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Abstract—Cardiovascular signal is a fundamental physiological
sign to assess health condition. Continuous and long term
health monitoring of infants would be helpful to prevent and
predict illness. However, there is no noninvasive method to
monitor their health. The developed system consists of a non-
contact electrocardiogram (ECG) sensor with fully integrated
analog front end (AFE), an accelerometer, and a Bluetooth
low energy (BLE) module with USB charging module. The
accelerometer output is the reference signal for Least Mean
Square (LMS) adaptive filter. The LMS filter is a noise canceler
that will adaptively remove the motion artifacts and interfer-
ences.

Index Terms—Wearable, BLE, Simblee, ECG, Accelerometer,
Health monitoring, infants

1. Introduction

For infants, continuous and real-time monitoring plays a
crucial factor for urgent medical treatment. Cardiovascular
monitoring of Neonatal Intensive Care Unit (NICU) is
demonstrated by its wide range of use in the medical
arena. The neonates are monitored 24 hours a day, and
extracted vital signs can be a predetermined factor for early
detection and accurate diagnosis. Currently, in the hospitals,
it utilizes patches, adhesive gels, and wired sensors to
monitor the infants. Besides, premature infants have
undeveloped skin, which is uncomfortable, even painful
when the sticky sensors must be removed. The study shows
that interruption of natural movement, disturbance and
less communication with parents has effects on infant’s
growth and physical development [1]. The most popular
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issues.

Recently, with the advancement of sensor technologies,
wireless communication, and longer battery life has created
a new generation of constant health monitoring for infants.
In case of monitoring health, ECG signals are most popular
for observing heart and cardiovascular diseases. Several
proposals have presented for ECG measurement using
non-contact capacitive-based electrodes [5]. However, the
quality of the ECG signal strongly correlated to noises.
ECG signal can be corrupted by power line interference,
muscle contraction, baseline drifting, electrode contact
noise, and environmental noise. These noises are random
in both amplitude and phase, hence designing fixed-point
filters won’t help to improve the signal. A dynamic system
could be the answer for this kind of problem. An adaptive
filter, which self-adjusts its output function per an algorithm
driven by an error signal. This digital filter can reconstruct
the distorted ECG signal, and converges to the optimal
solution. Most of the general filters have fixed coefficients,
the coefficient of an adaptive filter is dynamic and changes
based on the magnitude of the error signal. Figure 1 is
a clear depiction of effectiveness of the adaptive filter.
The output signal is more accurate and peaks are easily
detectable. That is, by means combining the ECG signals
with an adaptive filter, the motion artifacts can be reduced

[3].

This study presents an improved version of the
work previously done in [4] and [5]. We developed a
wireless sensor node for long term health monitoring. Two
capacitive electrodes were attached to the diaper with the
sensor node itself. From our previous studies, we realized,
larger electrodes provide high gain and signal-to-noise
ratio (SNR), however the trade-off is with higher motion
artifacts. The improvement of the developed system is:

(1) Extraction of ECG signal in a non-contact manner with
reduced motion artifacts using adaptive filters. The whole
sensor node, including the electrodes was mounted on baby
diaper around the abdomen.

(2) The rule of thumb while designing wearable sensor,
user comfort should be considered. Therefore, our system
is very compact in size only SImm X 16mm X 6mm.
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Figure 1. Effectiveness of the LMS adaptive filter.

(3) This system can run for months with a single charge.
We used low power components, like, a single-chip
instrumentation amplifier with low power and noise. The
ADS8232 runs on very low supply current of 180 uA. Also,
the wireless communication is achieved with Bluetooth low
energy (BLE).

(4) A wireless microprocessor is used to process the data,
which includes IoT features. All the components are surface
mounted to save space and power. The distance between
electrodes and the preamplifier were shortened to reduce
external noise.

(5) The system provides a real time solution which can
later be used for prediction of different syndromes. Our
system can detect arrhythmia or syncope from the ECG
signal. In addition, to improve the SNR, adaptive filter is
implemented. Finally, to validate the work we compared the
results with a commercial non-contact health monitoring
device.

