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ABSTRACT

This paper presents an effective and novel CNN-based deep learning

solution, named Masked Loss Residual Convolutional Neural Net-

work (ML-ResNet), to facial keypoint detection on the datasets that

have missing target labels. The core of the ML-ResNet solution is a

masked loss objective function that ignores the error in predicting

the missing target keypoints in the output layer of a CNN. To com-

pensate for the loss induced by the masked loss objective function

to prevent overfitting, we design a data augmentation strategy in

ML-ResNet to increase the number of training data. The perfor-

mance of ML-ResNet has been evaluated on the image dataset from

Kaggle Facial Keypoints Detection competition, which consists of

7,049 training images, but with only 2,140 images that have full tar-

get keypoints labeled. In the experiments, ML-ResNet is compared

to a pioneer literature CNN facial keypoint detection work. The

experiment results clearly show that the proposed ML-ResNet is

robust and advantageous in training CNNs on datasets that have

missing target values. ML-ResNet can improve the learning time by

30% during the training and the detection accuracy by eight times

in facial keypoint detection.
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1 INTRODUCTION

Detection of facial keypoints is challenging because of variations

of faces, light exposures, different viewpoints, etc. In face keypoint

detection, it is essential to analyze facial expressions and track faces.

Recent development of CNNs has shown great success in computer

vision [1–5]. The deep structures of CNNs extract raw data into

a high level abstraction, which consists of various aspects of an

input that keep the distinguished features but discard irrelevant
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information [5]. Traditional image processing based works on facial

keypoint detection are commonly based on searching local image

features [6, 7]. Specifically, each keypoint is detected by a classi-

fier called component detector based on local patches. As a result,

local minima may be incurred by ambiguous or corrupted local

patches. Recent approaches address the problem of local minima

by employing cascading CNNs to facial keypoints detection. Sun,

Wang and Tang propose to use several CNNs at different levels

to predict and finely tune facial keypoint positions [8]. Another

CNN based solution predicts keypoints with data augmentation [9]

and it has shown significant improvements in Labeled Faces in the

Wild(LFW) dataset [10]. Most CNN solutions in literature, however,

have a common issue in using CNNs as the predictor that they are

not able to be trained on samples that have missing target values.

Many facial images unfortunately do not have all facial keypoints

available because some angles of viewing faces can result in undis-

closed keypoints. Excluding these images will significantly reduce

the number of sample images available for the training of deep

neural networks that requires a large amount of data to prevent

overfitting. Therefore arises a research challenge that how to fit

into deep neural networks the facial images of missing key-

points if they are retained in the training dataset to prevent

the overfitting.

In this work, we design and evaluate an effective solution, named

Masked Loss Residual ML-ResNetConvolutional Neural Network

(ML-ResNet), that proposes a novel objective function to address

the above research challenge. ML-ResNet adds a mask matrix at

the output layer of the CNN to mask out the predicted value at the

same index that expects to be a missing target value. As a result,

the error between the target value and predicted value will not be

affected by the missing value. The neural network will not be up-

dated by the back-propagation on missing target values. In addition

to the proposed objective function, we also design a deep residual

convolutional neural network (ResNet) to replace the conventional

CNN. Introducing an identity mapping shortcut connection [3],

the ResNet can prevent the problem degradation and allow to be

trained on deeper networks. We furthermore adapt a recent tech-

nique, batch normalization [11], to avoid internal covariate shift.

We evaluated the performance of our solution ML-ResNet and a

traditional CNN solution [9] with the Facial Keypoints Detection

dataset hosted at Kaggle that contains 7094 training images, but

with only 2140 images that have all target keypoints labeled. In

the Kaggle dataset, each image sample is a grayscaled image with

96 × 96 pixels with 15 facial keypoints to predict. In the training

phase, a data augmentation method [9] is employed to improve
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the generalization of the two models. The results show that the

performance of our ML-ResNet largely surpasses the traditional

CNN when trained on missing target keypoints dataset.

In the rest of this paper, Section 2 introduces the model of an

image in a CNN network and the related solutions in literature that

employ deep neural networks to address facial keypoints detection.

