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Abstract 

In this work-in-progress paper, we proposed using 
deep learning techniques, especially the deep 
Convolutional Neural Network (CNN) to perform critical 
tasks of video ending within the framework of 
H.265/HEVC.  Deep CNNs have achieved break-through 
improvements on image recognition tasks such as image 
classifications, object identifications, and image 
annotations.  However, very few work has been done in 
applying deep CNN to video encoding.  In order to take 
advantage of the significant capabilities of deep CNN on 
image content detection, we proposed using deep CNN as 
the primary technique to perform critical tasks in video 
encoding that are relevant to the contents of one or multiple 
video frames.  More specifically, we designed deep CNNs 
for the following tasks in H.265/HEVC encoder: 
partitioning CTU to CUs; partitioning CU to PUs; 
performing intra prediction; and performing inter 
predictions. 
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1. Introduction 

Video coding techniques have been there for decades 
to enable storage and transmission of digital video contents 
with limited storage space and transmission bandwidth. The 
past video coding standards, such as H.263, MPEG-2, 
H.264, have adopted the hybrid coding architecture which 
utilized block coding, intra prediction, motion estimation, 

transformation, and entropy coding to achieve high level of 
compression efficiency. The latest video coding standard, 
H.265/HEVC, has inherited such type of hybrid coding 
architecture. It had made improvements in each of the 
coding modules and overall it has achieved 50% 
compression performance gain, compared to H.264-AVC.  

H.265/HEVC has adopted a more flexible blocking 
strategy, a more sophisticated data structure, more choices 
on intra-prediction modes, and other advanced techniques 
to achieve the above performance goal. The tradeoff is 
more intensive computation, which hinders its penetration 
to real-time streaming/transmission applications scenarios 
at current stage. Many coding decisions have to be made 
real-time during coding process, such as blocking (CTU-
CU, CU-PU, CU-TU), prediction mode decision (intra-
mode vs. inter mode), prediction direction decision in intra-
prediction.  

All these decisions are dependent on the contents of 
the video frames and making such decisions often times 
require exhaustive search if Rate-Distortion Optimization 
(RDO) is needed. In real-time streaming, exhaustive search 
is impossible and these decisions need to be made as fast as 
possible. In recent years, Convolutional Neural Network 
(CNN) has made great advances in the analysis and 
recognition of image/video contents. Thus, it is natural to 
apply trained CNNs to perform the above mentioned 
coding decision making process to largely speed up the 
coding process of H.265/HEVC and make it feasible for 
real-time coding and streaming applications. In the 
following sections, the proposed ideas will be discussed in 
greater details.  

 



 

2. Literature Review 
A novel fast Coding Tree Unit partitioning for 

HEVC/H.265 encoder was proposed in [1]. This method 
does not require any pre-training and provides a high 
adaptivity to the dynamic changes in video contents relied 
on run-time trained neural networks for fast Coding Units 
splitting decisions.  

Paper [2] proposed a machine learning based approach 
for fast CU partition decision using features that describe 
CU statistics and sub-CU homogeneity. The proposed 
scheme was implemented as a "preprocessing" module on 
top of the Screen Content Coding reference software. 

In [3], a fast convolutional-neural-network based 
quantization strategy for HEVC was proposed. Local 
artifact visibility is predicted via a network trained on data 
derived from an improved contrast gain control model. 
Further-more, a structural facilitation model was proposed 
to capture effects of recognizable structures on distortion 
visibility via the contrast gain control model. 

Liu et al. ([4] [5]) devised a convolution neural 
network based fast algorithm to decrease no less than two 
CU partition modes in each CTU for full rate-distortion 
optimization (RDO) processing, thereby reducing the 
encoder’s hardware complexity. As their algorithm does 
not depend on the correlations among CU depths or 
spatially nearby CUs, it was friendly to the parallel 
processing and did not deteriorate the rhythm of RDO 
pipelining. 

In another study, Chen et al. [6] proposed a fast coding 
unit (CU) depth decision algorithm for intra coding of 
HEVC using an artificial neural network (ANN) and a 
support vector machine (SVM). Machine learning provided 
a systematic approach for developing a fast algorithm for 
early CU splitting or termination to reduce intra coding 
computational complexity. 