2. MOTIVATION AND BACKGROUND

When developing the wearable sensor for health
monitoring, it is important to realize that these devices
will be used by medical professionals, the quality and
the accuracy should be as high as possible. Most of the
wearable devices suffer from a common problem, motion
artifact. Using adaptive filter can improve the accuracy
of the measurement while body movement or any other
external noises.

With the conventional ECG measurement system,
sophisticated equipment and wired wet adhesive gel based
electrodes are required, and it is not feasible for long term
monitoring specially with premature infants. It can be the
cause of skin irritation, disturbance of natural movements,
interrupted sleep, and occurrence of external noise. Many
studies have been in recent years to overcome with these
drawbacks [6]. Hence, researchers have proposed dry
electrodes, which was initially introduced to reduce skin
irritation. However, it requires a high input impedance to
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electrodes. To overcome this high input impedance amplifier
can be used to lower the skin-to-electrode resistance [7].
But, this system requires direct contact with the body,
and it is also not feasible for long term monitoring as
it leaves marks and creates discomfort. Additionally, the
ECG signal was influenced by noise due to hair on the skin.

Yudong et al. placed the electrodes on a chair and a
mattress to calculate the ECG, but it still doesn’t eliminate
the motion artifacts [8]. Peltokangas et al. developed a
multi-channel method to acquire high quality ECG signal.
Eight electrodes were stitched to a bed sheet and ECG
signals were recorded from different channel. Also, Wu
et al. tried the similar method and added an individual
pre-amplifier to each electrode to improve SNR [9]. But
this was limited due to the size of the electrodes, this
system was unable measure ECG when lying on the edge
of the bed. Yousefi et al. and Maryam et al. developed a
bio wearable sensor with adaptive filter, but it was exposed
and had a high risk of corrupting the signal [10]- [11]. Chi
et al. proposed a capacitive bio-potential electrodes with
the features of body sensor network [12]. It consists of a
conductive plane as a reference to eliminate the grounding
effect. Electrodes were made as the size of coin and it
could operate with 3.3 V supply voltage. The system
was tested at varying separation between the skin and
electrodes. Later, the same author implemented a dry active
electrode made of FR4 PCB. Which can measure ECG
through insulation fabric. A direct comparison of different
studies based on their performance could be difficult to
accomplish, as they use different scenario, datasets and
measurement technology.

3. METHODS AND MATERIALS

3.1. Method

We developed a wearable system, consisting of sensors
for non-contact ECG measurement and accelerometer based
adaptive filter to remove noise. The size of the complete
system is very compact and can be installed quickly.
Currently, measuring ECG of infants requires tedious
preparation, sophisticate and bulky equipment’s, let alone
discomfort. The conventional electrode surface is made of
silver/silver Chloride (Ag/AgCl), copper or gold coated
and the size of both the dry and wet electrodes are not
small. For this study, small-scale capacitive electrodes were
attached to the diapers. In previous studies, the researchers
placed the flexible electrodes on top of the chest to reduce
the air gap between electrode and the body [8]. However,
due to the rib motion, the surface was always unbalanced.
This eventually cost the effectiveness of the wearable
system. Since in this case, the electrode was placed around
the abdomen the advantages are quite significant, such as
constant pressure and reduced air gap, as shown in figure
2. It also shows the acceleration axes, which indicates the
longitudinal element (Y), lateral element (X), and sagittal



element (Z). The subjects were asked to lay down and
placed in a sleeping position with the sensor node attached
to the abdomen.
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Figure 2. Generated coordinates and vector direction of gravity while
sleeping horizontally.

