
A Novel Data Reuse Method for Motion Estimation in Video
Applications

ABSTRACT
Motion estimation is a kernel algorithm in many video
applications. Full search integer motion estimation (FSIME) can
find the best result but it usually takes plenty of time. Previous
work on accelerating FSIME exploited intra-frame data reuse
within reference frame. We propose a novel data reuse scheme
which uses not only intra-frame but also inter-frame data reuse for
FSIME. Motion estimation in frame rate up-conversion (FRUC-
ME) is used as a case study. A frame is loaded into on-chip
memory only once instead of twice and used for two interpolated
frames. Different inter-frame data reuse methods are presented
and analysed. They give useful tradeoff between off-chip
bandwidth requirement and on-chip memory size. The proposed
data reuse methods all show better data reuse efficiency than the
traditional methods, so the off-chip memory traffic is reduced
effectively, as much as 37.5%.

CCS CONCEPTS
• Computing methodologies→Computer vision

KEYWORDS
motion estimation, memory traffic, FRUC

For its simplicity and efficiency, block matching is usually used to
find the most similar reference macro-block (MB) to the current
MB. Full search integer ME (FSIME) can find the optimal point
in the search range but it needs a large number of computations
and memory accesses. On the other hand, FSIME is suitable to be
implemented in hardware because its computation and memory
access are regular. Fast search methods are proposed to reduce the
search points of FSIME to cut down the time overhead, but they
may not find the best result and many of them are not proper for
hardware implementation. Our focus is FSIME in this paper.

The speed of computing has overtaken the speed of memory
access in recent years, so it is important to reduce off-chip
bandwidth requirement of FSIME to improve performance
particularly for real-time applications [4]. Reusing data on chip is
one effective way to reduce off-chip memory traffic for FSIME
[5]-[8]. However, previous work focused on intra-frame data
reuse within reference frame while inter-frame data reuse was not
considered. Only with intra-frame data reuse, each frame has to be
loaded from off-chip memory to on-chip memory twice for
FRUC-ME, the first time as current frame, the second time as
previous frame [9].

Different processors offer very different on-chip memory sizes.
A proper data reuse method can exploit the best of available cache
size. For example, with the traditional data reuse methods [5],
Level D data reuse needs at least a 60KB on-chip memory which
can reduce the off-chip memory bandwidth to 124 MByte/sec and
Level E needs at least a 2MB on-chip memory which can reduce
the off-chip memory bandwidth to 62 MByte/sec (TABLE II). If
the on-chip memory size of available platform is 256KB, we can
only use Level D which still demands a lot of off-chip memory
bandwidth and the cache size is not sufficiently used. If there is a
data reuse method between Level D and E, e.g. 241KB on-chip
memory with 77 MByte/sec off-chip memory bandwidth (Inter-D
in TABLE II), it will be the best data reuse method for this cache
size.

In this paper, we propose a new method to exploit inter-frame
data reuse for FRUC-ME. The inter-frame data reuse scheme can
effectively reduce off-chip memory traffic with affordable on-chip
memory size. For FRUC-ME, most of the frames are processed as
current frame and reference frame at the same time in order to be
loaded into on-chip memory only once. Different levels of the

Weizhi Xu1,2, Hui Yu3, Xin Wang3, Yanhui Ding1,2, Dianjie Lu1,4, Guijuan Zhang1,4, and Zengzhen Shao1,2

1 School of Information Science and Engineering, Shandong Normal University, Jinan, China, 250358
2 Shandong Provincial Logistics Optimization and Predictive Engineering Technology Research Center, Jinan, China,

250014
3 School of Management Science and Engineering, Shandong Normal University, Jinan, China, 250014

4 Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Jinan, China, 250358
xuweizhi@sdnu.edu.cn, huiyu0117@sdnu.edu.cn, wxyouha123@163.com, yanhuiding@126.com, ludianjie@sina.com,

guijuanzhang@gmail.com, shaozengzhen@163.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Mobimedia 2017, July 13-14, Chongqing, People's Republic of China
Copyright © 2017 EAI 978-1-63190-156-0

MOBIMEDIA 2017, July 2017, Chongqing, China W. Xu et al.

proposed data reuse method for FRUC-ME give proper tradeoffs
between data reuse efficiency and on-chip memory size.
According to the case studies, we find that off-chip memory
traffic can be reduced by 37.5% with the new data reuse method
for FRUC-ME.