Compared with existing efforts that applied machine 
learning in video encoding, our proposal has the following 
two unique features: 1) trying to take advantages of 
superiority of the-state-of-the-art deep CNN technology on 
image content detection to enhance content-based video 
encoding; 2) trying to use deep CNN as the primary 
technique for multiple content-relevant tasks in video 
encoding within the framework of H.265/HEVC. 

3. Using CNN to Divide CTU into CUs 

Coding Tree Unit (CTU) is the basic logic unit of the 
H. 265/HEVC standard and replaces macroblocks that were 
used in the previous standards.  CTUs can be 16x16, 
32x32, or 64x64 pixels in size. Larger size of CTU 
typically increase video encoding efficiency [7][8], 
especially for higher-resolution pictures.  Each CTU can be 
partitioned recursively into coding unit (CU).  The smallest 
CU can be 8X8.  A CTU can be one CU or partitioned into 
4 equal-size CU.  Each CU that is larger than 8x8 can be 
remaining as one or further partitioned into 4 equal size 
CU.  A quadtree structure can be used to represent the 
partition of a CTU into CUs, as shown in figure 1.   Given a 
CTU with size of 64x64, instead of recursively determine 
the partition by following the quadtree, we propose 
designing a CNN to quickly determine the final partition 
for the CTU.   

 

 
 
 
Figure 1. A Quadtree Structure Representing the 
Partition of A CTU into CUs [7] 
 

3.1 The Architecture of the Deep NN for Partitioning 
CTUs 

The abstract architecture of deep NN for partitioning a 
CTU can be illustrated in Figure 2. The input is each 64x64 
CTU.  Each CTU is fed into a CNN with multiple layers.  
On top of CNN is the full connected layers with softmax 
outputting the probability that the input CTU belong to 
each of partitioning types. 

 

 
 
Figure 2. The abstract structure of the deep NN for 
partitioning CTUs 
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Based on the quadtree, there are totally 174+1=83522 
different possible partitions for a 64x64 CTU.  This large 
number of possibilities leads to the same number of outputs 
at the Softmax layer, which makes training this deep NN 
inefficient. One possible solution is that configure each 
CTU to be the size of 32x32 instead of 64x64.  However, 
this simplified configuration compromises the merit that 
H.265/HEVC allows larger size of CTU for more efficient 
encoding.  Therefore, our solution is that separating the 
participating into two steps. The first step uses a deep NN 
to determine a 64x64 CTU needs to be split or not. If so, 
then the second step is to split the 64x64 CTU into four 
32x32 CTUs, and feed each one of them into another deep 
NN with the same structure as shown in figure 2 to 
determine its partitioning type. Not only the two-step 
approach is consistent with H.265/HEVC on the maximum 
size of CTU, but also reduce the number of 32x32 CTUs 
that need to be fed into the deep NN by the filtering process 
of the first step.   

With respect to the design of the CNN component in 
the deep NN as shown in Figure 2, we consider the state-of-
the-art CNN designs, including AlexNet[9], ZF Net[10], 
VGG [11], GoogleNet [12], and ResNet [13].  We feel that 
ResNet would be the one that fits our purpose well for the 
following reasons. First of all, it won ILSVRC 2015 with 
an incredible error rate of 3.6% using a revolution of depth 
of 152 layers. Secondly, it incorporated the effective deep 
residual learning strategy in its design. Thirdly, all filters 
that ResNet uses have the fixed small size 3x3, which fit 
the size of the input CTU (64x64 or 32x32) very well. 
Therefore, the CNN component in figure 2 will be replaced 
by a ResNet as shown in Figure 3.  The depth of ResNet 
will be determined by experimental studies.  

 
Figure 3. A Sample ResNet [13]

Since a 64X64 conceptual CTU maps to one 64x64 
Luma CTB and two 32x32 Chroma CTB, the real inputs of 
the deep NN for CTU partitioning should be one 64x64 
Luma CTB and two 32x32 Chroma CTB. Therefore the 

final design of the deep NN for CTU partitioning will be as 
follows   

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

b) Stage 2: if a 64x64 CTU is determined to be partitioned 
in stage 1, then stage 2 determines how each of its 
32x32 subarea is partitioned.  