3.2. System Design

The integrated system comprised of electrodes with
shielding, an analog front end, a wireless microprocessor,
charging circuit and Lithium-ion battery. The wireless unit
is used as a local processor which sends the data to the
host system through Bluetooth 4.0. The front side has two
capacitive electrodes for ECG measurement. Figure 3 shows
a block diagram of the measurement system. To get the
best result, two buffer circuit was attached to the sensing
electrodes. Signal pre-amplification and filtration is done in
the analog front. The AFE is custom designed, fully capable
of extracting and smoothing small bio-potential signal in
the presence of different noise sources. The Simblee, a
single chip microprocessor with BLE capability is chosen to
process that in sensor node. It is ultra-low power wireless
module introduced by RF Digital Co [13]. The signal is
converted to analog to digital converter (ADC), the micro-
processor has 12-bit ADC. Also, it supports serial communi-
cation as SPI and USART. An accelerometer, ADXL 345 is
a three-axis motion sensor. It is connected to the micropro-
cessor to fetch motion activities in different directions. With
the help of Inter-Integrated Circuit (I2C) bus communication
the accelerometer can talk to the microprocessor. All the
components require low power to operate, the overall power
consumption is quite small. Simblee has a USB interface
to program the processor. It is also used for charging 3.7
V Li-on battery with a power circuit. The output signal
can be displayed on a mobile phone or computer. We have
developed an app and graphical interface to show the ECG
graph. The software can also detect arrhythmia.
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Figure 3. Proposed block diagram of the wearable system.

3.3. Hardware Specification

A prototype was developed and designed to measure the
ECG and verify the adaptive algorithm. We developed wear-
able sensor node with capacitive coupled ECG monitoring
system as shown in figure 4, including an accelerometer,
battery and electrodes. The hardware module can be divided
into three major parts. The first one is the sensing part which
is the electrode and an accelerometer. As a non-contact,
ECG electrode, EPIC (Electric Potential Integrated Circuit)
sensor is used. It can measure ECG, EEG and movement of
the eye through cloths or insulators. The PS25255 (Plessy’s
Semiconductor) is most suitable for our project due to its
small size and low power consumption. The actual size
of the PS25255 is 10 mm x 7 mm x 2 mm and only
consume 40 mA once it is active. For the accelerometer, we
selected ADXL 345, which has 400uA of maximum current
consumption. The sensitivity of the accelerometer can be
adjusted from 1.5g to 16g. For this project, we selected 1.5g
so that even a tiny movement can be detected. In the second
part, we have a pre-amplifier, which combines multistage
amplifier and filtration. As we are trying to measure small
changes in electric field, the input impedance of the sensor
is important. High input impedance achieved by using single
chip instrumental amplifier AD8232, although, PS25255 has
a built-in pre-amplifier. The AD8232 provides a CMRR
(common-mode rejection ratio) of 80db and only takes 180
uA to operate. The module also has three Butterworth filters,
8th order low pass and 8th order high pass filter with cutoff
frequency of 40 Hz and 0.5 Hz respectively. There is an ad-
ditional noise due to the 60Hz AC power supply, to eliminate
this a notch filter was implemented. Multistage amplifier
is used to boost the gain up to 1000 V/V. Last part of
the hardware belongs to wireless microprocessor and power
unit. The AFE is connected to ADC of Simblee RFD77101,
which converts the analog signal with a sampling rate of 120
Hz. Simblee is also known as [oT4EE (IoT for Everyone and
Everything). Unlike other IoT devices, Simblee can directly
upload GUI description code to the cell phone. The USB
charging circuit is tested with Lion battery of 3.7 V.

3.4. Adaptive Filter

The idea of canceling or reducing the unwanted signals
without distorting the actual signal is very complex, as
the noise and relevant signal share the same frequency
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Figure 4. Actual prototype of the wearable system with non-contact ECG
electrode.

spectrum. In fact, if the unwanted signal and relevant
shares the frequency spectrum, then using a classical
filter should be discarded [10]. Overall, for long term
monitoring an adaptive filter is essential. This type
of filter is used for certain application in which the
frequency of the noise is unknown. The coefficient changes
continuously with system input. The proposed system
utilizes body acceleration movement as a reference to the
motion artifacts combined with the noisy ECG signal.
The acceleration is obtained from 3-axis accelerometer
which is fabricated with a microcontroller. This approach
is promising since the body acceleration can also provide
level of activity and body orientation of the patient. This
information could be a determinant factor for overall status
of the health [8].

