrated in Figure 2. The input is each 64x64
CTU. Each CTU is fed into a CNN with multiple layers.
On top of CNN is the full connected layers with softmax
outputting the probability that the input CTU belong to
each of partitioning types.

Figure 2. The abstract structure of the deep NN for
partitioning CTUs

CNN FC w.
SoftMax

64x64
CTU

Based on the quadtree, there are totally 174+1=83522
different possible partitions for a 64x64 CTU. This large
number of possibilities leads to the same number of outputs
at the Softmax layer, which makes training this deep NN
inefficient. One possible solution is that configure each
CTU to be the size of 32x32 instead of 64x64. However,
this simplified configuration compromises the merit that
H.265/HEVC allows larger size of CTU for more efficient
encoding. Therefore, our solution is that separating the
participating into two steps. The first step uses a deep NN
to determine a 64x64 CTU needs to be split or not. If so,
then the second step is to split the 64x64 CTU into four
32x32 CTUs, and feed each one of them into another deep
NN with the same structure as shown in figure 2 to
determine its partitioning type. Not only the two-step
approach is consistent with H.265/HEVC on the maximum
size of CTU, but also reduce the number of 32x32 CTUs
that need to be fed into the deep NN by the filtering process
of the first step.

With respect to the design of the CNN component in
the deep NN as shown in Figure 2, we consider the state-of-
the-art CNN designs, including AlexNet[9], ZF Net[10],
VGG [11], GoogleNet [12], and ResNet [13]. We feel that
ResNet would be the one that fits our purpose well for the
following reasons. First of all, it won ILSVRC 2015 with
an incredible error rate of 3.6% using a revolution of depth
of 152 layers. Secondly, it incorporated the effective deep
residual learning strategy in its design. Thirdly, all filters
that ResNet uses have the fixed small size 3x3, which fit
the size of the input CTU (64x64 or 32x32) very well.
Therefore, the CNN component in figure 2 will be replaced
by a ResNet as shown in Figure 3. The depth of ResNet
will be determined by experimental studies.

Figure 3. A Sample ResNet [13]

Since a 64X64 conceptual CTU maps to one 64x64
Luma CTB and two 32x32 Chroma CTB, the real inputs of
the deep NN for CTU partitioning should be one 64x64
Luma CTB and two 32x32 Chroma CTB. Therefore the

final design of the deep NN for CTU partitioning will be as
follows

b) Stage 2: if a 64x64 CTU is determined to be partitioned
in stage 1, then stage 2 determines how each of its
32x32 subarea is partitioned.

Figure 4. The architecture of deep NN for partitioning
a 64x64 CTU

3.2 Generating Training Data

Generating a large number of training data to train the
deep NNs described in 3.1 is a big challenge. We propose
a method that uses H.265 reference software to process a
large number of different videos offline in order to generate
training data sets. More specifically, we configure the
reference software by setting the CTU size to be 64x64,
and then output the partition information for each CTU.
From the outputs, we extract information to form two
training sets. First, for each 64x64 CTU, identify it is
partitioned or not. Second, for each 64x64 CTU that is
partitioned, extract one of the 17 parturition types for each
of its four 32x32 sub-regions. Using the H.265 reference
software to partition CTUs is a time consuming process,
which is also one of the primary motivations of our
proposal of using deep NN for online CTU partitions.

64x64 Luma
CTB

32x32
Chroma

CTB

FC w.
SoftMa

x

Partitioning

Not
Partitioning

a) Stage 1: determining if a 64x64 CTU needs
further partitioning

32x32
Luma CTB

16x16
Chr

FC w.
SoftMa

x
17 partitioning types

ResNet

ResNet

ResNet

ResNet

4. Using CNN to Divide CU into PUs

Through the partitions of CTU, we obtain CUs with
the following possible sizes: 64x64, 32x32, 16x16, or 8x8.
Now for each CU, we need to determine its prediction type
(inter prediction or intra prediction) and further partition it
to prediction units (PU) based on its prediction type. By
following the similar idea that is described in section 3, we
apply deep NN to output both the prediction type of CU
and its partition to PUs. Figure 5 shows our design of deep
NN to partition a CU with size of 2Nx2N into PUs. N can
be one of the following values: 32, 16, 8, and 4. We need to
have a deep NN as follows for each N value.

Figure 5. The architecture of deep NN for partitioning
a 2Nx2N CU into Pus

5. Using CNN to Perform Intra Prediction

Given a PU that is determined to be of intra prediction
by the deep NN described in section 4, we need to further
determine its prediction mode. H.265/HEVC allows 35
intra prediction modes as shown in figure 6 (a). The
decision on which prediction mode to use for the given PU
depends on not only the block that this PU refers to, but
also its neighboring blocks as the A, B, C, D and E blocks
shown in figure 6(b). We design the following NN as
shown in figure 7 to make the decision on prediction model
for a given PU.