Then, Section 3 discusses the detail design of the proposed solution.

The performance evaluation is next presented in Section 4. Finally

the paper is concluded by Section 5.

2 BACKGROUND

In this section, we first introduce how an image is modeled and

computed by a CNN, followed by the a summary of related work

proposed for facial keypoint detection.

2.1 Image Model in CNN

Images is often stored in a 3-dimensional array, where dimensions

(h,w , c) represent the height, width, and color channel of an image.

Because the spatial positions of pixels are important, convolutional

layers in CNNs retain this spatial position information by perform-

ing a 2-dimensional convolution operation along h andw axes. The

input and output of each convolutional layer constitute a feature

map, which is a 3-dimensional array with the size ofh×w×c , where
h andw are spatial dimensions representing height and width and

c is the color depth. The input to the first convolutional layer is an

image of h ×w pixels with c color channels (for gray-scale image,

c is 1 and RGB image, c is 3). Each convolutional layer consists of

n learnable kernels of size h
′ ×w ′ × c representing height, width,

and depth. The height h
′
and width w

′
are usually small to learn

local features. The depth is the same as the input feature map. An

illustration is plotted in Figure 1. On the figure, the size of the input

feature map is 6× 6× 2. Three kernels with a dimension of 3× 3× 2
convolve through the feature map. The size of the output feature

map is decided by two parameters stride s and padding p. Stride s
indicates the distance between two consecutive positions in the

matrix multiplication between each kernel and local features in the

feature map. Paddinд p represents how many 0 valued pixels to pad

along h andw axes of the input feature map to maintain the size of

the output feature map. The output size is calculated as in Equation

1, where l indicates the layer number, h,w , c represent the height,

width, and depth of the feature map, h
′
, w
′
, and k are the height,

width, and the number of the kernels in a particular layer.

hl+1 = (hl − h
′
l
+ p)/s + 1

wl+1 = (wl −w
′
l
+ p)/s + 1

cl+1 = kl

(1)

Convolution operation over a 2D image is defined in Equation

2, where I (x ,y) is a function of image, k (x ,y) is a function of each

kernel. Each element of the output feature map is the summation

of the multiplied values between the kernel and the local feature

map. Figure 2 shows how a single element is computed through

one convolution operation.

(I ∗ k ) (x ,y) =
∑
u,v

I (x ,y)k (x − u,y −v ) (2)

Figure 1: Demonstration of kernels and featuremap in a con-

volutional layer. Three kernels with the size of 3× 3× 2 com-

puting on a feature map of the size of6 × 6 × 2

Figure 2: An example of how the output is computed

through convolutional layer.

2.2 Related Work

With the availability of strong computational power and big data,

deep learning models like CNNs have shown great success in ex-

tracting low level features from high level input. CNNs have been

successfully applied to various computer vision tasks such as image

classification [1, 3, 4], object tracking [12], face verification [13], and

image generation [14]. Recent advances on CNNs mainly focus on

network structures and training pipeline. Some examples include:

in [15], the authors analyze the performances of shallow neural

networks and deep neural networks, rectified linear unit has be

shown to stabilize training and has been mostly used in recent deep

models [16], and dropout regularization has been applied to deep

models to overcome overfitting problem by disabling randomly se-

lected neurons at test time [17]. Deep residual networks have been

shown to improve model performance by adding identity mappings

between layers. Some works have extended deep residual networks
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to gain more performance [18], estimate depth information [19],

and interpret residual networks [20].

Two CNN-based facial keypoints detection solutions [8, 9] are

the most related to our work. Predicting the positions of keypoints

on a facial image is essentially a regression task. In these two

related solutions, their output layers are linear regressions that

predict x and y coordinate values of each keypoints in the target

values. In [9], the authors adopt a CNN of three convolutional

layers and one fully connected layer containing 400 hidden units.

This work also employs a data augmentation method that increases

the data size during training and therefore effectively prevents

overfitting. Although this solution reports better performance than

conventional training methods, its CNN structure is not robust

to the case that a number of face images have missing keypoint

values. Ignoring these image samples, the CNN network likely

results in overfitting due to the significant reduction on the number

of samples.