2 DATA LOCALITY ANALYSIS
In this paper, Macro Block (MB, a block of pixels with size of
N×N), Block Strip (BS, a row of MBs), Search Range (SR, the
search range in reference frame for a current block) and SR Strip
(SRS, a row of search ranges) are four levels of data ranges within
the frame. Current Block (CB) is an MB in the current frame.
Different scan orders, such as raster scan, snake scan and smart
snake scan, can be used for different data reuse methods with
different off-chip memory traffic [7], [8]. PEA is the IME engine
for computing the sum of absolute differences (SAD) and motion
vector.

Four intra-frame data reuse levels are presented in [5], Level
A, Level B, Level C and Level D [10]. Level A+ (between Level
A and B) [6] is similar to Level C+ (between Level C and D) [7].
However, Level A+ is often used to get data from SRAM to
registers while Level C+ is usually implemented to load data from
off-chip memory to on-chip memory. Level E is considered to be
impractical because it demanded a large on-chip memory [5].
Traditionally, Ra (the redundancy access factor), is used to
evaluate data reuse efficiency [5], but the memory traffic of
loading the reference frame is not considered for Ra.

3 NEW DATA REUSE METHOD FOR FRUC-
ME

Previous work tried to improve intra-frame data reuse. But each
frame has to be loaded into on-chip memory twice for FRUC-ME.
In order to reduce this kind of data redundancy, we propose an
inter-frame data reuse method to load frames into on-chip
memory only once for FRUC-ME. Three levels of inter-frame
data reuse are developed in this section.

3.1 New Ra for FRUC-ME
Previous work [5]-[8] did not consider the inter-frame data
redundancy when computing Ra, and the memory traffic of
loading the current frame was neglected. So we propose a new
definition of Ra to compare different intra-frame and inter-frame
data reuse levels. In (1), new Ra includes both intra-frame
redundant access (Ra-intra) and inter-frame redundant access
(Ra_inter). Ra_intra describes the data redundancy of loading
reference frame in (2). memrefload is the memory traffic to load
reference frame. Ra_inter rises from loading current frame to on-
chip memory. Ra_inter is defined in (3), where memcurload equals
memory traffic to load one current frame. A larger Ra stands for
higher memory bandwidth requirement.

interRaintraRaRa __ (1)

frameainnumberpixel
memrefintraRa load_ (2)

frameainnumberpixel
memcurinterRa load_ (3)

For FRUC-ME, Ra of intra-frame data reuse levels (TABLE I)
is computed according to (1). Ra_inter always equals 1 because
each current frame is loaded only once. For example, Intra-C Ra
is computed as follows.

1)/1()/()()/1(NSRHWHWNSR VV

3.2 Inter-E Data Reuse Method
One way to implement inter-frame data reuse is to put whole
frames on chip. Two frame buffers and one PEA can be used to
implement Inter-E data reuse for FRUC-ME. At first, Frame 0 and
1 are loaded into on-chip Frame Buffer 0 and 1 respectively.
Frame 0 and Frame 1 are the previous frame and the current frame
respectively. After Frame 0 and 1 are processed, Frame 2 is
loaded into Frame Buffer 0 as current frame and Frame 1 is
considered as the previous frame. This process is repeated so that
each frame is loaded into on-chip buffer only once. Note that, we
use PEA to implement the proposed data reuse scheme and PEA
is popular for processing ME but PEA is not essential to
implement the new data reuse scheme. For example, an
architecture with programmable on-chip memory (like GPU) can
also be used to implement the data reuse scheme.