Figure 6. Illustration of Intra Prediction Modes [7]

Figure 7. The architecture of deep NN for determine the
intra prediction mode for a PU

The input of the deep NN is an NxN PU and the output
is the probabilities that this PU belongs to each of the 35
partitioning modes. An embedded vector is first generated
for the input PU by the deep CNN. Then the embedded
vector and the PU’s neighbor blocks A, B, C, D, and E are
fed into a fully connected NN with softmax as the output.
For each possible N value, including 4, 8, 16, 32, and 64,
we need to have such an NN as illustrated in Figure 7.

6. Using CNN to Perform Inter Prediction

Given a PU that is determined to be of inter prediction,
the in5er prediction process needs to find a block that is
most similar to the block that this PU refers to in reference
frames. The most accurate approach is to perform a full
search in all reference frames. However, full search is
obviously very time consuming. Therefore, different fast
search strategies have been used in real applications. In this
section, we propose a deep NN approach to directly output
the candidate block in a given reference frame. As
illustrated in Figure 8, the input of this NN is the PU and a
reference frame. The top layers of this NN is a fully
connected regression network that output two values

2Nx2N Luma
CB

NxN
Chroma

CB

FC w.
SoftMa

x

Intra
Prediction

Inter
Prediction

Embedding
Vector

A

B

C

D

E

FC w.
SoftMa

x

35 prediction
modes NxN PU

ResNet

ResNet

ResNet

representing the x coordinate and y coordinate of the
candidate block in the reference frame. Once obtaining the
candidate block from each reference frame through the NN,
we simply compare each of the candidate blocks with the
block referred by the PU and choose the most similar one
for further motion estimation.

Figure 8. The architecture of deep NN for inter
prediction

7. Discussion and Future Work

In this paper, we investigated the possibilities of using
deep NN as the primary technique for efficient video
encoding in H.265/HEVC. We proposed several deep NN
designs for the following tasks in video encoding:
partitioning CTU to CUs; partitioning CU to PUs;
performing intra prediction; and performing inter
predictions. One of the biggest challenges for using deep
NN for video encoding is to generate large enough training
data for training the designed deep NN models. Our
suggested solution to this challenge is using the H.265
reference software to create the most optimized outputs for
each of the above tasks, based on which training data can
be extracted. Our next step is to conduct large-scale
experimental studies on the proposed deep NN designs and
refine the designs based on the experimental results.

REFERENCES

[1] Svetislav Momcilovic, Nuno Roma, Leonel Sousa, Run-
time machine learning for H.265/HEVC fast partitioning
decision, IEEE International Symposium on Multimedia,
2015, pp347-350

[2] Fanyi Duanmu, Zhan Ma, and Yao Wang, Fast CU partition
decision using machine learning for screen content
compression, IEEE International Conference on Image
Processing (ICIP), 2015, pp4972-4976

[3] Md Mushfiqul Alam, Tuan D. Nguyen, Martin T. Hagan,
and Damon M. Chandler, A perceptual quantization strategy
for HEVC based on a convolutional neural network trained
on natural images, SPIE Applications of Digital Image
Processing XXXVIII, Sept. 2015, doi: 10.1117/12.2188913

[4] Zhenyu Liu, Xiaoyu Yu, Yuan Gao, Shaolin Chen,
Xiangyang Ji, and Dongsheng Wang, CU partition mode
decision for HEVC hardwired intra encoder using
convolution neural network, IEEE Transactions on Image
Processing, Vol. 25, No. 11, Nov. 2016, pp5088-5103

[5] Zhenyu Liu, Xianyu Yu, Shaolin Chen, Dongsheng Wang,
CNN oriented fast HEVC intra CU mode decision, IEEE
International Symposium on Circuits and Systems (ISCAS),
2016, pp2270-2273

[6] Zong-Yi Chen, Jiunn-Tsair Fang, Yen-Chun Liu, and Pao-
Chi Chang, Machine learning-based fast intra coding unit
depth decision for High Efficiency Video Coding, Journal of
Information Science and Engineering 32, 2016, pp1289-
1299

[7] Gary J. Sullivan; Jens-Rainer Ohm; Woo-Jin Han; Thomas
Wiegand, Overview of the high efficiency video coding
(HEVC) standard, IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 22(12), 2012, pp.
1649-1668.

[8] Jens-Rainer Ohm, Gary J. Sullivan; Heiko Schwarz; Thiow
Keng Tan; Thomas Wiegand, Comparison of the coding
efficiency of video coding standards – including high
efficiency video coding (HEVC), IEEE Transactions on
Circuits and Systems for Video Technology, Vol. 22(12),
2012, pp. 1669-1684.

[9] Alex Krizhevsky, Ilya Sutskever, Geoffery E. Hinton,
Imagenet classification with deep convolutional neural
networks, Advances in Nerual Information Processing
Systems (NIPS), 2012

[10] Karen Simonyan, Andrew Zisserman, Very deep
convolutional networks for large-scale image recognition,
arXiv: 1409.1556, 2014.

[11] Matthew D Zeiler, Rob Fergus, Visualizing and
understanding convolutional networks, arXiv:1311.2901,
2013.

[12] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, Andrew Rabinovich, Going deeper with
convolutions, arXiv:1409.4842, 2014

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep
residual learning for image recognition, arXiv:1512.03385,
2015

PU

Reference
Frame

FC
Regression

NN

ResNet

ResNet