 
Figure 4.  The architecture of deep NN for partitioning 
a 64x64 CTU 
 
 
 

3.2 Generating Training Data  

Generating a large number of training data to train the 
deep NNs described in 3.1 is a big challenge.  We propose 
a method that uses H.265 reference software to process a 
large number of different videos offline in order to generate 
training data sets. More specifically, we configure the 
reference software by setting the CTU size to be 64x64, 
and then output the partition information for each CTU.  
From the outputs, we extract information to form two 
training sets.  First, for each 64x64 CTU, identify it is 
partitioned or not.  Second, for each 64x64 CTU that is 
partitioned, extract one of the 17 parturition types for each 
of its four 32x32 sub-regions.  Using the H.265 reference 
software to partition CTUs is a time consuming process, 
which is also one of the primary motivations of our 
proposal of using deep NN for online CTU partitions.   
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4. Using CNN to Divide CU into PUs  

Through the partitions of CTU, we obtain CUs with 
the following possible sizes: 64x64, 32x32, 16x16, or 8x8.  
Now for each CU, we need to determine its prediction type 
(inter prediction or intra prediction) and further partition it 
to prediction units (PU) based on its prediction type. By 
following the similar idea that is described in section 3, we 
apply deep NN to output both the prediction type of CU 
and its partition to PUs.  Figure 5 shows our design of deep 
NN to partition a CU with size of 2Nx2N into PUs.  N can 
be one of the following values: 32, 16, 8, and 4. We need to 
have a deep NN as follows for each N value. 

Figure 5.  The architecture of deep NN for partitioning 
a 2Nx2N CU into Pus 

5. Using CNN to Perform Intra Prediction  

Given a PU that is determined to be of intra prediction 
by the deep NN described in section 4, we need to further 
determine its prediction mode.  H.265/HEVC allows 35 
intra prediction modes as shown in figure 6 (a).  The 
decision on which prediction mode to use for the given PU 
depends on not only the block that this PU refers to, but 
also its neighboring blocks as the A, B, C, D and E blocks 
shown in figure 6(b).  We design the following NN as 
shown in figure 7 to make the decision on prediction model 
for a given PU.  

 
Figure 6. Illustration of Intra Prediction Modes [7] 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The architecture of deep NN for determine the 
intra prediction mode for a PU
 

The input of the deep NN is an NxN PU and the output 
is the probabilities that this PU belongs to each of the 35 
partitioning modes.  An embedded vector is first generated 
for the input PU by the deep CNN. Then the embedded 
vector and the PU’s neighbor blocks A, B, C, D, and E are 
fed into a fully connected NN with softmax as the output.  
For each possible N value, including 4, 8, 16, 32, and 64, 
we need to have such an NN as illustrated in Figure 7. 

 

6. Using CNN to Perform Inter Prediction  

Given a PU that is determined to be of inter prediction, 
the in5er prediction process needs to find a block that is 
most similar to the block that this PU refers to in reference 
frames. The most accurate approach is to perform a full 
search in all reference frames. However, full search is 
obviously very time consuming. Therefore, different fast 
search strategies have been used in real applications. In this 
section, we propose a deep NN approach to directly output 
the candidate block in a given reference frame. As 
illustrated in Figure 8, the input of this NN is the PU and a 
reference frame. The top layers of this NN is a fully 
connected regression network that output two values 
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representing the x coordinate and y coordinate of the 
candidate block in the reference frame.  Once obtaining the 
candidate block from each reference frame through the NN, 
we simply compare each of the candidate blocks with the 
block referred by the PU and choose the most similar one 
for further motion estimation.  

 
 
 

 

 

 
Figure 8.  The architecture of deep NN for inter 
prediction 
 

7. Discussion and Future Work 

In this paper, we investigated the possibilities of using 
deep NN as the primary technique for efficient video 
encoding in H.265/HEVC.  We proposed several deep NN 
designs for the following tasks in video encoding: 
partitioning CTU to CUs; partitioning CU to PUs; 
performing intra prediction; and performing inter 
predictions.  One of the biggest challenges for using deep 
NN for video encoding is to generate large enough training 
data for training the designed deep NN models. Our 
suggested solution to this challenge is using the H.265 
reference software to create the most optimized outputs for 
each of the above tasks, based on which training data can 
be extracted. Our next step is to conduct large-scale 
experimental studies on the proposed deep NN designs and 
refine the designs based on the experimental results. 
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