3.3 Inter-D Data Reuse Method
We propose Inter-D to reduce the buffer size of Inter-E. Multiple
SRSs instead of whole frames are kept on chip for Inter-D. One
SRS buffer stores one SRS. One PEA processes two current
frames during one time period for FRUC-ME in Fig. 1. Two SRS
buffers for Frame i and i-1 and one CB buffer for Frame i+1 are
integrated on chip. Frame i is the current frame for Frame i-1 and
the previous frame for Frame i+1. The goal is to load Frame i into
on-chip memory only once instead of twice. The CBs of Frame i
are contained in the SRS buffer for Frame i. So we make the PEA
process the CB strips (or current BSs) of Frame i and Frame i+1
alternately (Fig. 2) and take the same scan order for the two
frames. After processing BS0 of Frame i+1 in Step0, the PEA
goes to process BS0 of Frame i in Step1. BS0 of Frame i is
already in the SRS buffer for Frame i after Step0, so it is reused
on chip in Step1. After that, PEA processes BS1 of Frame i+1 in
Step2. By this means, the CB strips of Frame i are always on chip
when they are needed and do not have to be loaded from off-chip
memory so Frame i are inter-frame reused in the SRS buffer.
However, Frame i-1 and i+1 are still needed to be loaded twice.
Therefore, Ra of Inter-D is calculated as follows.

m
HW
HW

mHW
HW /111

Novel Data Reuse Method for Motion Estimation MOBIMEDIA 2017, July 2017, Chongqing, China

Fig. 1. Inter-D Architecture for FRUC-ME.

Data reuse efficiency can be improved by increasing the
number of SRS buffers and processing more current frames in the
same period of time. If there is only one current frame in one time
period, the data can only be intra-frame reused and each frame is
loaded twice (Fig. 3). The data reuse efficiency increases as the
number of frames processed during one time period increases, e.g.
only one fourth of the frames are loaded twice when four instead
of two current frames are processed in one time period. In
addition, Inter-D can exploit data reuse between adjacent SRSs,
which means that Inter-D is compatible with Intra-D.

Fig. 2. The order of the current BSs processed by the PEA.

Fig. 3. Load times of the frames in a frame sequence for Inter-D or Inter-
C.

3.4 Inter-C Data Reuse Method
Inter-C is proposed to further reduce the on-chip memory size to
multiple SR buffers. Inter-C architecture for FRUC-ME is
described in Fig. 4. Two SR buffers and one CB buffer are
integrated on chip. PEA processes CBs of two current frames
alternately in one time period. Frame i is the current frame for

Frame i-1 and the previous frame for Frame i+1. Pixels of Frame i
are loaded into SR buffer and shared by Frame i-1 and i+1. One
important thing is how to arrange the processing order of the CBs
so that the data in SR buffer for Frame i are always used both as
CB for Frame i-1 and as SR for Frame i+1. We make the accesses
of all current frames (Frame i and i+1) take the same start point
and scan order. For example, after matching CB0 of Frame i+1
with SR0 of Frame i, PEA goes to process CB0 of Frame i. CB0 is
contained in SR0 which is already in the buffer so CB0 is reused
on chip for Frame i. Then PEA goes to process CB1 of Frame i+1
and CB1 of Frame i (Fig. 5). By this means, the data of Frame i
are inter-frame reused and are loaded only once from off-chip
memory, but Frame i-1 and i+1 are still needed to be loaded twice.
Ra of Inter-C is computed as follows.

mNSRHWHWmNSR VV /1)/1()/()(/1)/1(

Fig. 4. Inter-C Architecture for FRUC-ME.

Fig. 5. The order of the CBs processed by PEA.