Sun etal . proposes a framework that adopts different levels of

CNNs to predict from a whole face region to local patches [8]. They

used LFW dataset [10] that provides 13,466 face images to down-

load from the web. Each face image is labeled with the positions

of five facial keypoints without any missing labels. Although the

framework achieves the state-of-art performance, it also lacks of

the feature to address the problem of missing target values.

3 DESIGN OF MASKED LOSS
CONVOLUTIONAL NEURAL NETWORK

In this section, we first present the network architecture of our

proposed facial keypoints detection solution, ML-ResNet. We then

introduce the data augmentation techniques designed to prevent

overfitting in the training phase. Finally, we explain the masked

loss objective function in details, which is the core of this solution.

3.1 ML-ResNet Architecture

The network of ML-ResNet is essentially a residual convolutional

neural network, a.k.a ResNet. The basic unit of a ResNet [3] is called

“residual block" that consists of two convolutional layers with a

shortcut connection from the input to the output of the second batch

normalization layer as shown in Figure 3. Although an ResNet can

have arbitrarym residual blocks, a largem requires a large number

of samples to train the ResNet. Otherwise, the model will become

overfitting. To accommodate the datasets with moderate samples,

we designed a special 6-layer ResNet to predict the positions of

each facial keypoints. The input layer accepts facial images of a

size of 96 × 96 × 1 pixels.
The ResNet architecture of our ML-ResNet is shown in Figure

4. As described in [8], detecting facial keypoints from the whole

face region to smaller local regions avoids local minima, we used

32 kernels with a large kernel size of 11 × 11 on the first convolu-

tional layer and followed by a max pooling layer to both reduce

the dimentionality and find out the most discriminative features.

The following four convolutional layers are in two ResNet blocks.

We used the kernal size of 3 × 3 in order to achieve predicting local

small regions. The number of kernels are equal in the same residual

block. The convolutional layers in the first residual block has 32

kernels and the second have 64 kernels. Instead of using pooling

Figure 3: A residual black consists of two convolutional lay-

ers with a shortcut connection.

layer between residual blocks, we used a strided convolution at the

last convolutional layer of each residual block to allow the network

to learn its own spatial downsampling. The last fully connected

layer has size of 1000 neurons. The output layer has 30 neurons

representing facial keypoint positions in (x, y) paris. In addition,

strides in all convolutional layers are one to prevent from losing

information.

3.2 Data Augmentation

One of the most concerned problems in training deep neural net-

work (DNN) models is the overfitting. Because DNNs are complex

and expressive with many parameters, errors and noise in the train-

ing dataset resulted from insufficient training data will significantly

hurt the accuracy and performance of the DNN models. In other

words, without enough training data, DNNs only perform well

on the training dataset, but not on the testing dataset. This prob-

lem is called overfitting. To address this problem, we design two

techniques: one is to increase the size of the image dataset and

the other is to improve the generalization of the DNN model. To

increase the image dataset size, we develop a training time data

augmentation technique called horizontal rotation, which horizon-

tally rotates every image to create another new image. Figure 5

shows the horizontal transformation on six original images one the

top with their rotated new images at the bottom. By applying the

horizontal transformation on our Kaggle image dataset, this gives

us 7, 049 × 2 = 14, 096 for total number of training samples with

2, 140× 2 = 4, 280 training samples of fully labeled target keypoints.

In addition to the data augmentation, we also design a dropout

technique: during training, each neuron has a probability of 1 − p
to output a 0 valued activation.
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Figure 4: Network architecture of our facial keypoint pre-

dicting model. The number of parameters in each layer is

shownbefore layer types. For convolutional layers, the num-

ber of kernels is shown after layer types. The number be-

tween two layers represents the dimension of the input to

the next layer. /2 represents the downsampling factor. For

clarity, non-linearity, batch normalization in each residual

block shown in Figure 3 are ignored.

Figure 5: Top: the original images. Bottom: the images that

vertically flipped.