TABLE 1. DESCRIPTION OF THE VARIABLES

Symbol Defination

y[n] Filtered output

x[n] Noise reference input
M Filter order

o Step size

w(n] Filter coefficient

e[n] Error signal

d[n] Desired output

The LMS error reduction algorithm is one of the popular
methods to update the weight of an adaptive filter. The
LMS filter requires a tuning set of FIR filter coefficients to
model the difference between the input and the reference
signal. The computation complexity in LMS adaptive
filter is relatively low compared to other adaptive filters.
However, it is correlated with the filter order (M), which
is the number of coefficients to be used in weight vector.
This algorithm updates the weights on a sample-by-sample
basis shown in (3) [14]. This is a practical way to calculate
the weights of an adaptive filter in real-time as it takes
less computation. The scalar operator, ., known as step-size
is relative to stability, learning rate and bandwidth. It is
chosen based on characteristics of the input signal. The
developed algorithm doesn’t require prior information of
the incoming signal and instead uses an instantaneous
estimate.

The LMS adaptive filter follows the steps given below-
1. Initiate the weights of the coefficients to zero.
2. Set the order and the step size of the LMS adaptive filter.
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3. The predictive output is calculated with the equation given
below.

M—1
y[n] = Z (wi[n] * z[n — 1)) (1)
i=0
4. Compute the estimated error using this equation-
e[n] = dln] — y[n] @

5. The new dynamic weights change as shown in equation

A3).

wi[n + 1] = w;[n] + px x[n — 1] * e[n] 3)

X[n-1] is the present input signal, and i is the number
iteration. It varies from O to M-1. The total number of
multiplication in LMS can be defined as 2M+1.

6. These will be circulated in a loop until the output is
completely filtered.

The LMS adaptive filter requires less resources such
as power, memory, and time to operate compared to other
adaptive filters. The length of the filter M is normally set
depending on the amount memory require for the filter.
The step-size is correlated to the updating process of the
filter coefficient. For example, with high value of step-size
shows higher rate of convergence. However, it also provides
higher chances of getting error compare to small-valued
step-size [14].

Before actually implementing the adaptive filter, a
simulation was set up using Matlab to roughly represent
the actual event. This helps simple testing of characteristics
of an LMS adaptive filter. The filtered measured signal if
the heart rate signal of the patient, which is derived with
Pan-Tomkins algorithm [11].

4. RESULTS

Several measurements were conducted with the
developed prototype to demonstrate the ECG and heart rate
signal with an adaptive filter. However, special permission
needed for an infant’s participation in clinical research.
Unfortunately, due to this limitation, the experiment was
performed by two adults and their physiological data
were taken in our department’s laboratory. Although
a non-contact sensor is the most convenient sensor to
measure ECG, when compared to wet contact electrodes, it
is much more complex and vulnerable to noise. Therefore,
the effectiveness of the electrodes is crucial in this kind
of system. Generally, the raw signal generated from our
body is in the range of millivolts (mV), hence difficult
to extract in a non-contact manner. With the proposed
system, the overall quality of the signal was good. In this
research, the separation between the sensor and skin was
almost constantly which helped to improve the results.



Figure 5 shows the comparison between the proposed ECG
system with commercially available EPIC evaluation kit
and standard gel-based electrodes. This depicts that our
proposed non-contact sensor is competitive against the
medical grade ECG sensor.
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Figure 5. Output signal of the ECG sensor from different system. a)ECG
output of the EPIC system b)Filtered output of the proposed system,
electrodes placed on the waist with 1V peak voltage c) output of the
commercial device with AgCl electrodes.

The optimal solution of the LMS adaptive filter
parameter is collected from over 72 independent trials
of the experiment. Data is obtained from the abdomen
of the subjects. The information was mainly corrupted
from one axis: that is parallel to the z axis shown in figure 3.