TABLE I RA AND ON-CHIP MEMORY SIZE FOR FRUC-ME

Level Ra On-chip Memory Size
Intra-C (1+ SRV /N)+1 (SRH+N-1) (SRV+N-1)
Inter-C (1+ SRV /N)+1/m m(SRH+N-1) (SRV+N-1)
Intra-C+ (1+ SRV /nN)+1 (SRH+N-1)(SRV+nN-1)
Inter-C+ (1+ SRV /nN)+1/m m(SRH+N-1)(SRV+nN-1)
Intra-D 1+1 (SRH+W-1) (SRV-1)
Inter-D 1+1/m m(SRH+W-1) (SRV-1)
Inter-E 1 2WH

Data reuse efficiency can be improved by using more SR

buffers and processing more frames in the same time period (Fig.
3). If there is only one current frame processed during a time
period, each frame in the frame sequence is loaded twice. The
data reuse efficiency increases when the number of frames

SRS buffer
for Frame i-1

PEA

BS2,5,8…

 BS1,4,7…

 BS0,3,6…

SRS buffer
for Frame i

CB buffer for
Frame i+1

BS1,4,7…

BS0,3,6…

BS2,5,8…

SR buffer for Frame i-1

SR0 SR1

CB buffer for
Frame i+1

PEA

SR0 SR1
CB1 CB0 CB0 CB1

SR buffer for Frame i

MOBIMEDIA 2017, July 2017, Chongqing, China W. Xu et al.

processed during the same time period increases. Furthermore,
Inter-C can exploit data reuse within SRS in SR buffer as Intra-C.

We give Ra and on-chip memory size for different data reuse
levels of FRUC-ME (TABLE I). m is the number of the
current frames processed in one time period. n is the
parameter of C+ scheme. Intra-C, C+, D and Inter-E are
traditional data reuse methods. Inter-C, C+, D are proposed inter-
frame data reuse methods. The new inter-frame data reuse
methods always have better data reuse efficiency than their intra-
frame counterparts. A larger m results in a smaller Ra but a larger
buffer size. For example, Ra of Inter-D is nearly half of Intra-D
when m is large enough. The size of the CB buffer is not
considered when computing the on-chip memory size because it is
much smaller than SR, SRS or frame buffer. The on-chip memory
size of Inter-C, Inter-C+ and Inter-D is m times of Intra-C, Intra-
C+ and Intra-D respectively. Both Inter-C+ and Intra-C+ take
stitched zigzag scan [6] and all the other data reuse schemes take
raster scan.

4 Case Studies
We give three case studies (1080p, 720p and 4K) for different
data reuse levels. Ra and on-chip memory size are computed
according to TABLE I , where m and n are both equal to 4.
Bandwidth in (4) describes off-chip memory bandwidth
requirement. f is the frame rate.

RaHWfBandwidth (4)
For Inter-E, the on-chip memory size is 4.1MB, 1.8MB and

16.6MB for 1080p, 720p and 4K respectively (TABLE II). The
three new inter-frame data reuse schemes have better data reuse
efficiency than their intra-frame counterparts for 1080p, 720p, and
4K. For 1080p and 4K, the bandwidth requirement reductions of
Inter-C, C+ and D are 18.8%, 30% and 37.5% respectively,
compared with Intra-C, C+ and D. For 720p, the bandwidth
requirement reductions are 25%, 33.3% and 37.5% respectively
for the three data reuse levels.

TABLE II THREE CASE STUDIES FOR FRUC-ME

Reuse
Level 1080p, 30fps, SRH=SRV=32, N=16 720p, 30fps, SRH=SRV=16, N=16 4K, 60fps, SRH=SRV=128, N=64

Ra Bandwidth

(MByte/sec)

On-chip
Memory
Size(KB)

Ra Bandwidth
(MByte/sec)

On-chip
Memory
Size(KB)

Ra Bandwidth
(MByte/sec)

On-chip Memory
Size(KB)