3.3 Masked Loss Objective Function

Finding the x, y positions of a facial keypoint can be implemented

as a linear regression task. A conventional linear regression ob-

jective function used in facial keypoint detection is Mean Squared

Error (MSE) as defined in Equation 3, where N is the number of

predictions, y is the ground truth target keypoints positions, and ȳ
is the predicted keypoints positions.

e =
1

N

N∑
i=1

(yi − ȳi )2 (3)

When Equation 3 is applied to a mini-batch of samples, we will

have:

E =
1

M

M∑
m=1

em (4)

M is the size of mini-batch samples. E is the average error over all

sample.

In order to train on image samples that have missing target

values, we propose a masked loss objective function to mask out

the missing target values in Equation 4. The core of masked loss

objective function is amaskmatrix , in which each row represents

each sample and each column represents whether it is a missing

target value. Therefore,maskmatrix is essentially a boolean matrix.

To construct amaskmatrix , we first add “0" to all missing values

in target keypoints. Then we define a variablemask (m,n) for each
sample. The value ofmask (m,n) depends on the ground truth of

target values and is determined as:

mask (m,n) =
⎧⎪⎨
⎪
⎩

0,y (m,n) = 0

1,y (m,n) > 0
(5)

where y is the ground truth target value matrix which hasM sam-

ples, and each sample has N values. Thus, y (m,n) is the value at
the sample indexm and the value index n in the matrix y, where m
satisfies 0 ≤ m ≤ M − 1 and n satisfies 0 ≤ n ≤ N − 1.

The DNN model parameters are updated through back propaga-

tion methods that feedback the gradient of the objective function

w.r.t each model parameter. A typical back propagation is to use

the gradient descent as defined in (6):

w
(l )
i j
= wi j − α dE

dw
(l )
i j

(6)

where E is the MSE in Equation(4), α controls the learning speed

of the model, and w
(l )
i j

refers to the weight connecting from the

neuron i at the layer l to the neuron j at the next layer.

The masked loss objective function works in this way: after the

maskedmatrix is decided and before back propagation, the

masked matrix constructed as in Equation (5) multiplies the

predicted target values of the model to mask out the infor-

mation that would result in errors back to the network. Fig-

ure 6 uses a fully connected network to illustrate the concept of

the masked objective function. On the figure, a masked matrix is

constructed according to the ground truth labels and multiplied

with the predicted values. After this operation, the only element

contributed to the final loss is y
′
2. The gradients of y

′
1 and y

′
3 w .r .t

loss are 0. Therefore, the weights will not be updated by the back

propagation. By multiplying masked matrix to the predicted target

values, it is ensured that the predicted target values are the same

as the missing target values, which are both 0. As a result, there

is no difference between the ground truth value and the predicted

value at a missing target value index. Thus, the gradients of the

model parametersw .r .t masked MSE loss are 0 on the missing target

values, and the weights are not updated by the errors between the

predicted values and the real values.

We have validated this design with several tests and observed

that the gradient flowing in the model indeed did not change along

with the missing target values as shown on Figure 7. The validation

test has two output valuesy
′
1 andy

′
2 and their corresponding ground
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Figure 6: Illustration of howmaskedmatrix is applied to pre-

dicted values

truthy1 andy2, wherey1 is themissing target value.We can observe

from the figure that the gradient flowing in themodel is not changed

by the missing target values. This indicates ourmasked loss objective

function solves this problem successfully.

y2
′
= w2x×mask2

loss =
(y1 − y1

′
)2 + (y2 − y2

′
)2

2

y1 y2

y1
′
= w1x×mask1

∂loss

∂y1
= 0

∂loss

∂y2
= y2

′ − y2

∂loss

∂w1

=
∂loss

∂y1
′ × ∂y1

′

∂w1

= 0
∂loss

∂w2

=
∂loss

∂y2
′ × ∂y2

′

∂w2

= x(y2
′ − y2)

w1 w2

Figure 7: A simple example shows that gradient flow for the

missing target is 0. In this picture,y1 is themissing target, so

mask1 should be 0 andmask2 should be 1. w1 and w2 are the

weights for this simple regression task and x is the input.

4 PERFORMANCE EVALUATION

To evaluate the performance of ML-ResNet, we have used the image

dataset from Kaggle Facial Keypoints Detection competition, which

consists of 7049 training images, but with only 2140 images that

have full target keypoints labeled [? ]. In the experiments, ML-

ResNet is compared to a pioneer CNN facial keypoint detection

work [9].