Since we focus on real-time solution, the LMS adaptive
filter was implemented within the microcontroller. The
algorithm is tested on Simblee and the output is shown in
laptop/PC with the help Processing software. It was found
that LMS adaptive filters to show significant improvement
in heart rate accuracy. The clock time is selected at 8
MHz, which speed up the execution time to process the data.

From the literature review, it is known that a small
step-size is suitable since it provides low error. Larger
1 increases the learning rate, but at the cost of higher
adjustment error. For real-time health monitoring system
low adjustment error is desirable [15]. Experimental results
show that the size of the mu should be 0.01< p <0.028
which provides lowest Root Mean Square Error (RMSE).
Therefore, ;1 = 0.016 is used to implement the adaptive
filter. The different filter order was chosen to show the

87

execution time. The filter order was varied using a constant
step-size (p 0.016). The accuracy of the heart rate
is correlated with filter order. We found that with high
order filter decreases the adjustment error. Also, it was
expected from previous studies, authors in [12] and [13]
used M=10 and M = 20 which significantly reduced the
motion artifacts. In this experiment, improvement of RMSE
and accuracy were noticed for M = 16. To enhance the
accuracy of the measurement, filter order of M = 24 was
also tested.

The output ECG signal is processed by an adaptive filet
using body acceleration. Instead of using single axis, the
experiment was done with sums combination of three axis
(X+Y+Z). For example, in case of misalignment, a single
axis accelerometer could be misleading. It could provide
an ineffective reference signal to the system. Hence,
utilizing this method shows improvement in ECG signal.
The accelerometer is sampled at 80 Hz, it requires 1 ms
to turn on and 0.2 ms to sample the data [15]. The results
summarized in figure 6 and 7 show that ECG measurement
between adaptive and non-adaptive LMS filter. Figure 6 (a)
is the output due to motion artifacts and 6 (b) is the output
after applying an LMS adaptive filter. The same results
were found in figure 7 where the signal is corrupted by
muscle contraction. From these figures, it can be clearly
realized that LMS filter has removed all types of noises.
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Figure 6. Output of Adaptive Filter under motion artifact
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Figure 7. Output of Adaptive Filter under muscle contraction.



To observe the effects of body acceleration, the power
spectral density (PSD) was processed using an LMS filter
in Matlab. The FFT signals in figure 8 correspond to the
experimental results shown in figure 6 and 7. The spectral
central frequency of 2Hz resembles to the cardiac frequency
during movement. 2.45Hz is the center frequency band of
body acceleration. Figure 8 shows that the signal can be
attenuated using LMS adaptive filter even if the frequency
overlap. Also, the PSD for each axis was calculated, which
indicates the movement occur primarily in the Z-direction,
although motion in all other direction was also measured.
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Figure 8. Frequency Spectrum of Standard ECG Signal before and after
LMS adaptive filter.

5. CONCLUSION

The studies conducted for this thesis consist of adults
laying down in a bed. However, future experiment should
consist of infant subjects to determine more effectiveness
of the developed prototype with an adaptive filter.

The results show that despite the signal being corrupted
by noise and interferences, the use of high precision hard-
ware design and digital signal processing can bring desirable
signal output. As the working frequency of medical devices
is in the range of 0.01 Hz to 3 Hz (maximum), the signal
gets corrupted by interference easily; therefore, filtering,
amplifying and separating analog signals needs to be care-
fully dealt with. The components to design the system were
low cost, low power and easy to implement. This can be
used for home or remote health monitoring and it does
not hamper the daily activity of the patient. Moreover, the
system requires no physical connection to the body, which is
a very important factor to be taken into consideration when
it comes to measure physiological for premature infants.
The undeveloped skin of premature infants makes it quite
difficult to wire up all the sensors. In the second phase of
the research, the plan is to convert the FR4 PCB circuit into
a sticker, like flexible PCB, and attach it to a diaper. Finally,
the proposed method can be used as an example of smart
combination of signal processing and sensor design for a
wide range of application.
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