Intra-C 4 248.83 2.21 3 82.94 0.96 4 1990.66 36.48
Inter-C 3.25 202.18 8.84 2.25 62.21 3.84 3.25 1617.41 145.92
Intra-C+ 2.5 155.52 4.47 2.25 62.21 2.45 2.5 1244.16 73.15
Inter-C+ 1.75 108.86 17.86 1.5 41.47 9.80 1.75 870.91 292.61
Intra-D 2 124.42 60.48 2 55.30 19.43 2 995.33 503.81
Inter-D 1.25 77.76 241.92 1.25 34.56 77.72 1.25 622.08 2015.24
Inter-E 1 62.21 4147.20 1 27.65 1843.20 1 497.66 16588.80

5 CONCLUSIONS
In this paper, we propose a new inter-frame data reuse method for
full search integer motion estimation. The new method avoids
repeatedly loading the same frame into on-chip buffer. The
proposed data reuse scheme effectively reduces the off-chip
memory traffic and outperforms the traditional intra-frame data
reuse method.

ACKNOWLEDGMENTS
This work is supported in part by Shandong Provincial Natural
Science Foundation, China (No. ZR2015FQ009, ZR2014FQ009
and ZR2016FP07), the NNSF of China grant (No. 61602285,
61602284, 61402270, 61303007 and 61402268), China
Postdoctoral Science Foundation Funded Project (No.
2016M592697), and Project of Shandong Province Higher
Educational Science and Technology Program (No. J16LN05).

REFERENCES
[1] G. J. Sullivan, J. Ohm, W.-J. Han and T. Wiegand, "Overview of the High

Efficiency Video Coding (HEVC) Standard," IEEE Trans. Circuits Syst.
Video Technol. , vol.22, no.12, pp.1649-1668, Dec. 2012.

[2] S. Dikbas and Y. Altunbasak, "Novel True-Motion Estimation Algorithm and
Its Application to Motion-Compensated Temporal Frame Interpolation," IEEE
Trans. Image Process., vol.22, no.8, pp.2931-2945, Aug. 2013.

[3] M. T. Pourazad, P. Nasiopoulos and R. K. Ward, "An H.264-based scheme for
2D to 3D video conversion," IEEE Trans. Consum. Electron., vol.55, no.2,
pp.742-748, May 2009.

[4] J.-H. Hsieh and T.-S. Chang, "Algorithm and Architecture Design of
Bandwidth-Oriented Motion Estimation for Real-Time Mobile Video
Applications," IEEE Trans. Very Large Scale Integr. Syst., vol.21, no.1, pp.33-
42, Jan. 2013.

[5] J. Tuan, T. Chang and C. Jen, "On the data reuse and memory bandwidth
analysis for full-search block-matching VLSI architecture," IEEE
Trans. Circuits Syst. Video Technol. , vol.12, no.1, pp.61-72, Jan. 2002.

[6] C. Chen, C. Huang and L. Chen, "Level C+ data reuse scheme for motion
estimation with corresponding coding orders," IEEE Trans. Circuits Syst.
Video Technol. , vol.16, no.4, pp.553-558, April 2006.

[7] X. Wen, Au O.C., J. Xu, Lu Fang, R. Cha and J. Li, "Novel RD-Optimized
VBSME With Matching Highly Data Re-Usable Hardware
Architecture," IEEE Trans. Circuits Syst. Video Technol. , vol.21, no.2,
pp.206-219, Feb. 2011.

[8] S.D. Kim, and Sunwoo M., "MESIP: A configurable and data reusable motion
estimation specific instruction-set processor," IEEE Trans. Circuits Syst.
Video Technol. , vol.23, no.10, pp.1767-1780, Oct. 2013.

[9] A. Akin et al., "An adaptive bilateral motion estimation algorithm and its
hardware architecture," IEEE Trans. Consum. Electron., vol.58, no.2, pp.712-
720, May 2012.

MOBIMEDIA 2017, July 2017, Chongqing, China W. Xu et al.

[10] D.-X. Li, W. Zheng and M. Zhang, "Architecture Design for H.264/AVC

Integer Motion Estimation with Minimum Memory Bandwidth," IEEE Trans.
Consum. Electron., vol.53, no.3, pp.1053-1060, Aug. 2007.