4.1 Training

In training stage, we have used the Adam training algorithm pro-

posed by [21], which is an adaptive learning rate training method

speeding up the learning process. Adam training computes indi-

vidual learning rates for different parameters by calculating the

estimates of first and second moments of the gradients. To have a

fair comparison of our designed masked MSE loss and the original

MSE loss in the related CNN work, we have tested three network

models in our experiment:

• our designedML-ResNet that is a ResNet with the proposed

masked loss objective function

• a regular CNN with the same 6-layer architecture trained

on fully labeled dataset (2140 samples)

• a regular CNN with the same 6-layer architecture, but with

masked loss objective function, which allows it to be trained

on the full dataset (7149 samples)

After random searching hyper-parameters for all three models

[22], we select the parameters in the training as shown in Table 1:

the learning rate of 0.0001, the weight decay of 0.0005, the batch

size of 256, and the weight initialized from a zero-centered normal

distribution with a standard deviation of 0.02. We have trained these

three models on 1,000 epochs and recorded the loss on evaluation

dataset for every epoch.

Table 1: Overview of three network architectures

Hyper-parameters Values

Learning rate 0.0001

Weight decay 0.0005

Batch size 256

Weight initialization σ (0, 0.02)
Total training epochs 1000

4.2 Results

4.2.1 Training Loss. We first evaluate the learning loss perfor-

mance of these three models in the training. Learning “loss" refers

to the MSE defined in Equation 4, which significantly impacts the

training speed and efficiency. The result is shown in Figure 8. All

the losses on the figure have been normalized to the values between

0 and 1 for clarity. The horizontal axis represents the number of

epochs and the vertical axis is either the value of masked MSE or

originalMSE. As we can observe from the figure, the learning curve

of the CNN with MSE loss function converges around 0.06 and

the CNN withmasked loss is slightly better than it converging at

0.03.The ML-ResNet, however, largely surpasses both CNN models

and converges at around 0.01. Another observation from the figure

is that the training of ML-ResNet is far steadier than the training

of both CNN models that fluctuates widely.

4.2.2 Prediction Accuracy. In addition to the training loss, we

have also evaluated the prediction accuracy in the testing stage.

The prediction accuracy indicates how accurate a predicted facial

keypoint is to its ground truth point of the facial images in the

testing pool. Two metrics are tested for the accuracy.
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Figure 8: Evaluation losses for the three models

We first define a metric called detection error as in Equation 7:

error =
√
(x − x̄ ) + (y − ȳ)2/w (7)

where x andy are the ground truth values, x̄ and ȳ are the predicted

values, and the number w is the width of the input face pictures

(in our case, it is 96). This error detection measures the degree at

which a predicted value deviates from its ground truth value. If

the deviation, or error, is larger than 10%, the prediction is counted

as a failure. The average error rate is calculated as f /N , where

f is the total number of failures and N is the total number of

evaluation samples in the test. The result is summarized in Table 2.

The result shows that the masked loss objective function improves

the test accuracy by eight times over the traditional CNN without

considering missing target values.

Table 2: Detection Accuracy

Model Average error rate

CNN without masked loss 75%

CNN with masked loss (ML-CNN) 9%

ML-ResNet 9%

5 CONCLUSION

In this paper, we design a new deep learning facial keypoint detec-

tion solution, Masked Loss Residual Convolutional Neural Network

(ML-ResNet), which is a residual neural network with a masked

loss objective function. ML-ResNet can effectively work on facial

keypoint detection datasets that have missing target values. The

masked loss function can mask out the errors between ground truth

values and predicted values with a masked matrix. As a result, the

detection performance will not be hurt by the errors introduced

by the images that have missing target values, so that they can

be attained in the datasets to prevent overfitting in the training

stage. With extensive evaluation and comparison, ML-ResNet out-

performs other CNN solutions in training efficiency and stability as

well as the facial keypoint detection accuracy. In addition, masked

loss objective function can be also used in other CNN solutions to

improve their performance in both training and detection.
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